JPH039811A - Manufacture of thermoplastic resin composition and its molding - Google Patents

Manufacture of thermoplastic resin composition and its molding

Info

Publication number
JPH039811A
JPH039811A JP1143989A JP14398989A JPH039811A JP H039811 A JPH039811 A JP H039811A JP 1143989 A JP1143989 A JP 1143989A JP 14398989 A JP14398989 A JP 14398989A JP H039811 A JPH039811 A JP H039811A
Authority
JP
Japan
Prior art keywords
gas
thermoplastic resin
particulates
fine particles
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1143989A
Other languages
Japanese (ja)
Inventor
Kentaro Noguchi
健太郎 野口
Junzo Shimokawa
順造 下川
Koji Hisatama
久玉 耕二
Toshio Yamauchi
山内 敏夫
Kazuto Kiyohara
一人 清原
Toshiyuki Hagiwara
俊幸 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Konica Minolta Inc
Original Assignee
Kanebo Ltd
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd, Konica Minolta Inc filed Critical Kanebo Ltd
Priority to JP1143989A priority Critical patent/JPH039811A/en
Priority to US07/503,194 priority patent/US5281379A/en
Priority to EP90106401A priority patent/EP0391372B1/en
Priority to DE69023794T priority patent/DE69023794T2/en
Publication of JPH039811A publication Critical patent/JPH039811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To manufacture a thermoplastic resin composition within which particulates of submicron order are displaced in high density, by a method wherein gas is discharged while collecting the particulates into a moving layer by causing the gas containing the particulates having a specific particle diameter to come into contact with or collide with the moving layer of thermoplastic resin in a molten state and, thus, molten resin and the particulates are kneaded. CONSTITUTION:Gas is discharged while collecting particulates into a moving layer of molten resin by causing the gas containing the particulates having a particle diameter of not exceeding 10mum to come into contact with or collide with the moving layer of thermoplastic resin in a molten state, and thus, molten resin and particulates are kneaded. Then in succession to the kneading, a thermoplastic resin composition into which the particulates are dispersed is molded. The effect of the particulates compounded with thermoplastic resin is especially marked in such case that they are compounded with the thermoplastic resin in a large quantity fallen within a range of 5-40volume%. As the gas to used, air, nitrogen, carbon dioxide or a rare gas such as argon, preferably an inactive gas is suitable as working gas and a gas having the boiling point lower than the melting point of the thermoplastic resin is preferable. In such a case when a gas containing the particulates is collected by causing the same to collide with the molten resin, the spouting through a fine hole should be at a flow speed of at least 10m/sec., preferably 40-200m/sec.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微粒子を混合したプラスチック製品、例えば繊
維、成形品や二軸延伸フィルム等に成形加工される機能
性複合材料を製造する為の方法を提供するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a method for producing a functional composite material mixed with fine particles and molded into plastic products such as fibers, molded products, biaxially stretched films, etc. It provides:

(従来の技術) 成形品等に加工される複合材料は、従来、ガラス繊維、
カーボン繊維やウィスカ等1ミクロン程度以上の大きさ
の充填剤を熱可塑性樹脂に溶融混練して複合化したもの
が主流で(例えば特開昭61−277421号公報参照
)、成形品の外観や成形品の耐衝撃性の向上環の問題が
ある。一方、酸化チタン、カーボンブラック、磁性体等
1ミクロン程度以下の大きさの微粒子を分散する場合に
は、熱可塑性樹脂の重合時に微粒子を混合して均一に分
散した方法が主流であるが、反応系が高温であるために
実用上使用されているものは酸化チタンやカーボンブラ
ックなどの耐熱性の良い微粒子に限られており、また重
合装置を汚染するため専用に設備したり、洗浄に多大の
労力と経費を必要とするなどの問題がある。また微粒子
を高濃度に混練したマスターバッチ方式も良く知られて
いるが、混練前の樹脂の乾燥と混練後のマスターバッチ
の乾燥を必要としエネルギー消費量と労力が多大であり
、更に混練工程における熱履歴のため成形品の物性低下
も問題となる。
(Conventional technology) Composite materials processed into molded products have traditionally been made of glass fiber,
Composites made by melting and kneading thermoplastic resins with fillers with a size of about 1 micron or more, such as carbon fibers and whiskers, are mainstream (for example, see Japanese Patent Application Laid-Open No. 61-277421). There is a problem with improving the impact resistance of products. On the other hand, when dispersing fine particles of titanium oxide, carbon black, magnetic materials, etc. with a size of about 1 micron or less, the mainstream method is to mix the fine particles during polymerization of thermoplastic resin and disperse them uniformly. Due to the high temperature of the system, the materials that are practically used are limited to fine particles with good heat resistance such as titanium oxide and carbon black, and in order to contaminate the polymerization equipment, special equipment is required and a large amount of cleaning is required. There are problems such as the need for labor and expense. A masterbatch method in which fine particles are kneaded at a high concentration is also well known, but it requires drying of the resin before kneading and drying of the masterbatch after kneading, which requires a large amount of energy and labor. Deterioration of the physical properties of molded products due to thermal history also poses a problem.

(発明が解決しようとする課題) このような従来の複合材料からの成形品の問題について
、10〜数10ミクロン級の従来の充填剤ではなく、サ
ブミクロン乃至ミクロン級の微粒子を充填した複合材料
による各種成形品や従来はなかったかような複合材料に
よる二軸延伸フィルムやシート、繊維等、より高度な製
品を製造する技術が要望されている。すなわち、サブミ
クロン乃至ミクロン級の微粒子を取扱う粉体プロセスと
ポリマープロセスとを一体化した新規技術の開発が必要
となる。本来、粉体プロセスとポリマープロセスは異種
技術であり、これらを調和した技術の構築は、サブミク
ロン級微粒子の空気輸送技術とポリマープロセスの調和
によって達成される。それには、ポリマープロセスにマ
ツチしたサブミクロン級の微粒子の集塵技術が必要であ
る。
(Problems to be Solved by the Invention) Regarding the problem of molded products made from conventional composite materials, we have developed a composite material filled with submicron to micron-sized fine particles instead of the conventional filler of 10 to several tens of microns. There is a demand for technology to manufacture more advanced products, such as various molded products made from plastics, biaxially oriented films, sheets, and fibers made from composite materials that have never existed before. In other words, it is necessary to develop a new technology that integrates a powder process that handles submicron to micron-sized particles and a polymer process. Originally, powder processes and polymer processes are different technologies, and the creation of a technology that harmonizes them can be achieved by harmonizing pneumatic transport technology for submicron-sized particles and polymer processes. This requires a technology for collecting submicron particles that is compatible with polymer processes.

