JP2535422B2 - Method to evenly disperse particles in polymer - Google Patents

Method to evenly disperse particles in polymer

Info

Publication number
JP2535422B2
JP2535422B2 JP1298472A JP29847289A JP2535422B2 JP 2535422 B2 JP2535422 B2 JP 2535422B2 JP 1298472 A JP1298472 A JP 1298472A JP 29847289 A JP29847289 A JP 29847289A JP 2535422 B2 JP2535422 B2 JP 2535422B2
Authority
JP
Japan
Prior art keywords
particles
polymer
porous body
film
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1298472A
Other languages
Japanese (ja)
Other versions
JPH03158208A (en
Inventor
憲男 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1298472A priority Critical patent/JP2535422B2/en
Publication of JPH03158208A publication Critical patent/JPH03158208A/en
Application granted granted Critical
Publication of JP2535422B2 publication Critical patent/JP2535422B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/397Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using a single screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はポリマーに不活性粒子(以下、単に粒子と呼
ぶ)を均一に分散させる方法に関し、更に詳しくは溶融
ポリマーに粒子を予備混合し、しかし後特定の連続性気
孔を有する無機質多孔体(以下、単に多孔体と呼ぶ)中
に通過させることにより該予備混合体中に存在する複数
個の粒子が凝集した二次粒子を単一粒子に分離し、分散
させて均一な混合体とし、加えてポリマーと粒子との間
に高い親和性を生ぜしめる方法に関する。
TECHNICAL FIELD The present invention relates to a method for uniformly dispersing inert particles (hereinafter, simply referred to as particles) in a polymer, and more specifically, premixing the particles with a molten polymer, However, after passing through an inorganic porous body having specific continuous pores (hereinafter, simply referred to as a porous body), a plurality of particles existing in the premixture are aggregated into a secondary particle into a single particle. It relates to a method of separating and dispersing into a homogeneous mixture, which additionally gives rise to a high affinity between the polymer and the particles.

[従来技術] ポリマーと粒子を溶融混合する最も一般的な方法は、
固体ポリマーと粒子を単軸スクリュー押出機又は多軸混
練機に導入し、該ポリマーを溶融した状態で二次粒子の
凝集力に打ち勝つような局部的な強い剪断力を加えて該
二次粒子を単一粒子に分散して押出す方法である。
[Prior art] The most common method of melt mixing a polymer and particles is
The solid polymer and the particles are introduced into a single screw extruder or a multi-screw kneader, and a local strong shearing force is applied to overcome the cohesive force of the secondary particles in a state where the polymer is melted, thereby forming the secondary particles. This is a method of dispersing and extruding single particles.

この押出機の混合,分散作用を高めるために、従来、
種々のスクリューデザインが考案されている。例えば、
Maillefer社のBMスクリュー,ユニオンカーバイド社の
フルート溝付きバリヤーをもつスクリューや、スクリュ
ー溝に各種のピンを配列したり、特殊な溝と孔をもつプ
ラグを先端に付けたDISスクリュー,螺旋角の不連続な
浅溝を多重ネジに切ったものを先端に付けたダルメージ
タイプスクリュー等が知られている。
In order to enhance the mixing and dispersing action of this extruder,
Various screw designs have been devised. For example,
BM screw of Maillefer, screw with flute groove barrier of Union Carbide, DIS screw with various pins arranged in screw groove, plug with special groove and hole at the tip, spiral angle Known is a dullage type screw or the like in which a continuous shallow groove cut into multiple screws is attached to the tip.

その他バレルデザインを改良して混練作用の向上が計
られている。例えば、スクリュー軸に回転ブレードを付
け、バレル溝を固定ブレードとしたKCK混練押出機が知
られている。
In addition, the barrel design has been improved to improve the kneading action. For example, a KCK kneading extruder in which a rotary blade is attached to a screw shaft and a barrel groove is a fixed blade is known.

また、一般的に多軸混練機の方が混練作用が高く、例
えば特殊な羽根をもつ2本のロータ、あるいはニーディ
ングディスクを混練部に有する二軸押出機の混練効果が
一般に高く評価されている。
Generally, a multi-screw kneader has a higher kneading effect, and for example, the kneading effect of a twin-screw extruder having two rotors having special blades or a kneading disk in a kneading section is generally highly evaluated. I have.

