JPH02263867A - Production of thermoplastic resin composition and molded product therefrom - Google Patents

Production of thermoplastic resin composition and molded product therefrom

Info

Publication number
JPH02263867A
JPH02263867A JP1084637A JP8463789A JPH02263867A JP H02263867 A JPH02263867 A JP H02263867A JP 1084637 A JP1084637 A JP 1084637A JP 8463789 A JP8463789 A JP 8463789A JP H02263867 A JPH02263867 A JP H02263867A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
gas
fine particles
fine
kneading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1084637A
Other languages
Japanese (ja)
Inventor
Kentaro Noguchi
健太郎 野口
Junzo Shimokawa
順造 下川
Koji Hisatama
久玉 耕二
Toshio Yamauchi
山内 敏夫
Kazuto Kiyohara
一人 清原
Toshiyuki Hagiwara
俊幸 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Konica Minolta Inc
Original Assignee
Kanebo Ltd
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd, Konica Minolta Inc filed Critical Kanebo Ltd
Priority to JP1084637A priority Critical patent/JPH02263867A/en
Priority to US07/503,194 priority patent/US5281379A/en
Priority to DE69023794T priority patent/DE69023794T2/en
Priority to EP90106401A priority patent/EP0391372B1/en
Publication of JPH02263867A publication Critical patent/JPH02263867A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a fine granule-dispersed thermoplastic resin improved in quality and productivity by introducing a gas containing fine granules of specified size into a moving bed of the granular product of a thermoplastic resin in a unmelted state and by exhausting the gas while attaching or accumulating the fine granules to or on the moving bed. CONSTITUTION:A gas containing solid granules (e.g. titanium dioxide, calcium carbonate) <=10 (pref. <=1) mum in size is introduced into a moving bed of the granular product of a thermoplastic resin (e.g. polyethylene terephthalate) in a unmelted state, and the gas is exhausted while attaching or accumulating the fine granules to or on said moving bed. Thence, the resultant mixture of the granular product and fine granules is melted and kneaded, followed by carrying out molding. It is preferable that the fine granule concentration in the gas be 100-30000g/Nm<3> and the flow speed of the gas 10-40m/sec. The present process is especially effective when 5-40vol.% of such fine granules are to be incorporated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微粒子を混合したプラスチック製品、例えば繊
維、成形品や二軸延伸フィルム等に成形加工される機能
性複合材料を製造する為の方法を提供するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a method for producing a functional composite material mixed with fine particles and molded into plastic products such as fibers, molded products, biaxially stretched films, etc. It provides:

(従来の技術) 成形品等に加工される複合材料は、従来、ガラス繊維、
カーボン繊維やウィスカ等1ミクロン程度以上の大きさ
の充填剤を熱可塑性樹脂に溶融混練して複合化したもの
が主流で(例えば特開昭61−277421号公報参照
)、成形品の外観や成形品の耐衝撃性の向上環の問題が
ある。一方、酸化チタン、カーボンブラック、磁性体等
1ミクロン程度以下の大きさの微粒子を分散する場合に
は、熱可塑性樹脂の重合時に微粒子を混合して均一に分
散した方法が主流であるが、反応系が高温であるために
実用上使用されているものは酸化チタンやカーボンブラ
ックなどの耐熱性の良い微粒子に限られており、また重
合装置を汚染するため専用に設備したり、洗浄に多大の
労力と経費を必要とするなどの問題がある。また微粒子
を高濃度に混練したマスターバッチ方式も良く知られて
いるが、混練前の樹脂の乾燥と混練後のマスターバッチ
の乾燥を必要としエネルギー消費量と労力が多大であり
、更に混練工程における熱履歴のため成形品の物性低下
も問題となる。
(Conventional technology) Composite materials processed into molded products have traditionally been made of glass fiber,
Composites made by melting and kneading thermoplastic resins with fillers with a size of about 1 micron or more, such as carbon fibers and whiskers, are mainstream (for example, see Japanese Patent Application Laid-Open No. 61-277421). There is a problem with improving the impact resistance of products. On the other hand, when dispersing fine particles of titanium oxide, carbon black, magnetic materials, etc. with a size of about 1 micron or less, the mainstream method is to mix the fine particles during polymerization of thermoplastic resin and disperse them uniformly. Due to the high temperature of the system, the materials that are practically used are limited to fine particles with good heat resistance such as titanium oxide and carbon black, and in order to contaminate the polymerization equipment, special equipment is required and a large amount of cleaning is required. There are problems such as the need for labor and expense. A masterbatch method in which fine particles are kneaded at a high concentration is also well known, but it requires drying of the resin before kneading and drying of the masterbatch after kneading, which requires a large amount of energy and labor. Deterioration of the physical properties of molded products due to thermal history also poses a problem.

(発明が解決しようとする課題) このような従来の複合材料からの成形品の問題について
、10〜数10ミクロン級の従来の充填剤ではなく、サ
ブミクロン乃至ミクロン級の微粒子を充填した複合材料
による各種成形品や従来はなかったかような複合材料に
よる二軸延伸フィルムやシート、繊維等、より高度な製
品を製造する技術が要望されている。すなわち、サブミ
クロン乃至ミクロン級の微粒子を取扱う粉体プロセスと
ポリマープロセスとを一体化した新規技術の開発が必要
となる。本来、粉体プロセスとポリマープロセスは異種
技術であり、これらを調和した技術の構築は、サブミク
ロン級微粒子の空気輸送技術とポリマープロセスの調和
によって達成される。それには、ポリマープロセスにマ
ツチしたサブミクロン級の微粒子の集塵技術が必要であ
る。
(Problems to be Solved by the Invention) Regarding the problem of molded products made from conventional composite materials, we have developed a composite material filled with submicron to micron-sized fine particles instead of the conventional filler of 10 to several tens of microns. There is a demand for technology to manufacture more advanced products, such as various molded products made from plastics, biaxially oriented films, sheets, and fibers made from composite materials that have never existed before. In other words, it is necessary to develop a new technology that integrates a powder process that handles submicron to micron-sized particles and a polymer process. Originally, powder processes and polymer processes are different technologies, and the creation of a technology that harmonizes them can be achieved by harmonizing pneumatic transport technology for submicron-sized particles and polymer processes. This requires a technology for collecting submicron particles that is compatible with polymer processes.