−IIに、粉体プロセスに於いて、工業的に実施されて
いる集塵技術は、例えばバッグフィルターによる集塵が
代表的である。しかし、粉体プロセスとして完全連続と
することは困難であるばかりではなく、集塵された微粒
子の吸湿や再凝集等の問題点もある。このようなことか
ら、サブミクロン級の微粒子を工業的に、かつ連続的に
集塵し、かつ、ポリマープロセスに取り込んだ新規な生
産技術の確立が本発明の解決しようとする問題点である
-II, in the powder process, dust collection using a bag filter is typical, for example, as an industrially implemented dust collection technique. However, it is not only difficult to achieve complete continuity as a powder process, but there are also problems such as moisture absorption and reaggregation of collected fine particles. For this reason, the problem to be solved by the present invention is to establish a new production technology that industrially and continuously collects submicron-sized particles and incorporates them into a polymer process.

(課題を解決する為の手段) ポリマープロセスに取り込める微粒子の集塵技術として
は、溶融樹脂の移動層による集塵によって、粉体プロセ
スとポリマープロセスの一体化が可能になり、この問題
が解決可能になった。すなわち第一の本発明は、熱可塑
性樹脂と微粒子とを熔融混練するに際し、粒径10μm
以下の微粒子を含む気体を溶融状態の熱可塑性樹脂の移
動層に接触又は衝突させて該溶融樹脂の移動層に微粒子
を捕集させつつ気体を排出し、そして前記溶融樹脂と微
粒子とを混練することを特徴とする微粒子分散熱可塑性
樹脂組成物の製造方法である。また第二の本発明は、上
記の混練に連続して、微粒子分散熱可塑性樹脂組成物を
成形することを特徴とする成形物の製造方法である。
(Means for solving the problem) As a dust collection technology for fine particles that can be incorporated into the polymer process, this problem can be solved by collecting dust using a moving layer of molten resin, which makes it possible to integrate the powder process and the polymer process. Became. That is, in the first aspect of the present invention, when melt-kneading a thermoplastic resin and fine particles, the particle size is 10 μm.
A gas containing the following fine particles is brought into contact with or collides with a moving layer of molten thermoplastic resin, and the gas is discharged while the moving layer of molten resin collects the fine particles, and the molten resin and the fine particles are kneaded. This is a method for producing a thermoplastic resin composition in which fine particles are dispersed. A second aspect of the present invention is a method for producing a molded article, which comprises molding a fine particle-dispersed thermoplastic resin composition following the kneading described above.

本発明に使用する熱可塑性樹脂とは、ポリエチレンテレ
フタレート、ポリブチレンテレフタレートなどのポリエ
ステル、ナイロン6、ナイロン66、ナイロン12など
のポリアミド、ポリエチレン、ポリプロピレンなどのポ
リオレフィン、塩化ビニル、ポリカーボネート、ポリウ
レタン、へBS樹脂、及びこれらの共重合体や混合物等
公知の熱可塑性樹脂をいう。
Thermoplastic resins used in the present invention include polyesters such as polyethylene terephthalate and polybutylene terephthalate, polyamides such as nylon 6, nylon 66, and nylon 12, polyolefins such as polyethylene and polypropylene, vinyl chloride, polycarbonate, polyurethane, and BS resin. , and known thermoplastic resins such as copolymers and mixtures thereof.

本発明における微粒子とは、室温で好ましくは100°
C以下で平均粒径が10μm以下、好ましくは0.01
〜1μmの固体粒子をいう。例えば、酸化チタン、炭酸
カルシウム、シリカ、タルク、リトポン、酸化亜鉛、マ
イカ、硫酸バリウム、アルミナ、カオリン、カーボンブ
ラック、酸化錫、ガラスピーズ、金、銀、銅、鉄、鉛、
アルミニウムなどの金属粉、珪酸カルシウム、酸化ジル
コニウム、炭化ジルコニウム、γFe2O3や二酸化ク
ロムなどのフェライト、三酸化アンチモン、五酸化アン
チモン、ブロム系化合物、洗顔料、抗菌剤、安定剤など
、例えば「プラスチックおよびゴム用添加剤実用便覧」
、後藤邦夫編、■化学工業社昭和45年発行に記載され
た公知の添加剤粒子を挙げることができる。
The fine particles in the present invention are preferably 100° at room temperature.
C or less and the average particle size is 10 μm or less, preferably 0.01
Refers to solid particles of ~1 μm. For example, titanium oxide, calcium carbonate, silica, talc, lithopone, zinc oxide, mica, barium sulfate, alumina, kaolin, carbon black, tin oxide, glass beads, gold, silver, copper, iron, lead,
Metal powders such as aluminum, calcium silicate, zirconium oxide, zirconium carbide, ferrites such as γFe2O3 and chromium dioxide, antimony trioxide, antimony pentoxide, bromine compounds, facial cleansers, antibacterial agents, stabilizers, etc. "Practical Handbook of Additives"
, edited by Kunio Goto, and published by Kagaku Kogyosha in 1971.

熱可塑性樹脂に配合される微粒子の量は、通常樹脂粒状
体に対して50体積%以下であるが、本発明は1〜50
体積%、特に5〜40体積%の範囲の多量に配合する場
合に効果的である。
The amount of fine particles blended into the thermoplastic resin is usually 50% by volume or less based on the resin granules, but in the present invention it is 1 to 50% by volume.
It is effective when incorporated in a large amount in the range of 5 to 40 volume %, especially in the range of 5 to 40 volume %.