その他静的に混合する手段として例えばケニックス社
のスタティックミキサーが知られている。これはポリマ
ー配管中に右回りと左回りの螺旋状のエレメントが交互
に連結されたもので、この配管中をポリマーが通過する
間に混合作用が生じるものである。
As another means for static mixing, for example, a static mixer manufactured by Kenix is known. This is one in which clockwise and counterclockwise spiral elements are alternately connected in a polymer pipe, and a mixing action occurs while the polymer passes through the pipe.

[解決しようとする問題点] 押出機による混合,分散効果は、スクリューのずり,
剪断作用によって発現するものである。ところが、ポリ
マーに強力なずり,剪断作用が働くと、そのエネルギー
の一部が熱エネルギーに転化してポリマーの温度が上昇
し、熱劣化による分子量の低下や着色を生じる。その結
果このポリマーから作られた成形品の力学的特性に重大
な影響を及ぼしたり、着色により商品価値を低下するこ
とがあり、混練作用を高めるには限界がある。実際混練
作用の高い二軸混練機で押出されたポリマーにも二次凝
集粒子が多数存在し、繊維あるいはフイルムに成形する
ために必要な分散性の許容限界を越えていることが多
い。
[Problems to be solved] The effect of mixing and dispersing by the extruder is as follows:
It is manifested by a shearing action. However, when a strong shearing or shearing action acts on the polymer, a part of the energy is converted into heat energy and the temperature of the polymer rises, resulting in a decrease in molecular weight and coloring due to thermal degradation. As a result, the mechanical properties of molded articles made from this polymer may be seriously affected, or the commercial value may be reduced by coloring, and there is a limit to enhancing the kneading action. Actually, a polymer extruded by a twin-screw kneader having a high kneading action also has a large number of secondary agglomerated particles, and often exceeds the permissible limit of dispersibility required for forming into a fiber or a film.

またスタティックミキサーではポリマーの流れを分割
し、次いで流れ方向を反転して再合流するサイクルの繰
返しであるため、ポリマーの混合は促進されるが、凝集
した二次粒子を一時粒子に分離,分散させる効果はほと
んど認められない。従って溶融ポリマーに粒子を混合す
るに際し、一次粒子にまで高度に分散した混合物を製造
することは困難である。
Also, in a static mixer, the polymer flow is divided, then the flow direction is reversed and the flow is re-merged repeatedly, so mixing of the polymer is promoted, but secondary particles that have agglomerated are separated and dispersed into temporary particles. Almost no effect is observed. Therefore, when mixing the particles with the molten polymer, it is difficult to produce a highly dispersed mixture up to the primary particles.

以上の状況から、粒子を高度に分散したポリマーを得
るためには、従来は、ポリマーの重合工程で液の粘度が
低い段階で分散混合し、重合するのが一般的である。例
えば、特公昭59−1415号公報では、粒子を均一分散した
ポリエステルを製造するに当り、超音波処理により粒子
をグリコール中に均一分散せしめて、しかる後重合する
方法が提案されている。
From the above situation, in order to obtain a polymer in which particles are highly dispersed, conventionally, it is general to disperse and polymerize at the stage where the viscosity of the liquid is low in the polymerization process of the polymer. For example, Japanese Patent Publication No. Sho 59-1415 proposes a method of producing a polyester in which particles are uniformly dispersed, by uniformly dispersing the particles in glycol by ultrasonic treatment, and then polymerizing the particles.

一般に粒子をグリコール中に安定に均一分散させるた
めには粒子の表面は親水性でなければならないが、これ
を重合して得られるポリエステルは親油性であるため粒
子とポリマーとの親和性が低く、従ってフイルム等を製
造する際の延伸操作によって粒子界面からポリマーが分
離してボイドを形成し製品の表面特性,力学特性等に悪
影響を生じる。
Generally, in order to stably and uniformly disperse the particles in glycol, the surface of the particles must be hydrophilic, but the polyester obtained by polymerizing the particles is lipophilic, so the affinity between the particles and the polymer is low, Therefore, the polymer is separated from the grain interface by a stretching operation during the production of a film or the like to form a void, which adversely affects the surface properties and mechanical properties of the product.