一般に、粉体プロセスに於いて、工業的に実施されてい
る集塵技術は、例えばバッグフィルターによる集塵が代
表的である。しかし、粉体プロセスとして完全連続とす
ることは困難であるばかりではなく、集塵された微粒子
の吸湿や再凝集等の問題点もある。このようなことから
、サブミクロン級の微粒子を工業的に、かつ連続的に集
塵し、かつ、ポリマープロセスに取り込んだ新規な生産
技術の確立が本発明の解決しようとする問題点である。
In general, in powder processes, dust collection using a bag filter is typical, for example, as an industrially implemented dust collection technique. However, it is not only difficult to achieve complete continuity as a powder process, but there are also problems such as moisture absorption and reaggregation of collected fine particles. For this reason, the problem to be solved by the present invention is to establish a new production technology that industrially and continuously collects submicron-sized particles and incorporates them into a polymer process.

(課題を解決する為の手段) ポリマープロセスに取り込める微粒子の集塵技術として
は、グラニュラ−移動層による集塵によって、粉体プロ
セスとポリマープロセスの一体化が可能になり、この問
題が解決可能になった。すなわち第一の本発明は、熱可
塑性樹脂と微粒子とを溶融混練するに際し、粒径10μ
m以下の微粒子を含む気体を未溶融状態の熱可塑性樹脂
の粒状物移動層に導入して該粒状物移動層に微粒子を付
着又は堆積させつつ気体を排出し、そして前記粒状物と
微粒子との混合物を溶融及び混練することを特徴とする
微粒子分散熱可塑性樹脂組成物の製造方法である。また
第二の本発明は、上記の溶融及び混練に連続して、微粒
子゛分散熱可塑性樹脂組成物を成形することを特徴とす
る成形物の製造方法である。
(Means for solving the problem) As a dust collection technology for fine particles that can be incorporated into the polymer process, dust collection using a granular moving bed makes it possible to integrate the powder process and the polymer process, making it possible to solve this problem. became. That is, in the first aspect of the present invention, when melt-kneading a thermoplastic resin and fine particles, the particle size is 10 μm.
A gas containing fine particles of less than m in size is introduced into a particulate matter transfer layer of an unmolten thermoplastic resin, and the gas is discharged while the fine particles are attached or deposited on the particulate matter transfer layer, and the particulate matter and the fine particles are This is a method for producing a fine particle-dispersed thermoplastic resin composition, which is characterized by melting and kneading a mixture. A second aspect of the present invention is a method for producing a molded article, which comprises molding a fine particle-dispersed thermoplastic resin composition following the melting and kneading described above.

本発明に使用する熱可塑性樹脂とは、ポリエチレンテレ
フタレート、ポリブチレンテレフグレートなどのポリエ
ステル、ナイロン6、ナイロン66、ナイロン12など
のポリアミド、ポリエチレン、ポリプロピレンなどのポ
リオレフィン、塩化ビニル、ポリカーボネート、ポリウ
レタン、ABS樹脂、及びこれらの共重合体や混合物等
公知の熱可塑性樹脂をいう。
Thermoplastic resins used in the present invention include polyesters such as polyethylene terephthalate and polybutylene terephthalate, polyamides such as nylon 6, nylon 66, and nylon 12, polyolefins such as polyethylene and polypropylene, vinyl chloride, polycarbonate, polyurethane, and ABS resins. , and known thermoplastic resins such as copolymers and mixtures thereof.

本発明における微粒子とは、室温で好ましくは100°
C以下で平均粒径が10μm以下、好ましくは1μm以
下の固体粒子をいう。例えば、酸化チタン、炭酸カルシ
ウム、シリカ、タルク、リトポン、酸化亜鉛、マイカ、
硫酸バリウム、アルミナ、カオリン、カーボンブラック
、酸化錫、ガラスピーズ、金、銀、銅、鉄、鉛、アルミ
ニウムなどの金属粉、珪酸カルシウム、酸化ジルコニウ
ム、炭化ジルコニウム、三酸化アンチモン、ブロム系化
合物、洗顔料など、例えば「プラスチックおよびゴム用
添加剤実用便覧j、後藤邦夫編、味化学工業社昭和45
年発行に記載された公知の添加剤粒子を挙げることがで
きる。
The fine particles in the present invention are preferably 100° at room temperature.
It refers to solid particles having an average particle size of C or less and an average particle size of 10 μm or less, preferably 1 μm or less. For example, titanium oxide, calcium carbonate, silica, talc, lithopone, zinc oxide, mica,
Barium sulfate, alumina, kaolin, carbon black, tin oxide, glass peas, metal powders such as gold, silver, copper, iron, lead, aluminum, calcium silicate, zirconium oxide, zirconium carbide, antimony trioxide, bromine compounds, face wash For example, ``Practical Handbook of Additives for Plastics and Rubber J,'' edited by Kunio Goto, Aji Kagaku Kogyosha 1972.
The known additive particles described in the 2011 publication can be mentioned.

熱可塑性樹脂に配合される微粒子の量は、通常樹脂粒状
体に対して50体積%以下であるが、本発明は1〜50
体積%、特に5〜40体積%の範囲の多量に配合する場
合に効果的である。
The amount of fine particles blended into the thermoplastic resin is usually 50% by volume or less based on the resin granules, but in the present invention it is 1 to 50% by volume.
It is effective when incorporated in a large amount in the range of 5 to 40 volume %, especially in the range of 5 to 40 volume %.