気体に含まれる微粒子は、溶融した熱可塑性樹脂の移動
層に接触又は衝突させるため気体輸送される。微粒子の
気体輸送には吸引方式、低圧圧送方式及び高圧圧送方式
が用いられる。微粒子の性状、微粒子と気体の混合比(
重量濃度)、気流速度、輸送距離などにより、ルーツブ
ロア、コンプレッサー等の気体源設備、輸送管、固体・
気体分離装置など適宜選択する。また気体に分散した微
粒子は、微粒子と気体を例えばエジェクター機構に供給
することにより得られるが、ジェットミル等による気流
処理によれば、より機能性に富んだ気流分散微粒子が得
られ、これを−旦回収することなく直接かつ連続的に混
練工程へ気送することができ好ましい。例えば、湿式の
微粒子分散スラリーをジェットミルによって乾燥と表面
改質を同時に行う方法、分級や表面改質と微粉砕を同時
に行う方法、ジェットミルによって乾式精密分級と微粉
砕を同時に行う方法が挙げられる(特公昭56−406
34 、同55−39370 、同58−898、同5
5−6433参照)。
The fine particles contained in the gas are transported by the gas to contact or collide with a moving layer of molten thermoplastic resin. A suction method, a low-pressure pumping method, and a high-pressure pumping method are used for gas transportation of fine particles. Properties of fine particles, mixing ratio of fine particles and gas (
Depending on factors such as weight concentration), air flow velocity, and transportation distance, gas source equipment such as Roots blowers and compressors, transportation pipes, solid
Select appropriate gas separation equipment, etc. Further, fine particles dispersed in a gas can be obtained by supplying the fine particles and gas to an ejector mechanism, for example, but airflow treatment using a jet mill or the like can yield airflow-dispersed fine particles with higher functionality. This is preferable because it can be pneumatically fed directly and continuously to the kneading process without being collected once. For example, there are methods in which drying and surface modification of a wet fine particle dispersion slurry are performed simultaneously using a jet mill, methods in which classification or surface modification and pulverization are performed simultaneously, and methods in which dry precision classification and pulverization are performed simultaneously in a jet mill. (Tokuko Sho 56-406
34, 55-39370, 58-898, 5
5-6433).

本発明に使用する気体としては、空気、窒素、水蒸気、
二酸化炭素、アルゴンなどの希ガス、好ましくは不活性
ガスなどが挙げられ、熱可塑性樹脂の融点より低い沸点
をもつ気体が好ましい。また気体は加熱して用いると、
使用する気体量、樹脂の加熱エネルギーを減らすことが
できるので好ましい。
Gases used in the present invention include air, nitrogen, water vapor,
Examples include rare gases such as carbon dioxide and argon, preferably inert gases, and gases having a boiling point lower than the melting point of the thermoplastic resin are preferred. Also, when gas is heated and used,
This is preferable because the amount of gas used and the energy for heating the resin can be reduced.

気体中の微粒子濃度は通常10〜100000 g/N
m3、多くの場合50〜30000 g/Nm”である
。また微粒子を含む気体の輸送速度(流速)は通常5〜
100 m/秒、好ましくは10〜40m/秒である。
The concentration of fine particles in the gas is usually 10 to 100,000 g/N
m3, in most cases 50 to 30,000 g/Nm". Also, the transport velocity (flow rate) of gas containing fine particles is usually 5 to 30,000 g/Nm".
100 m/sec, preferably 10-40 m/sec.

輸送速度が低い場合は微粒子の再凝集、配管の閉塞等の
点で、一方高い場合は装置、配管の摩耗の点で好ましく
ない。輸送気体の圧力については通常−1,0〜10k
g / cm ”が用いられる。微粒子を含む気体を溶
融樹脂に衝突させて捕集する場合には、細孔から10m
/秒以上、好ましくは40〜200 m/秒の流速で噴
射する。
If the transport speed is low, it is unfavorable in terms of re-agglomeration of particles and clogging of pipes, while if it is high, it is unfavorable in terms of wear of equipment and pipes. The pressure of the transport gas is usually -1,0 to 10k.
g/cm" is used. When collecting gas containing fine particles by colliding with the molten resin, 10 m from the pore.
The injection is performed at a flow rate of at least 40 m/sec, preferably from 40 to 200 m/sec.

溶融状態の熱可塑性樹脂の移動層は、熱可塑性樹脂の溶
融物を供給し排出する作用をもつ機構によって得られる
。例えば、熱可塑性樹脂の粒状物を供給し融点以上で溶
融混練する単軸或いは二輪スクリュー混練押出機により
容易に得られるし、また熔融樹脂の給排出機構を設けた
配管や混練槽、或いは静止型管状混合装置によっても得
られる。
The moving layer of thermoplastic resin in the molten state is obtained by a mechanism whose function is to supply and discharge the melt of thermoplastic resin. For example, it can be easily obtained using a single-screw or two-wheel screw kneading extruder that feeds granular thermoplastic resin and melts and kneads it above its melting point, or it can be easily obtained using a piping or kneading tank equipped with a molten resin supply/discharge mechanism, or a stationary type. It can also be obtained by means of a tubular mixing device.

本発明において、微粒子の集塵は微粒子を含む、気体を
前記溶融樹脂の移動層に接触又は衝突さ垂る方法による
が、微粒子を捕集した溶融樹脂は後次工程の方向につね
に移動して更新されるので、能率よくかつ安定した微粒
子の捕集が可能となる(捕集の時間は通常10分程度以
下、多くの場合3分以下に設定する)。とくに微粒子を
含む気体を細孔から噴射させて10m/秒以上の流速で
衝突させると、所謂慣性集塵作用がを効に働き、好まし
い。
In the present invention, fine particles are collected by a method in which a gas containing fine particles is brought into contact with or collides with the moving layer of the molten resin, but the molten resin that has collected the fine particles is always moved in the direction of the subsequent process. Since it is updated, efficient and stable collection of fine particles is possible (the collection time is usually set to about 10 minutes or less, and in many cases to 3 minutes or less). In particular, it is preferable to inject a gas containing fine particles through the pores and collide with the gas at a flow rate of 10 m/sec or more, since the so-called inertial dust collection effect is effective.