逆に親油性の高い粒子を用いるとグリコール中での均
一な分散が困難となり、背反二律の関係にあった。
Conversely, when particles having a high lipophilicity are used, it is difficult to disperse the particles uniformly in glycol, and this is a trade-off relationship.

[発明の目的] 本発明の目的は微細な粒子を溶融ポリマー中に均一分
散混合する方法を提供することにあり、他の目的は繊
維,フイルム等の成形に用いる、粒子が高度に分散され
た均一なポリマーを、熱劣化による分子量の低下や、着
色を生じることなく製造し、しかも粒子とポリマーとの
親和性の高い製品を製造する方法を提供することにあ
る。
[Object of the Invention] An object of the present invention is to provide a method for uniformly dispersing and mixing fine particles in a molten polymer, and another object is to use for molding fibers, films, etc., in which particles are highly dispersed. It is an object of the present invention to provide a method for producing a uniform polymer without lowering the molecular weight due to heat deterioration and without causing coloring, and for producing a product having a high affinity between particles and the polymer.

[発明の構成・効果] 本発明の目的は、本発明によれば、平均粒径が0.7〜
5μmでかつ水との接触角が10゜以上の無機物又は有機
物の粒子0.005〜4重量%(ポリマーに対し)と溶融ポ
リマーとを押出機中で予備混合し、次いで得られた予備
混合物を、平均孔径が上記粒子の平均粒径(X)の10倍
以上、 以下である連続性気孔を有する無機質の多孔体中に通過
させて該粒子を均一に分散させることを特徴とする粒子
をポリマーに均一に分散させる方法によって達成され
る。
[Structure / Effect of Invention] According to the present invention, the average particle diameter is 0.7 to
0.005 to 4% by weight of inorganic or organic particles (with respect to the polymer) having a particle diameter of 5 μm and a contact angle with water of 10 ° or more are premixed with a molten polymer, and then the obtained premix is averaged. The pore size is 10 times or more the average particle size (X) of the above particles, It is achieved by a method of uniformly dispersing particles in a polymer, which is characterized by passing the particles through an inorganic porous material having continuous pores to uniformly disperse the particles.

本発明において対象となるポリマーは熱可塑性ポリマ
ーであり、例えばポリエチレン,ポリプロピレン,ポリ
スチレン等の如きオレフィン系重合体、ポリヘキサメチ
レンアジパミド,ポリ−εカプロラクタム等の如きアミ
ド系重合体、ポリブチレンテレフタレート,ポリエチレ
ンテレフタレート,ポリエチレンナフタレンジカルボキ
シレート等の如きエステル系重合体、更に、ポリカーボ
ネート,ポリアセタール,ポリフェニレンエーテル,ポ
リフェニレンスルフィド等を挙げることができる。これ
らの中エステル系重合体、特に芳香族ポリエステルが好
ましい。
The polymer to be used in the present invention is a thermoplastic polymer, and examples thereof include olefin polymers such as polyethylene, polypropylene and polystyrene, amide polymers such as polyhexamethylene adipamide and poly-ε caprolactam, and polybutylene terephthalate. Examples thereof include ester-based polymers such as polyethylene terephthalate and polyethylene naphthalene dicarboxylate, and polycarbonate, polyacetal, polyphenylene ether, and polyphenylene sulfide. Of these, medium ester polymers, particularly aromatic polyesters are preferable.

本発明において、かかるポリマーに分散せしめる微細
な粒子としては、例えばトルク,クレイ,カオリン,シ
リカ,アルミナ,チタニア,ジルコニア,燐酸カルシウ
ム,炭酸カルシウム等の無機系微粒子の単一物又は二種
以上の組合せからなるものが挙げられる。また有機系微
粒子としてシリコーン樹脂,ポリアリレート等の如き高
融点有機物の微粒子を挙げることができる。ここで、高
融点とは、溶融混合時に微粒子が溶融しないことを意味
する。有機系微粒子は無機系微粒子と併用することも可
能である。
In the present invention, as the fine particles to be dispersed in the polymer, for example, a single or a combination of two or more kinds of inorganic fine particles such as torque, clay, kaolin, silica, alumina, titania, zirconia, calcium phosphate, calcium carbonate, etc. It is made of. Examples of the organic fine particles include fine particles of high melting point organic substances such as silicone resin and polyarylate. Here, the high melting point means that the fine particles do not melt during melt mixing. The organic fine particles can be used together with the inorganic fine particles.