気体に含まれる微粒子は、熱可塑性樹脂の粒状物移動層
に導入するため気体輸送される。微粒子の気体輸送には
吸引方式、低圧圧送方式及び高圧圧送方式が用いられる
。微粒子の性状、微粒子と気体の混合比(重!1度)、
気流速度、輸送距離などにより、ルーツブロア、コンプ
レッサー等の気体源設備、輸送管、固体・気体分離装置
など適宜選択する。また気体に分散した微粒子は、微粒
子と気体を例えばエジェクター機構に供給することによ
り得られるが、ジェットミル等による気流処理によれば
、より機能性に富んだ気流分散微粒子が得られ、これを
−旦回収することなく直接かつ連続的に混練工程へ気送
することができ好ましい。例えば、湿式の微粒子分散ス
ラリーをシェアドミルによって乾燥と微粉砕を同時に行
う方法、分級や表面改質と微粉砕を同時に行う方法、ジ
ェットミルによって乾式精密分級と微粉砕を同時に行う
方法が挙げられる(特公昭56−40634、同55−
39370 、同5B−898、同55−6433参照
)。
The fine particles contained in the gas are transported by gas to be introduced into the particulate transfer layer of the thermoplastic resin. A suction method, a low-pressure pumping method, and a high-pressure pumping method are used for gas transportation of fine particles. Properties of fine particles, mixing ratio of fine particles and gas (weight! 1 degree),
Depending on the airflow speed, transportation distance, etc., select gas source equipment such as Roots blowers, compressors, transportation pipes, solid/gas separation equipment, etc. as appropriate. Further, fine particles dispersed in a gas can be obtained by supplying the fine particles and gas to an ejector mechanism, for example, but airflow treatment using a jet mill or the like can yield airflow-dispersed fine particles with higher functionality. This is preferable because it can be pneumatically fed directly and continuously to the kneading process without being collected once. For example, there are methods in which drying and fine pulverization of a wet fine particle dispersion slurry are carried out simultaneously using a shared mill, methods in which classification or surface modification and pulverization are carried out simultaneously, and methods in which dry precise classification and pulverization are carried out simultaneously in a jet mill (special Kosho 56-40634, Kosho 55-
39370, 5B-898, 55-6433).

本発明に使用する気体としては、空気、窒素、水蒸気、
ベンゼン、アルコールなどが挙げられ、熱可塑性樹脂の
軟化点より低い沸点をもつ気体が好ましい。また気体は
熱可塑性樹脂を溶融させずかつ冷却させない温度に加熱
して用いると、使用する気体量、樹脂の加熱エネルギー
を減らすことができるので好ましい。
Gases used in the present invention include air, nitrogen, water vapor,
Examples include benzene and alcohol, and gases having a boiling point lower than the softening point of the thermoplastic resin are preferred. Further, it is preferable to use the gas by heating it to a temperature that does not melt or cool the thermoplastic resin, since the amount of gas used and the energy for heating the resin can be reduced.

気体中の微粒子濃度は通常10〜100000 g/N
ra3、多くの場合100〜30000 g/Nm’で
ある。また微粒子を含む気体の輸送速度(流速)は通常
5〜100m7秒、゛好ましくは10〜40m/秒であ
る。輸送速度が低い場合は微粒子の再凝集、配管の閉塞
等の点で、一方高い場合は装置、配管の摩耗の点で好ま
しくない。輸送気体の圧力については通常−1,0〜1
0kg/c!12が用いられる。
The concentration of fine particles in the gas is usually 10 to 100,000 g/N
ra3, often 100-30000 g/Nm'. The transport velocity (flow velocity) of the gas containing fine particles is usually 5 to 100 m/sec, preferably 10 to 40 m/sec. If the transport speed is low, it is unfavorable in terms of re-agglomeration of particles and clogging of pipes, while if it is high, it is unfavorable in terms of wear of equipment and pipes. The pressure of the transport gas is usually -1,0 to 1.
0kg/c! 12 is used.

本発明における粒状物とは、3方向の長さが0.1〜1
0mmの大きさである粒状物又は粉末をいい、好ましく
は1〜5市の粒状物である。熱可塑性樹脂の粒状物移動
層は、熱可塑性樹脂の粒状物を供給して充填し排出する
作用をもつ機構によって得られる。例えば熱可塑性樹脂
の融点又は軟化点以下に維持された単軸或いは二輪スク
リュー混練押出機により容易に得られるし、また熱可塑
性樹脂粒状物の給排出機構を設けた配管或いは静止型管
状混合装置によっても得られる。二輪スクリュー混練押
出機によりかような熱可塑性樹脂の粒状物移動層を形成
する場合には、スクリュー径をDとすると、樹脂粒状物
の供給口から3〜150の間に滞留時間が1〜3分程度
になるように形成することが好ましい。2D未満では集
塵が充分でなく、一方200を超えると集塵効果は飽和
し装置が長大となり、好ましくない。
In the present invention, the granular material has a length of 0.1 to 1 in three directions.
It refers to granules or powder with a size of 0 mm, preferably 1 to 5 mm. The thermoplastic resin particulate transfer layer is obtained by a mechanism having the function of supplying, filling, and discharging thermoplastic resin particulates. For example, it can be easily obtained using a single-screw or two-wheel screw kneading extruder maintained below the melting point or softening point of the thermoplastic resin, or by a piping or static tubular mixing device equipped with a feeding and discharging mechanism for thermoplastic resin granules. You can also get When forming such a granular transfer layer of thermoplastic resin using a two-wheel screw kneading extruder, if the screw diameter is D, the residence time is 1 to 3 between 3 and 150 mm from the supply port of the resin granules. It is preferable to form it so that it has a length of about 10 minutes. If it is less than 2D, dust collection will not be sufficient, while if it exceeds 200, the dust collection effect will be saturated and the device will become long, which is not preferable.