更に、例えばラバール管やベンチュリー管を使用して4
0m/秒以上の流速で噴射して捕集する方法は、凝集し
た微粒子を微粉砕することができ、気体の使用量も少な
(てすみ、好ましい。また細孔から吐出した溶融樹脂を
40m/秒以上の微粒子を含む気流に随伴させて噴射し
てこれに微粒子を捕集する方法は、溶融樹脂の表面積が
太き(とれ、微粒子の捕集効率と分散性が良く、好まし
い。
Furthermore, for example, using a Laval tube or a Venturi tube, 4
The method of collecting by spraying at a flow rate of 0 m/sec or more is preferable because it can finely pulverize aggregated fine particles and requires less gas (easier). A method in which the particles are collected by being ejected along with an air flow containing particles of 2 seconds or more is preferable because the surface area of the molten resin is large and the particle collection efficiency and dispersibility are good.

微粒子が除去された気体の排出は、熱可塑性樹脂の溶融
物(又は粒状物)を供給する部位の側でも溶融(又は排
出)する部位の側のどちらで行ってもよいが、好ましく
は供給側で行う。またプロア等で負圧をかけて吸引し排
出することもできる。
The gas from which fine particles have been removed may be discharged from either the side of the part that supplies the melted thermoplastic resin (or granules) or the part that melts (or discharges) it, but is preferably done on the supply side. Do it with It is also possible to suction and discharge by applying negative pressure with a proa or the like.

本発明における熱可塑性樹脂の溶融物と微粒子との混練
は、例えば撹拌翼をもつ混合槽、スクリュー又はロータ
を内嵌したシリンダを有する混練押出機によって行われ
る(改正石版化学工学便覧p916〜919、化学工学
協会編丸善■昭和63年発行、参照)。熱可塑性樹脂が
水分を含んでいる場合或いは熔融混純に伴って混入した
気体を除去したい場合には、ベントロを配設し負圧をか
けたり窒素フローして脱気することが好ましい。更に、
溶融混練に伴い、熱可塑性樹脂が変質したり揮発物が発
生するポリエステル樹脂、ナイロン樹脂、ポリエチレン
樹脂などの場合は、2ヶ以上のベントロを配設した同方
向または異方向回転のスクリューをもつ二軸混練押出機
を使用すれば、高真空で操作可能な脱揮作用を有するの
で好ましい。
In the present invention, the melt of the thermoplastic resin and the fine particles are kneaded using, for example, a mixing tank with stirring blades, a kneading extruder having a cylinder fitted with a screw or rotor (Revised Lithographic Chemical Engineering Handbook, pp. 916-919). (edited by the Chemical Engineering Society, Maruzen, published in 1986, reference). When the thermoplastic resin contains moisture or when it is desired to remove gas mixed in with melting and mixing, it is preferable to provide a vent hole and apply negative pressure or nitrogen flow for degassing. Furthermore,
In the case of polyester resin, nylon resin, polyethylene resin, etc., where the thermoplastic resin deteriorates or volatile substances are generated during melt-kneading, two or more screws with two or more vents rotating in the same or different directions are used. It is preferable to use a axial kneading extruder because it has a devolatilizing effect that can be operated under high vacuum.

溶融混練された微粒子分散樹脂組成物は、シリンダの先
端に設けられた出口より押出され、直接繊維、シートや
フィルムを得るための口金又は成形物を得るための金型
に導かれるなど公知の方法により成形されるか、又は−
旦チツブや粉末にした後成形に供せられる。
The melt-kneaded fine particle-dispersed resin composition is extruded from an outlet provided at the tip of a cylinder and guided directly to a die for obtaining fibers, sheets or films, or a mold for obtaining molded products, or by other known methods. Shaped by or -
It is first made into chips or powder and then subjected to molding.

次に、本発明を装置図により説明する。Next, the present invention will be explained with reference to device diagrams.

第1〜3図は本発明の実施に好適な装置の配置例を示す
概要図である。
1 to 3 are schematic diagrams showing examples of arrangement of devices suitable for carrying out the present invention.

第1図において、■は二軸混練押出機のシリンダである
。このシリンダIに同方向回転の2木のスクリュー2が
内嵌されている。シリンダ1には、その長手方向に離間
して樹脂供給口A、気体排出口Bと微粒子を含む気体の
導入口C1及び2つのベントロDI、 D2が順に配設
されている。樹脂供給口Aはシリンダ1の上流側端部に
位置し、下流側の端部は出口3である。スクリュー2は
直径が65mmであり、供給口への側は15 mmの深
溝2aに、溶融開始部はニーディングデスクで深溝から
浅深2dとなり、混練部は4 mmの浅溝2cに、また
混練部に設けられた排出口と導入口、及びベントロの部
分は6 +n+nの若干深い溝2dになっている。シリ
ンダには図示省略のヒータが取付られている。また深溝
部2aの長さは390 mm、 ?6融開始部2bは1
95 nun、排気口、導入口、ベント部を含む浅溝部
2c、 2dは1365n’unである。
In FIG. 1, ■ is a cylinder of a twin-screw kneading extruder. Two screws 2 rotating in the same direction are fitted into this cylinder I. In the cylinder 1, a resin supply port A, a gas discharge port B, an inlet C1 for a gas containing fine particles, and two vent holes DI and D2 are arranged in order at intervals in the longitudinal direction of the cylinder 1. The resin supply port A is located at the upstream end of the cylinder 1, and the downstream end is the outlet 3. The screw 2 has a diameter of 65 mm, and the side toward the supply port has a 15 mm deep groove 2a, the melting start part is a kneading desk, and the deep groove becomes shallow 2d, the kneading part has a 4 mm shallow groove 2c, and the kneading part has a 4 mm shallow groove 2c. The outlet and inlet provided in the section and the vent hole are formed into a slightly deep groove 2d of 6+n+n. A heater (not shown) is attached to the cylinder. Also, the length of the deep groove portion 2a is 390 mm, ? 6 Melting start part 2b is 1
The shallow groove portions 2c and 2d including the exhaust port, inlet port, and vent portion are 1365 n'un.

樹脂供給口Aにはシュートを介して樹脂粒状物の密閉さ
れた投入ホッパが取付けられている。気体排気口Bには
フィルターを通して吸気ブロアが接続されている。導入
口Cには、例えば圧力5 kg/cm2の加熱窒素を噴
射した後反転軌道に衝突させることによって粉砕された
微粒子が加熱窒素とともに圧入される。ベントロD1に
は図示省略の窒素フロー装置、ヘントロD2には図示省
略の真空ポンプが接続されている。
A closed charging hopper for resin granules is attached to the resin supply port A via a chute. An intake blower is connected to the gas exhaust port B through a filter. Fine particles that have been pulverized by, for example, injecting heated nitrogen at a pressure of 5 kg/cm 2 and colliding with a reverse orbit are press-injected into the inlet C together with the heated nitrogen. A nitrogen flow device (not shown) is connected to the ventro D1, and a vacuum pump (not shown) is connected to the ventro D2.

更にシリンダ出口3は、ギアポンプ5を介してスリット
孔を有する口金6に接続しており、スリット孔から樹脂
組成物を回転冷却ドラム上に押出しゃ、冷してシートを
得る。次にこのシートを2軸延伸してフィルムとし、つ
いで熱固定した後冷却して巻取る。
Further, the cylinder outlet 3 is connected to a mouthpiece 6 having a slit hole through a gear pump 5, and when the resin composition is extruded from the slit hole onto a rotating cooling drum, it is cooled to obtain a sheet. Next, this sheet is biaxially stretched to form a film, which is then heat-set, cooled, and rolled up.

尚、フィルム成形する方法は特開昭61−118746
号等で示される公知の方法が適用できる。得られたフィ
ルムは反射写真用支持体として有用である。
The film forming method is described in Japanese Patent Application Laid-Open No. 61-118746.
Well-known methods shown in No. 1, etc. can be applied. The resulting film is useful as a reflective photographic support.

同フィルムを使用した反射写真材料の調製についても特
開昭61〜118746号などに示される。
The preparation of reflective photographic materials using the same film is also disclosed in JP-A-61-118746.

第2図において、■は単軸押出機のスクリューであり、
長手方向に離間して上流側から樹脂粒状物の供給口A、
微粒子を含む気体の導入口Cと気体排気口B、及びベン
トロDが順に配設されている。スクリュー2は直径が7
0mmであり、溶融開始部より上流側は16+n+++
の深溝2aに、溶融開始部は徐々に浅溝2bとなり、混
練部は4 noの浅溝2cに、また導入口と排気口、ヘ
ントロの部分は6 mmのやや深い溝2dになっている
。シリンダには図示省略のヒータが取付けられている。
In Figure 2, ■ is the screw of a single screw extruder,
a supply port A for resin granules from the upstream side spaced apart in the longitudinal direction;
An inlet C for a gas containing fine particles, a gas exhaust port B, and a vent D are arranged in this order. Screw 2 has a diameter of 7
0mm, and the upstream side from the melting start point is 16+n+++
The melting start part gradually becomes a shallow groove 2b, the kneading part becomes a shallow groove 2c of 4 mm, and the inlet, exhaust port, and center part become a slightly deeper groove 2d of 6 mm. A heater (not shown) is attached to the cylinder.

樹脂供給口Aには図示省略のシュートを介して樹脂粒状
物の密閉された投入ホッパが取付けられ、気体排気口B
にはフィルターを通して吸気ブロアが接続されており、
導入口Cには、微粒子を含む加熱気体が圧入され、ヘン
トロDには、真空ポンプが接続されている。
A closed charging hopper for resin particles is attached to the resin supply port A via a chute (not shown), and a gas exhaust port B is connected to the resin supply port A.
An intake blower is connected through a filter to
A heated gas containing fine particles is pressurized into the inlet C, and a vacuum pump is connected to the Hentro D.

更にシリンダの出口3は、分配管4及びギアポンプ5を
介して紡糸口金6′に接続しており、細孔から樹脂組成
物を押出して巻取り、繊維を得る。
Further, the outlet 3 of the cylinder is connected to a spinneret 6' via a distribution pipe 4 and a gear pump 5, and the resin composition is extruded from the pores and wound up to obtain fibers.

第3図においては、まず連続重合装置(図示せず)の移
液管1より一部取り出された溶融状態の樹脂は、冷却器
2及び移液管の冷媒ジャケットにより冷却され、混練機
3の入口Aより混練機内へ入る。気体のコンプレッサー
、微粒子の投入装置、粉砕装置及び分級装置から微粒子
を含む気体が導入口Cに気送され、微粒子は溶融ポリエ
ステルに捕集されて混練される。混練機3の構成は二軸
のニーディングディスク4を主体としたものであり、外
部ジャケットには冷媒を通して発熱を抑制している。混
練機3より押出された微粒子分散ポリエステル樹脂は、
定量ポンプ5′により定量的に重合反応器6側へ送られ
る。したがって混練機3の流量は定量ポンプ5′の入圧
を維持するようスクリュー回転数を制御する。重合反応
器6の内部には二軸のディスクタイプ撹拌機7を有し、
反応のための広い表面積確保と位置交換を主体とした混
練作用を行う。ペーパー管9は真空装置につながってお
り反応器内部を高真空に維持する。また内部樹脂温度を
適正に保つよう熱媒ジャケラ]・8を有し温度制御され
た熱媒が通液される。こうして5 Torr以下の減圧
下でかつ熱可塑性樹脂の融点以上300°C以下の温度
範囲で重縮合されることにより、混練押出機でうけた重
合低下を回復させる。
In FIG. 3, a portion of the molten resin is first taken out from the transfer pipe 1 of the continuous polymerization apparatus (not shown), and is cooled by the cooler 2 and the refrigerant jacket of the transfer pipe, and then transferred to the kneader 3. Enter the kneading machine from entrance A. A gas containing fine particles is fed into the inlet C from a gas compressor, a fine particle feeding device, a crushing device, and a classifier, and the fine particles are collected and kneaded with the molten polyester. The kneading machine 3 is mainly composed of a biaxial kneading disk 4, and a refrigerant is passed through the outer jacket to suppress heat generation. The fine particle dispersed polyester resin extruded from the kneader 3 is
It is quantitatively sent to the polymerization reactor 6 side by a metering pump 5'. Therefore, the flow rate of the kneader 3 is controlled by the screw rotation speed so as to maintain the input pressure of the metering pump 5'. Inside the polymerization reactor 6, there is a two-shaft disc type stirrer 7,
The kneading action mainly involves securing a large surface area for reaction and exchanging positions. The paper tube 9 is connected to a vacuum device to maintain a high vacuum inside the reactor. In addition, in order to maintain the internal resin temperature appropriately, a heat medium jacket 8 is provided, and a temperature-controlled heat medium is passed through. Polycondensation is thus carried out under reduced pressure of 5 Torr or less and at a temperature range from the melting point of the thermoplastic resin to 300° C., thereby recovering the polymerization loss suffered in the kneading extruder.