熱可塑性樹脂の粒状物移動層による微粒子の付着又は堆
積は、所謂慣性集塵作用による、すなわち樹脂粒状物の
表面に次第に微粒子が付着してくると、微粒子が相互に
付着し合い、更にはブリッジを形成し、樹脂粒状物層中
に微粒子の堆積層が形成される。この堆積微粒子層によ
る濾過作用が本発明の要点である。この濾過作用は、気
体の流速、樹脂粒状物の移動速度、粒径、性状、比重に
依存する。また、微粒子の堆積と共に、圧力損失が増大
するが、本発明では樹脂粒状体と微粒子との混合物は後
次工程の方向につねに移動して更新されるので、圧力損
失をほぼ一定に保つことができ、能率よくかつ安定した
微粒子の集塵が可能となる。
The adhesion or accumulation of fine particles by the thermoplastic resin particle moving layer is due to the so-called inertial dust collection effect.In other words, when the fine particles gradually adhere to the surface of the resin granules, the fine particles adhere to each other and even cause bridging. , and a deposited layer of fine particles is formed in the resin granule layer. The filtration effect of this deposited fine particle layer is the key point of the present invention. This filtration effect depends on the gas flow rate, the moving speed of the resin particles, the particle size, properties, and specific gravity. In addition, pressure loss increases as fine particles accumulate, but in the present invention, the mixture of resin granules and fine particles is constantly moved and renewed in the direction of the subsequent process, so it is possible to keep the pressure loss almost constant. This enables efficient and stable collection of fine particles.

微粒子が除去された気体の排出は、熱可塑性樹脂の粒状
物を供給する部位の側でも溶融混練する部位の側のどち
らで行ってもよいが、好ましくは供給側で行い、更に樹
脂粒状物の供給口と共通にすることもできる(第3図参
照)。またブロア等で負圧をかけて吸引し排出すること
もできる。
The gas from which the fine particles have been removed may be discharged either on the side where the thermoplastic resin granules are supplied or on the side where the melt-kneading process is carried out, but it is preferably carried out on the supply side. It can also be shared with the supply port (see Figure 3). It is also possible to suction and discharge by applying negative pressure with a blower or the like.

本発明における熱可塑性樹脂の粒状物と微粒子との混合
物の溶融及び混練は、例えばスクリュー又はロータを内
嵌したシリンダを有する混練押出機によって行われる(
改正石版化学工学便覧p916〜9工9、化学工学協会
編丸善■昭和63年発行、参照)。熱可塑性樹脂が水分
を含んでいる場合或いは溶融混練に伴って混入した気体
を除去したい場合には、ベントロを配設し負圧をかけた
り窒素フローして脱気することが好ましい。更に、溶融
混純に伴い、熱可塑性樹脂が変質したり揮発物が発生す
るポリエステル樹脂、ナイロン樹脂、ポリエチレン樹脂
などの場合は、2ヶ以上のベントロを配設した同方向ま
たは異方向回転のスクリューをもつ二軸混練押出機を使
用すれば、高真空で操作可能な脱揮作用を有するので好
ましい。
In the present invention, the mixture of thermoplastic resin granules and fine particles is melted and kneaded using, for example, a kneading extruder having a cylinder fitted with a screw or rotor (
Revised lithograph chemical engineering handbook p916-9, edited by the Chemical Engineering Society, Maruzen ■ Published in 1986, see). When the thermoplastic resin contains moisture or when it is desired to remove gas mixed in during melt-kneading, it is preferable to provide a vent and apply negative pressure or to degas it by nitrogen flow. Furthermore, in the case of polyester resins, nylon resins, polyethylene resins, etc. where the thermoplastic resin deteriorates or volatile substances are generated during melting and mixing, use screws equipped with two or more vents that rotate in the same or different directions. It is preferable to use a twin-screw kneading extruder having a devolatilization function that can be operated under high vacuum.

溶融混練された微粒子分散樹脂組成物は、シリンダの先
端に設けられた出口より押出され、直接繊維、シートや
フィルムを得るための口金又は成形物を得るための金型
に導かれるなど公知の方法により成形されるか、又は−
旦チツブや粉末にした後成形に供せられる。
The melt-kneaded fine particle-dispersed resin composition is extruded from an outlet provided at the tip of a cylinder and guided directly to a die for obtaining fibers, sheets or films, or a mold for obtaining molded products, or by other known methods. Shaped by or -
It is first made into chips or powder and then subjected to molding.

次に、本発明を装置図により説明する。Next, the present invention will be explained with reference to device diagrams.

第1図において、1は二軸混練押出機のシリンダである
。このシリンダ1に同方向回転の2本のスクリュー2が
内嵌されている。シリンダ1には、その長手方向に離間
して樹脂供給口A、気体排出口B、微粒子を含む気体の
導入口C1及び2つのベントロDi、 D2が順に配設
されている。樹脂供給口Aはシリンダニの上流側端部に
位置し、下流側の端部は出口3である。また本発明にお
いては、樹脂粒状物の溶融開始部は前記導入口Cとベン
トロD1との間に位置している。スクリュー2は直径が
65mmであり、導入口Cより上流側は15mmの深溝
2aに、溶融開始部はニーディングデスクで深溝から浅
深2dとなり、混練部は4IIlffIの浅溝2Cに、
また混練部に設けられたベントロの部分は6mmの若干
深い溝2dになっている。シリンダには図示省略のヒー
タが取付られている。また深溝部2aの長さは780 
mm’、溶融開始部2bは195に、ベント部を含む浅
溝部2c、 2dは585鵬であり、B−C間は585
 mmである。
In FIG. 1, 1 is a cylinder of a twin-screw kneading extruder. Two screws 2 rotating in the same direction are fitted into this cylinder 1. In the cylinder 1, a resin supply port A, a gas discharge port B, an inlet C1 for gas containing fine particles, and two vent holes Di and D2 are arranged in order at intervals in the longitudinal direction of the cylinder 1. The resin supply port A is located at the upstream end of the cylinder cylinder, and the downstream end is the outlet 3. Further, in the present invention, the melting start portion of the resin granules is located between the introduction port C and the vent hole D1. The screw 2 has a diameter of 65 mm, and the upstream side of the inlet C has a 15 mm deep groove 2a, the melting start part changes from the deep groove to the shallow depth 2d at the kneading desk, and the kneading part has a 4IIlffI shallow groove 2C.
Further, the vent hole provided in the kneading section has a slightly deep groove 2d of 6 mm. A heater (not shown) is attached to the cylinder. Also, the length of the deep groove portion 2a is 780 mm.
mm', the melting start part 2b is 195 mm, the shallow groove parts 2c and 2d including the vent part are 585 mm, and the distance between B and C is 585 mm.
It is mm.

樹脂供給口Aにはシュートを介して樹脂粒状物の密閉さ
れた投入ホッパが取付けられている。気体排気口Bには
フィルターを通して吸気ブロアが接続されている。導入
口Cには、気体のコンプレッサー微粒子の投入装置と分
級装置及び凝集粒子の粉砕装置から微粒子を含む気体が
圧入される。
A closed charging hopper for resin granules is attached to the resin supply port A via a chute. An intake blower is connected to the gas exhaust port B through a filter. A gas containing fine particles is injected into the inlet C from a gas compressor fine particle input device, a classification device, and an agglomerated particle crushing device.

例えば特開昭62−8215号公報に記載されたジェッ
ト粉砕装置を使用すれば、更に表面処理と乾燥をも行う
ことができる。ベントロD1には図示省略の窒素フロー
装置、ベントロD2には図示省略の真空ポンプが接続さ
れている。
For example, if a jet pulverizer described in JP-A-62-8215 is used, further surface treatment and drying can be carried out. A nitrogen flow device (not shown) is connected to the vent hole D1, and a vacuum pump (not shown) is connected to the vent hole D2.

更にシリンダ出口3は、ギアポンプ5を介してスリット
孔を有する口金6に接続しており、スリット孔から樹脂
組成物を回転冷却ドラム上に押出し急冷してシートを得
る。次にこのシートを2軸延伸してフィルムとし、つい
で熱固定した後冷却して巻取る。
Further, the cylinder outlet 3 is connected to a mouthpiece 6 having a slit hole through a gear pump 5, and the resin composition is extruded from the slit hole onto a rotating cooling drum and rapidly cooled to obtain a sheet. Next, this sheet is biaxially stretched to form a film, which is then heat-set, cooled, and rolled up.

第2図において、1は単軸押出機のスクリューであり、
長手方向に離間して上流側から樹脂供給口A、微粒子を
含む気体の導入口C5気体排気口B及びベントロDが順
に配設されている。また本発明においては、樹脂粒状体
の溶融開始部は前記排気口BとベントロDとの間に位置
している。スクリュー2は直径が70mmであり、排気
口Bより上流側は16mmの深溝2aに、溶融開始部は
徐々に浅溝2bとなり、混練部は4鵬の浅溝2cに、ま
たベントロの部分は6IIII11のやや深い溝2dに
なっている。シリンダには図示省略のヒータが取付けら
れている。
In FIG. 2, 1 is a screw of a single screw extruder,
A resin supply port A, a gas inlet C5 containing fine particles, a gas exhaust port B, and a vent hole D are arranged in this order from the upstream side and spaced apart in the longitudinal direction. Further, in the present invention, the melting start portion of the resin granules is located between the exhaust port B and the vent hole D. The screw 2 has a diameter of 70 mm, and the upstream side from the exhaust port B has a 16 mm deep groove 2a, the melting start part gradually becomes a shallow groove 2b, the kneading part has a 4-hole shallow groove 2c, and the vent hole part has a 6III11 groove. There is a slightly deep groove 2d. A heater (not shown) is attached to the cylinder.

樹脂供給口Aには図示省略のシュートを介して樹脂粒状
物の密閉された投入ホッパが取付けられ、気体排気口B
にはフィルターを通して吸気ブロアが接続されており、
導入口Cには気体のコンプレッサー、微粒子の投入装置
と分級装置及び凝集粒子の粉砕装置から微粒子を含む気
体が圧入され、ベントロDには真空ポンプが接続されて
いる。
A closed charging hopper for resin particles is attached to the resin supply port A via a chute (not shown), and a gas exhaust port B is connected to the resin supply port A.
An intake blower is connected through a filter to
Gas containing fine particles is injected into the inlet C from a gas compressor, a fine particle feeding device, a classification device, and an aggregated particle crushing device, and a vacuum pump is connected to the vent hole D.

更にシリンダの出口3は、分配管4及びギアポンプ5を
介して紡糸口金6′に接続しており、細孔から樹脂組成
物を押出して巻取り、繊維を得る。
Further, the outlet 3 of the cylinder is connected to a spinneret 6' via a distribution pipe 4 and a gear pump 5, and the resin composition is extruded from the pores and wound up to obtain fibers.

第3図は、第1図において微粒子に例えば圧力10 k
g / Cm ”の加熱窒素を噴射した後反転軌道に衝
突させることによって粉砕し、同時に導入口Cに気送す
る、そして気体を樹脂供給口Aを経由して例えば金網状
のフィルターで樹脂粒状物と分離した後布状のバッグか
ら排気する例を示す(特開昭58−104642号公報
参照)。
FIG. 3 shows that, in FIG. 1, the fine particles are subjected to a pressure of 10 k
g/Cm'' of heated nitrogen is injected and then pulverized by colliding with a reversing orbit, and at the same time, it is pneumatically sent to the inlet C, and the gas is passed through the resin supply port A to the resin granules using, for example, a wire mesh filter. An example is shown in which the air is evacuated from a cloth-like bag after separation (see Japanese Unexamined Patent Publication No. 104642/1983).

第4図は、樹脂粒状物をAから粉末状の樹脂粒状物をA
′から投入してスクリューフィーダーで連続供給し、3
〜12ケの静止型混合素子8を配設して粒状物移動層を
形成する例を示す。尚、気体排気口Bは二軸の深溝部2
aに配設することもできる。
Figure 4 shows resin granules at A and powdery resin granules at A.
’ and continuously fed with a screw feeder, 3
An example will be shown in which ~12 stationary mixing elements 8 are arranged to form a particulate matter moving layer. In addition, the gas exhaust port B is a biaxial deep groove part 2.
It can also be placed in a.

(実施例) 以下、本発明を実施例により説明する。(Example) The present invention will be explained below using examples.