次いで、微粒子分散ポリエステル樹脂は定量ポンプ5″
により成形装置10へ送液される。第4図は混練機3の
断面図、第5図は重合反応器6の断面図である。
Next, the fine particle dispersed polyester resin is pumped with a metering pump 5″
The liquid is sent to the molding device 10 by. 4 is a sectional view of the kneader 3, and FIG. 5 is a sectional view of the polymerization reactor 6.

第6図は、第3図において溶融樹脂を微粒子を含む気体
に随伴させて噴射して、噴射された溶融樹脂とスクリュ
ー上の溶融樹脂とで微粒子を捕集する装置例の断面図を
示す。
FIG. 6 is a cross-sectional view of an example of the apparatus shown in FIG. 3 in which the molten resin is injected together with a gas containing fine particles, and the fine particles are collected by the injected molten resin and the molten resin on the screw.

(実施例) 以下、本発明を実施例により説明する。(Example) The present invention will be explained below with reference to Examples.

実施例1 第1図の二軸混練押出機の樹脂供給口AにIvo、74
のポリエチレンテレフタレートチップを83kg1時で
供給し、導入口Cに平均粒径0.3μmのアナターゼ型
酸化チタンを含む窒素(濃度0.5 kg/NII+3
、温度265°C1圧力5kg/cm”)を34Nm’
/時で導入した。シリンダー温度を深溝部210°C1
溶融開始部280°C,混練部及びベント部280°C
に設定し、ベントロDIには3.6 Nm”1時の窒素
フロー、ベントロD2は5 Torrに減圧して混練し
た後、290°Cのスリット型口金から回転冷却ドラム
上に押出し急冷して厚さ1.1劇の非晶質のシートを得
た。
Example 1 In the resin supply port A of the twin-screw kneading extruder shown in Fig. 1, Ivo, 74
83 kg of polyethylene terephthalate chips were supplied at 1 hour, and nitrogen containing anatase-type titanium oxide with an average particle size of 0.3 μm (concentration 0.5 kg/NII+3
, temperature 265°C, pressure 5kg/cm") and 34Nm'
/Introduced at the time. Cylinder temperature at deep groove part 210°C1
Melting start part 280°C, kneading part and vent part 280°C
After kneading with a nitrogen flow of 3.6 Nm" at 1 hour for the Ventro DI and 5 Torr for the Ventro D2, the mixture was extruded from a slit-type nozzle at 290°C onto a rotating cooling drum and rapidly cooled. 1.1 Amorphous sheet was obtained.

次に、このシートを100°Cで縦方向に3.0倍延伸
しついで横方向に110°Cで3.0倍延伸しついで2
00°Cで熱固定した後、冷却して巻取った。得られた
フィルムは厚さ125μmで白色不透明であり、IVは
0.64であった。なお延伸成形は連続して安定して行
うことができた。
Next, this sheet was stretched 3.0 times in the machine direction at 100°C, stretched 3.0 times in the cross direction at 110°C, and then
After heat setting at 00°C, the film was cooled and rolled up. The resulting film was 125 μm thick, white and opaque, and had an IV of 0.64. Note that stretch forming could be performed continuously and stably.

得られたフィルムはポリマーの分解副生物による着色な
どが認められず良好な白色であり、反射写真用支持体と
してきわめて有用なものであった。
The obtained film had a good white color with no coloration due to polymer decomposition by-products, and was extremely useful as a support for reflective photography.

実施例2 第2図の一軸混練押出機の樹脂供給口Aにη。Example 2 η to the resin supply port A of the uniaxial kneading extruder in FIG.

=2.70のナイロン6チップを19.8kg/時で供
給し、導入口Cに平均粒径20pmのイソインドリノン
系顔料C,1,Pigment Yellow 110
 (チバガイギー社製)を含む窒素(50g/Nm’、
  温度250℃)を4 Nm’/時で導入した。シリ
ンダー温度を深溝部で180°C1溶融開始部250°
C,混練部及びベント部260 ’Cに設定し、ベント
ロDは10Torrに減圧して混練した後、265°C
の紡糸口金から押出し、オイリングして未延伸糸を 1
000m/分で巻取った。次に、この未延伸糸を3.6
倍延伸して208デニール/96フイラメントの原着ナ
イロン繊維を製造した。尚、混練〜延伸は安定して操業
することができた。
= 2.70 nylon 6 chips were supplied at 19.8 kg/hour, and the isoindolinone pigment C,1, Pigment Yellow 110 with an average particle size of 20 pm was supplied to the inlet C.
Nitrogen (50g/Nm',
A temperature of 250° C.) was introduced at a rate of 4 Nm′/h. Cylinder temperature: 180°C at deep groove part, 250° at melting start part
C, kneading section and vent section 260'
The undrawn yarn is extruded from a spinneret and oiled to produce 1
It was wound up at a speed of 000 m/min. Next, this undrawn yarn was
A 208 denier/96 filament spun-dyed nylon fiber was produced by double stretching. Note that the operations from kneading to stretching could be performed stably.

得られた原着ナイロン繊維は強度3.6g/d、伸度4
1%と均一な着色を有していた。
The obtained spun-dyed nylon fiber has a strength of 3.6 g/d and an elongation of 4.
It had a uniform coloration of 1%.

実施例3 第2図の二軸混練押出機の樹脂供給口Aに平均分子ff
180000のポリエチレンチップを98kg/時で供
給し、導入口Cに平均粒径20nmのカーボンブラック
を含む空気Y(濃度50g/Nl113、温度150’
c)を4ONm’/時で導入した。シリンダー温度を深
溝部150°C1溶融開始部230°C1混練部及びベ
ント部240°Cに設定し、ベントロDi、 D2は1
0Torrに減圧して混練した後、押出し象、冷して厚
さ0.6nuaのシートに成形した。次に、得られたシ
ートを縦方向に6.0倍、ついで横方向に5.0倍熱延
伸した後、巻取った。得られたフィルムは厚さ20μm
で、黒色不透明かつ均一な着色を有していた。
Example 3 The average molecular weight ff was added to the resin supply port A of the twin-screw kneading extruder in Figure 2.
180,000 polyethylene chips were supplied at a rate of 98 kg/hour, and air Y containing carbon black with an average particle size of 20 nm (concentration 50 g/Nl 113, temperature 150'
c) was introduced at 4ONm'/h. The cylinder temperature was set to 150°C in the deep groove part, 230°C in the melting start part, 240°C in the kneading part and vent part, and the vent holes Di and D2 were set to 1.
After kneading under reduced pressure to 0 Torr, the mixture was extruded, cooled, and formed into a sheet with a thickness of 0.6 nua. Next, the obtained sheet was hot-stretched 6.0 times in the machine direction and then 5.0 times in the transverse direction, and then wound up. The resulting film has a thickness of 20 μm
It was black, opaque, and uniformly colored.

実施例4 第1図の二軸混練押出機の樹脂供給口Aにポリブチレン
テレフタレートチップ(三菱化成0,1ツバドール50
10)を65kgj時、スチレン−ブタジェンブロック
共重合体チップ(電気化学工業■デンカSTI?160
2 )を20kg/時、及び平均粒径約0.2mmの臭
化ポリスチレン粉末(日産フェロ有機化学■パイロチエ
ツク68PB) 15kg/時で供給し、導入口Cに粒
径0.3μmの三酸化アンチギンを含む窒素(:a度5
00g/Nm’、温度150℃)を1ONm’/時で導
入した。シリンダー温度を深溝部150°C,溶融開始
部240°C、ベントと混練部を260°Cに設定し、
ベントロDは10Torrに減圧して混練した後、押出
して3.OaaφX3.、OmmLのチップにした。
Example 4 Polybutylene terephthalate chips (Mitsubishi Kasei 0,1 Tubadol 50
10) at 65 kgj, styrene-butadiene block copolymer chip (Denka Kagaku Kogyo ■Denka STI?160)
2) was supplied at 20 kg/hour and polystyrene bromide powder (Nissan Ferro Organic Chemical ■Pyrocheck 68PB) with an average particle size of about 0.2 mm was supplied at a rate of 15 kg/hour, and antigin trioxide with a particle size of 0.3 μm was supplied to the inlet C. Contains nitrogen (: a degree 5
00g/Nm', temperature 150°C) was introduced at a rate of 1ONm'/hour. The cylinder temperature was set at 150°C in the deep groove part, 240°C in the melting start part, and 260°C in the vent and kneading part.
Ventro D is kneaded under reduced pressure of 10 Torr and then extruded.3. OaaφX3. , it was made into a chip of OmmL.

次いで通常の条件で各種試験片を射出成形した。Various test pieces were then injection molded under normal conditions.

射出成形は安定して行うことができた。また試験片は高
度の難燃性に加え、優れた耐衝撃性を有していた。
Injection molding could be performed stably. In addition to a high degree of flame retardancy, the test piece also had excellent impact resistance.

実施例5 第3図の装置を使用して、IV O,65、温度282
°C1粘度約3000ボイズのポリエチレンテレフタレ
ートを連続重合装置移液管より一部抜出し、冷却器によ
り270°Cとして混練機へ83kg/時で供給した。
Example 5 Using the apparatus shown in FIG. 3, IV O, 65, temperature 282
A portion of polyethylene terephthalate having a viscosity of about 3000° C. was taken out from the transfer tube of the continuous polymerization apparatus, and the temperature was heated to 270° C. using a cooler and fed to a kneader at a rate of 83 kg/hour.

導入口Cにジェットミル微粉砕し分級した平均粒径0.
2μmのアナターゼ型酸化チタンを含む空気(濃度10
0g/Nm’、温度270°C5圧力4kg/cm2)
を17ONm’/時で導入した。混練機のシリンダー温
度を270 ”Cに設定し、ヘントロには窒素フローし
て混練した後、重合反応器へ送液した。重合反応器前部
と後部のポリマー温度を280°Cと285°C1真空
度1,2 Torr、滞留時間18分で反応させた後、
実施例1と同様にしてフィルムを製造した。
Jet mill finely pulverized and classified average particle size 0.
Air containing 2 μm of anatase titanium oxide (concentration 10
0g/Nm', temperature 270°C5 pressure 4kg/cm2)
was introduced at a rate of 17 ONm'/hour. The cylinder temperature of the kneader was set at 270"C, and after kneading with a nitrogen flow in the Hentro, the liquid was sent to the polymerization reactor. The polymer temperature at the front and rear of the polymerization reactor was set at 280 °C and 285 °C. After reacting at a vacuum degree of 1.2 Torr and a residence time of 18 minutes,
A film was produced in the same manner as in Example 1.

得られたフィルムは、0.66のIVと良好な白色度を
有しており、反射写真用支持体としてきわめて優れてい
た。
The obtained film had a good whiteness of 0.66 and was excellent as a support for reflective photography.

(発明の効果) 以上詳細に説明したように本発明は、10μm以下殊に
サブミクロン級の微粒子を高濃度に分散させた熱可塑性
樹脂組成物及び成形物を製造する新規な技術を提供する
ものである。すなわち本発明によれば、微粒子の熔融混
練工程を重合工程と成形工程に直結して実施することが
可能となり、従来法では解決困難とされた品質、コスト
及び生産性を大巾に改善することができる。また本発明
方法は、多品種小量生産にも適した方法でもあり、産業
上極めて有用なポリマープロセスを提供するものである
(Effects of the Invention) As explained in detail above, the present invention provides a new technique for producing thermoplastic resin compositions and molded articles in which fine particles of 10 μm or less, particularly submicron-level particles, are dispersed at a high concentration. It is. In other words, according to the present invention, it is possible to carry out the melt-kneading process of fine particles directly connected to the polymerization process and the molding process, thereby significantly improving quality, cost, and productivity, which were difficult to solve with conventional methods. I can do it. The method of the present invention is also suitable for high-mix, low-volume production, and provides an industrially extremely useful polymer process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は本発明方法の実施に好適な装置の配置例を
示す概要図であり、 第4図は混練機の断面図、 第5図は重合反応機の断面図、 第6図は、第3図において溶融樹脂を微粒子を含む気体
に随伴させて噴射する例である。 第2図 第4図 第5図 第6図 手 続 補 正  書 平成元年 6月27日
Figures 1 to 3 are schematic diagrams showing examples of arrangement of equipment suitable for carrying out the method of the present invention, Figure 4 is a sectional view of a kneader, Figure 5 is a sectional view of a polymerization reactor, and Figure 6 is a sectional view of a polymerization reactor. , FIG. 3 shows an example in which molten resin is injected together with a gas containing fine particles. Figure 2 Figure 4 Figure 5 Figure 6 Procedure amendment document June 27, 1989