実施例1 第3図の二軸混練押出機の樹脂供給口AにIVO174
、大きさ3.0mmφX3.OmmLのポリエチレンテ
レフタレートチップを83kg/時で供給し、導入口C
にジェットミルで微粉砕した平均粒径0.3μmのアナ
ターゼ型酸化チタンを含む窒素(濃度1kg/Nm”、
温度210°C1圧力6kg/cm”)を17Nm3/
時で導入した。シリンダー温度を深溝部210’C,溶
融開始部280°C1混練部及びベント部290 ’C
に設定し、ベントロDIには3.6 Nm’/時の窒素
フロー、ベントロD2は5 Torrに減圧して混練し
た後、290°Cのスリット型口金から回転冷却ドラム
上に押出し急冷して厚さ1.1 mmの非晶質のシート
を得た。
Example 1 IVO174 was installed in the resin supply port A of the twin-screw kneading extruder shown in Fig. 3.
, size 3.0mmφX3. 0 mmL of polyethylene terephthalate chips were supplied at 83 kg/hour, and the inlet C
Nitrogen containing anatase titanium oxide with an average particle size of 0.3 μm (concentration 1 kg/Nm,
temperature 210°C1 pressure 6kg/cm”) 17Nm3/
It was introduced at the time. The cylinder temperature was set to 210'C in the deep groove part, 280'C in the melting start part, 290'C in the kneading part and vent part.
After kneading at a reduced pressure of 3.6 Nm'/h nitrogen flow for Ventro DI and 5 Torr for Ventro D2, extrusion from a 290°C slit-type nozzle onto a rotating cooling drum was rapidly cooled and thickened. An amorphous sheet with a diameter of 1.1 mm was obtained.

次に、このシートを100°Cで縦方向に3.0倍延伸
しついで横方向に110°Cで3.0倍延伸しついで2
00°Cで熱固定した後、冷却して巻取った。得られた
フィルムは厚さ125μmで白色不透明であり、Iνは
0.61であった。なお延伸成形は連続して安定して行
うことができた。
Next, this sheet was stretched 3.0 times in the machine direction at 100°C, stretched 3.0 times in the cross direction at 110°C, and then
After heat setting at 00°C, the film was cooled and rolled up. The obtained film was 125 μm thick, white and opaque, and had an Iv of 0.61. Note that stretch forming could be performed continuously and stably.

得られたフィルムはポリマーの分解副生物による着色な
どが認められず良好な白色であり、反射写真用支持体と
してきわめて有用なものであった。
The obtained film had a good white color with no coloration due to polymer decomposition by-products, and was extremely useful as a support for reflective photography.

実施例2 第2図の一軸混練押出機の樹脂供給口Aにη1=2.7
0で大きさ2.0閣φX2.Ommlのナイロン6チッ
プを19.8kg/時で供給し、導入口Bに平均粒径2
0μmのカーボンブラックを含む窒素(50g/Nm”
温度180’C)を4 Nm3/時で導入した。シリン
ダー温度を深い溝部で180°C1溶融開始部250°
C1混練部及びベント部260°Cに設定し、ベントロ
Dは10Torrに減圧して混練した後、265 ’C
の紡糸口金から押出し、オイリングして未延伸糸を 1
000m/分で巻取った。次に、この未延伸糸を3.6
倍延伸して208デニール/96フイラメントの黒原着
ナイロン繊維を製造した。尚、混練〜延伸は安定して操
業することができた。
Example 2 η1 = 2.7 in the resin supply port A of the uniaxial kneading extruder in Fig. 2
0 and size 2.0mmφX2. Omml of nylon 6 chips are supplied at a rate of 19.8 kg/hour, and the average particle size is 2 to the inlet B.
Nitrogen containing 0μm carbon black (50g/Nm”
A temperature of 180'C) was introduced at a rate of 4 Nm3/h. Cylinder temperature: 180°C at deep groove part, 250° at melting start part
C1 kneading section and vent section were set at 260°C, and ventro D was kneaded under reduced pressure of 10 Torr, then heated to 265'C.
The undrawn yarn is extruded from a spinneret and oiled to produce 1
It was wound up at a speed of 000 m/min. Next, this undrawn yarn was
A 208 denier/96 filament black spun-dyed nylon fiber was produced by double stretching. Note that the operations from kneading to stretching could be performed stably.

得られた黒原着ナイロン繊維は強度3.4g/d、伸度
40%と均一な着色を有していた。
The obtained black spun-dyed nylon fiber had a strength of 3.4 g/d, an elongation of 40%, and uniform coloring.

実施例3 第1図の二軸混練押出機の樹脂供給口Aに平均分子量8
0000で大きさ3.0鴫φX3.OmmLのポリエチ
レンチップを80kg/時で供給し、導入口Cに表面に
酸化錫の皮膜15重量%を有する酸化チタン粒子に対し
て0.75重量%の酸化アンチモンを混合焼成しで得ら
れた平均粒径0.25μmの導電性微粒子(以下導電粒
子Xという、比抵抗6.3Ω・cm)を含む空気Y(濃
度500 g/Nm’ 、温度室温、圧力10 kg 
/ cm 2)を4ONm’/時で導入した(特開昭5
8=104642参照)。シリンダー温度を深溝部50
’C,熔融開始部230°C,混練部及びベント部24
0 ’Cに設定し、ベントロDi、 D2は10Tor
rに減圧して混練した後、押出して3.0 m+nφX
3.OmmLのチップZ2゜に成形した。
Example 3 An average molecular weight of 8 was added to the resin supply port A of the twin screw kneading extruder in Figure 1.
0000 and size 3.0 φX3. OmmL polyethylene chips were fed at 80 kg/hour, and 0.75% by weight of antimony oxide was mixed with titanium oxide particles having a 15% by weight tin oxide film on the surface of the inlet C and fired. Air Y (concentration 500 g/Nm', temperature room temperature, pressure 10 kg) containing conductive fine particles with a particle size of 0.25 μm (hereinafter referred to as conductive particles X, specific resistance 6.3 Ω cm)
/cm2) at 4ONm'/hour (Unexamined Japanese Patent Publication No. 5
8=104642). Check cylinder temperature at deep groove part 50
'C, melting start part 230°C, kneading part and vent part 24
Set to 0'C, ventro Di, D2 to 10Tor
After kneading under reduced pressure to r, extrude to 3.0 m+nφX
3. It was molded into a chip Z2° of 0 mm L.

次に、得られたチップz2゜を75kg/時で樹脂供給
口Aに供給し、導入口Cに前記導電粒子Xを含む空気Y
を5ONm’/時で導入し、前記条件で混練してチップ
2.。に成形した。
Next, the obtained chips z2° are supplied to the resin supply port A at a rate of 75 kg/hour, and the air Y containing the conductive particles X is supplied to the introduction port C.
was introduced at a rate of 5ONm'/hour and kneaded under the above conditions to form chips 2. . It was molded into.

次に、チップz4゜を66.7kg/時で供給し、導電
粒子Xを含む空気Y’  (濃度1000g/Nm3、
温度室温)を33.3Nm37時で導入し、前記条件で
混練して千ツブZ、。に成形した。
Next, the chip z4° is supplied at a rate of 66.7 kg/hour, and air Y' containing conductive particles X (concentration 1000 g/Nm3,
(temperature: room temperature) was introduced at 33.3 Nm at 37 hours, and kneaded under the above conditions. It was molded into.

次に、チップZ6゜を62.5kg/時で供給し、導電
粒子Xを含む空気Y′を37.5Nm3/時、で導入し
、前記条件で混練して導電粒子Xを75重量%分散させ
たポリエチレン組成物のチップZISを成形した。
Next, chips Z6° were supplied at a rate of 62.5 kg/hour, air Y' containing conductive particles X was introduced at a rate of 37.5 Nm3/hour, and the mixture was kneaded under the above conditions to disperse conductive particles A chip ZIS of the polyethylene composition was molded.

次いで、チ、ツブZ?5を導電成分として用いる以外、
特開昭60−224812号公報に記載された実施例2
のY、と同様にして導電性複合繊維を製造した。
Next, Chi, Tsubu Z? 5 as a conductive component,
Example 2 described in JP-A-60-224812
A conductive composite fiber was produced in the same manner as Y.

紡糸延伸の操業性は良好であり、また得られた導電性複
合繊維の糸質及び導電性も同様良好であった。
The operability of spinning and drawing was good, and the quality and conductivity of the obtained conductive composite fibers were also good.

実施例4 第4図の混練押出機(2Ω部分のみ二軸で内径60M)
の樹脂供給口Aに大きさ約3mmφX3mmLのポリブ
チレンテレフタレートチップ(三菱化成■ツバドール5
010)を65kg/時、大きさ約3ffIfllφ×
3mmLのスチレン−ブタジェンブロック共重合体チッ
プ(電気化学工業■デンカ5TR1602)を20kg
Z時、A′に平均粒径約0.1mmの臭化ポリスチレン
粉末(日産フェロ有機化学■パイロチエツク68PB)
 15kg/時で供給し、粒径0.3 μmの三酸化ア
ンチモンを含む窒素(濃度500g/Nm3、温度15
0°C)を1ONm3/時で導入し、布製フィルターを
介してブロアで吸引し排出した。静止型混合素子(内径
80胴、6素子、長さ480mm)及びシリンダー温度
を2軸部150°C1混練部2b、 240°C、ベン
ト2dと計量部2cを260 ”Cに設定し、ベントロ
Dは10Torrに減圧して混練した後、押出して3.
0mmφX3.OmmLのチップにした。
Example 4 Kneading extruder shown in Fig. 4 (only the 2Ω portion has two screws and an inner diameter of 60M)
Polybutylene terephthalate chip (Mitsubishi Kasei ■Tsubadol 5) with a size of approximately 3 mmφ
010) at 65 kg/hour, size approximately 3ffIfllφ×
20kg of 3mmL styrene-butadiene block copolymer chips (Denka 5TR1602 from Denki Kagaku Kogyo)
At time Z, polystyrene bromide powder with an average particle size of about 0.1 mm (Nissan Ferro Organic Chemical ■ Pyrocheck 68PB) was added to A'.
Nitrogen containing antimony trioxide with a particle size of 0.3 μm (concentration 500 g/Nm3, temperature 15 kg/h)
0°C) was introduced at a rate of 1ONm3/hour, and the mixture was suctioned and discharged with a blower through a cloth filter. Set the static mixing element (inner diameter 80 cylinder, 6 elements, length 480 mm) and cylinder temperature to 150 °C for the two shaft parts, 1 kneading part 2b, 240 °C, vent 2d and measuring part 2c to 260 "C, 3. After kneading under reduced pressure to 10 Torr, extrusion was performed.
0mmφX3. It was made into an OmmL chip.

次いで通常の条件で各種試験片を射出成形した。Various test pieces were then injection molded under normal conditions.

射出成形は安定して行うことができた。また試験片は高
度の難燃性に加え、優れた耐衝撃性を有していた。
Injection molding could be performed stably. In addition to a high degree of flame retardancy, the test piece also had excellent impact resistance.