Claims (1)

【特許請求の範囲】 1、熱可塑性樹脂と微粒子とを溶融混練するに際し、粒
径10μm以下の微粒子を含む気体を溶融状態の熱可塑
性樹脂の移動層に接触又は衝突させて該溶融樹脂の移動
層に微粒子を捕集させつつ気体を排出し、そして前記溶
融樹脂と微粒子とを混練することを特徴とする微粒子分
散熱可塑性樹脂組成物の製造方法。 2、請求項1記載の混練に連続して、微粒子分散熱可塑
性樹脂組成物を成形することを特徴とする成形物の製造
方法。 3、微粒子を含む気体を溶融樹脂の移動層に10m/秒
以上の流速で衝突させることを特徴とする請求項1記載
の方法。
[Claims] 1. When melt-kneading a thermoplastic resin and fine particles, a gas containing fine particles with a particle size of 10 μm or less is caused to contact or collide with a moving layer of molten thermoplastic resin to move the molten resin. A method for producing a fine particle-dispersed thermoplastic resin composition, which comprises discharging gas while collecting fine particles in a layer, and then kneading the molten resin and the fine particles. 2. A method for producing a molded article, which comprises molding the fine particle-dispersed thermoplastic resin composition subsequent to the kneading according to claim 1. 3. The method according to claim 1, characterized in that the gas containing fine particles is caused to collide with the moving bed of molten resin at a flow rate of 10 m/sec or more.
JP1143989A 1989-04-05 1989-06-08 Manufacture of thermoplastic resin composition and its molding Pending JPH039811A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1143989A JPH039811A (en) 1989-06-08 1989-06-08 Manufacture of thermoplastic resin composition and its molding
US07/503,194 US5281379A (en) 1989-04-05 1990-04-02 Processes for manufacturing thermoplastic resin compositions
EP90106401A EP0391372B1 (en) 1989-04-05 1990-04-04 Processes for manufacturing thermoplastic resin compositions and shaped articles thereof
DE69023794T DE69023794T2 (en) 1989-04-05 1990-04-04 Process for the preparation of thermoplastic synthetic resin mixtures and articles molded therefrom.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1143989A JPH039811A (en) 1989-06-08 1989-06-08 Manufacture of thermoplastic resin composition and its molding

Publications (1)

Publication Number Publication Date
JPH039811A true JPH039811A (en) 1991-01-17

Family

ID=15351719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1143989A Pending JPH039811A (en) 1989-04-05 1989-06-08 Manufacture of thermoplastic resin composition and its molding

Country Status (1)

Country Link
JP (1) JPH039811A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023002614A (en) * 2016-08-26 2023-01-10 テクノロギアン トゥトキムスケスクス ヴェーテーテー オイ Single-screw extruder with hollow rotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023002614A (en) * 2016-08-26 2023-01-10 テクノロギアン トゥトキムスケスクス ヴェーテーテー オイ Single-screw extruder with hollow rotor

Similar Documents

Publication Publication Date Title
TWI389942B (en) Moulding material and moulding comprising a thermo-plastic containing nanoscale, inorganic particles, process for the preparation of the moulding material and moulding and uses thereof
EP2565004B1 (en) Method of manufacturing composite pellets for extrusion, and composite pellets thus produced
KR940011143B1 (en) Method and apparatus for producing thermoplastic and products produced thereform
JP4436435B1 (en) Molding material for extrusion foam molding and method for manufacturing the same, wood foam molded body manufactured using the molding material, method for manufacturing the wood foam molded body, and manufacturing apparatus
EP0391372B1 (en) Processes for manufacturing thermoplastic resin compositions and shaped articles thereof
JPH071450A (en) Solid state shearing extrusion pulverizing
US20090085013A1 (en) Composition Containing Carbon Black, Composition for Coloring and Conductive Composition
US5017015A (en) Direct processing of polymer with pulverulent additives in injection moulding machines
US20050063246A1 (en) Mixing and kneading device for polymer compositions
JPH039811A (en) Manufacture of thermoplastic resin composition and its molding
JPH0347710A (en) Manufacture of thermoplastic resin composition and molded material
JPH02263867A (en) Production of thermoplastic resin composition and molded product therefrom
JP5759279B2 (en) Powder filler blending method
JPH09123169A (en) Thermoplastic resin synthetic material with plastic bottle as material, manufacture thereof, thermoplastic resin molding using the material and manufacture thereof
JPH08118452A (en) Method and apparatus for extrusion molding of hollow resin panel
JP5097191B2 (en) Inorganic filler for resin and method for producing composite resin composition
JPH09141656A (en) Synthetic wood powder made of raw material of waste polyester fiber and manufacture thereof, and synthetic wood molding using the powder and manufacture thereof
JPH1135734A (en) Production of recycled polyolefin resin composition
JPH0664021A (en) Biaxial extrusion molding
JP3154953B2 (en) Method for producing compound pellets containing wood flour
JP3929188B2 (en) Method for producing polycarbonate resin granules
JP4563914B2 (en) Method for producing fired molded body and method for producing sintered body
CN112409680A (en) High-thermal-conductivity black master batch and preparation method thereof
JPH07214547A (en) Preparation of thermoplastic resin pellet
JP4633240B2 (en) Extrusion molding method with twin screw extruder