(発明の効果) 以上詳細に説明したように本発明は、10μm以下殊に
サブミクロン級の微粒子を高濃度に分散させた熱可塑性
樹脂組成物及び成形物を製造する新規な技術を提供する
ものである。すなわち本発明によれば、微粒子の気流処
理工程を溶融混練工程と成形工程に直結して実施するこ
とが可能となり、従来法では解決困難とされた品質、コ
スト及び生産性を大巾に改善することができる。また本
発明方法は、多品種小量生産にも適した方法でもあり、
産業上極めて有用なポリマープロセスを提供するもので
ある。
(Effects of the Invention) As explained in detail above, the present invention provides a new technique for producing thermoplastic resin compositions and molded articles in which fine particles of 10 μm or less, particularly submicron-level particles, are dispersed at a high concentration. It is. In other words, according to the present invention, it is possible to carry out the airflow treatment process of fine particles directly connected to the melt-kneading process and the molding process, thereby significantly improving quality, cost, and productivity, which were difficult to solve with conventional methods. be able to. The method of the present invention is also suitable for high-mix, low-volume production.
This provides an industrially extremely useful polymer process.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜4図は本発明方法の実施に好適な装置の縦断面概
要図であり、 第1図は二軸混練押出機、 第2図は単軸押出機、 第3図は樹脂供給口を経由して布状のバッグから気体を
排出する例、 第4図は粒状物移動層が静止型混合素子部に形成されて
いる例である。
Figures 1 to 4 are longitudinal cross-sectional schematic diagrams of equipment suitable for carrying out the method of the present invention. Figure 1 is a twin-screw kneading extruder, Figure 2 is a single-screw extruder, and Figure 3 is a resin feed port. FIG. 4 shows an example in which a particulate matter moving layer is formed in a stationary mixing element section.

Claims (1)

【特許請求の範囲】 1、熱可塑性樹脂と微粒子とを溶融混練するに際し、粒
径10μm以下の微粒子を含む気体を未溶融状態の熱可
塑性樹脂の粒状物移動層に導入して該粒状物移動層に微
粒子を付着又は堆積させつつ気体を排出し、そして前記
粒状物と微粒子との混合物を溶融及び混練することを特
徴とする微粒子分散熱可塑性樹脂組成物の製造方法。 2、請求項1記載の溶融及び混練に連続して、微粒子分
散熱可塑性樹脂組成物を成形することを特徴とする成形
物の製造方法。 3、気体の排出を、微粒子を含む気体を導入する部位よ
り熱可塑性樹脂の粒状物を提供する部位の側で行うこと
を特徴とする請求項1記載の方法。
[Claims] 1. When melt-kneading a thermoplastic resin and fine particles, a gas containing fine particles with a particle size of 10 μm or less is introduced into a particle transfer layer of an unmolten thermoplastic resin to move the particles. A method for producing a fine particle-dispersed thermoplastic resin composition, which comprises discharging a gas while adhering or depositing fine particles in a layer, and melting and kneading a mixture of the fine particles and fine particles. 2. A method for producing a molded article, which comprises molding a fine particle-dispersed thermoplastic resin composition following the melting and kneading according to claim 1. 3. The method according to claim 1, wherein the gas is discharged closer to the part where the thermoplastic resin particles are provided than the part where the gas containing the fine particles is introduced.
JP1084637A 1989-04-05 1989-04-05 Production of thermoplastic resin composition and molded product therefrom Pending JPH02263867A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1084637A JPH02263867A (en) 1989-04-05 1989-04-05 Production of thermoplastic resin composition and molded product therefrom
US07/503,194 US5281379A (en) 1989-04-05 1990-04-02 Processes for manufacturing thermoplastic resin compositions
DE69023794T DE69023794T2 (en) 1989-04-05 1990-04-04 Process for the preparation of thermoplastic synthetic resin mixtures and articles molded therefrom.
EP90106401A EP0391372B1 (en) 1989-04-05 1990-04-04 Processes for manufacturing thermoplastic resin compositions and shaped articles thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1084637A JPH02263867A (en) 1989-04-05 1989-04-05 Production of thermoplastic resin composition and molded product therefrom

Publications (1)

Publication Number Publication Date
JPH02263867A true JPH02263867A (en) 1990-10-26

Family

ID=13836205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1084637A Pending JPH02263867A (en) 1989-04-05 1989-04-05 Production of thermoplastic resin composition and molded product therefrom

Country Status (1)

Country Link
JP (1) JPH02263867A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0543087A2 (en) * 1991-11-21 1993-05-26 CLARSON APPARATEBAU GmbH Protection device for an electroacoustic transducer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0543087A2 (en) * 1991-11-21 1993-05-26 CLARSON APPARATEBAU GmbH Protection device for an electroacoustic transducer
EP0543087A3 (en) * 1991-11-21 1994-05-04 Clarson Apparatebau Gmbh

Similar Documents

Publication Publication Date Title
EP2565004B1 (en) Method of manufacturing composite pellets for extrusion, and composite pellets thus produced
US3164563A (en) Process for the production of moulding compositions
KR940011143B1 (en) Method and apparatus for producing thermoplastic and products produced thereform
EP0391372B1 (en) Processes for manufacturing thermoplastic resin compositions and shaped articles thereof
TW200918282A (en) Process for the production of an electrically conducting polymer composite material
KR20070120999A (en) Thermoplastic molding material and molding elements containing nanometric inorganic particles for making said molding material and said molding elements, and uses thereof
CA2550754A1 (en) Cable with a coating layer made from a waste material
JP2009203410A5 (en)
US20050063246A1 (en) Mixing and kneading device for polymer compositions
JPS63197618A (en) Direct machining method by injection molding machine of polymer and powdered additive
JPH02263867A (en) Production of thermoplastic resin composition and molded product therefrom
JPH0347710A (en) Manufacture of thermoplastic resin composition and molded material
TW201127607A (en) Process for incorporating solids into polymers
JPH039811A (en) Manufacture of thermoplastic resin composition and its molding
JP3154953B2 (en) Method for producing compound pellets containing wood flour
JP5318307B2 (en) Polyolefin resin film and composition for polyolefin resin film
JP3181269B2 (en) Extrusion molding of recovered PET bottles and pipes made of PET resin
JP4749576B2 (en) Method for producing resinous film
JPH08176350A (en) Continuous production of rubber composition
JPH0664021A (en) Biaxial extrusion molding
CZ286089B6 (en) Process of treating plastics containing particularly polyvinyl butyral with residual substances, particularly with tenacious glass and plastic secondary product obtained in such a manner
CN113276307B (en) Three-screw extruder device for producing special material for low-pressure film blowing machine
JPH01230670A (en) Production of thermoplastic resin composition
JPH07214547A (en) Preparation of thermoplastic resin pellet
JPH10211644A (en) Kneading extrusion method of synthetic resin material