かかる粒子の平均粒径は0.7〜5μmである。この平
均粒径が0.7μm未満、特に0.01μmより小さいものは
ポリマー中に分散させたときの効果が十分でなく、例え
ばフイルムの表面に微細凹凸を形成して易滑性を付与す
るときこの付与効果が十分でなく、好ましくない。一方
平均粒径が5μmより大きいものはポリマー中に分散さ
せたときに悪影響が生じ、例えば上記微細凹凸が大きす
ぎてフイルム表面が粗れすぎるので、好ましくない。
The average particle size of such particles is 0.7 to 5 μm. If the average particle size is less than 0.7 μm, especially less than 0.01 μm, the effect when dispersed in the polymer is not sufficient, and for example, when imparting slipperiness by forming fine irregularities on the surface of the film The effect is not sufficient, which is not preferable. On the other hand, those having an average particle size of more than 5 μm are not preferable because when they are dispersed in a polymer, they have an adverse effect, and for example, the fine irregularities are too large and the film surface is too rough.

本発明に用いる粒子は、更に水との接触角が10゜以上
である必要があり、好ましくは15゜以上、特に好ましく
は20゜以上である。この“水との接触角”が10゜未満の
ときには十分な分散効果が得られず、また粒子の周りに
ボイドを形成し易く、更に時として多孔体の目詰りを生
じて多孔体の前後で大きな圧力差を生じることがあり、
好ましくない。
The particles used in the present invention must have a contact angle with water of 10 ° or more, preferably 15 ° or more, particularly preferably 20 ° or more. When this "contact angle with water" is less than 10 °, a sufficient dispersion effect cannot be obtained, voids are easily formed around the particles, and sometimes the porous body is clogged to cause a void before and after the porous body. Can cause large pressure differences,
Not preferred.

ここで、水との接触角とは、粒子集合体を平滑な膜状
に成形し、得られる成形体の表面に水滴をのせ平衡状態
になったとき水滴の周辺において水と成形体表面とのな
す角度をもって表わす。
Here, the contact angle with water means that the particle aggregate is formed into a smooth film, a water drop is placed on the surface of the obtained formed body, and when the state of equilibrium is reached, water and the surface of the formed body around the water drop are formed. Expressed as an angle.

一般に粒子の親油性が高いほどこの接触角が大きくな
る。しかし、この接触角が大きすぎると粒子とポリマー
との密着性が低下するので、この接触角は170゜以下、
更には160゜以下であることが好ましい。
Generally, the higher the lipophilicity of the particles, the larger this contact angle. However, if this contact angle is too large, the adhesion between the particles and the polymer decreases, so this contact angle is 170 ° or less.
More preferably, it is 160 ° or less.

シリコーン粒子は元々親油性で高い“水との接触角”
を示すが、アルミナ,シリカ等金属酸化物系などの粒子
には親水性のものが多い。これらの親水性粒子を“水と
の接触角”が10゜以上となるように親油化するには例え
ば脂肪酸塩,シラン系,チタネート系,アルミニウム系
等の公知の界面活性剤やカップリング剤による表面処理
によって容易にでき、本発明に都合よく適用できる。
Silicone particles are originally lipophilic and have a high "contact angle with water."
However, many particles of metal oxides such as alumina and silica are hydrophilic. To make these hydrophilic particles lipophilic so that the "contact angle with water" is 10 ° or more, for example, known surfactants and coupling agents such as fatty acid salts, silanes, titanates, and aluminum It can be easily applied to the present invention by the surface treatment with.

また、分散せしめる粒子の量は、ポリマーに対して、
0.005〜4重量%の範囲である。この量が4重量%を越
える場合は多孔体に目詰りを生じる場合があり、適当で
ない。
Also, the amount of particles to be dispersed is based on the polymer,
It is in the range of 0.005 to 4% by weight. If this amount exceeds 4% by weight, the porous material may be clogged, which is not suitable.

このような微細粒子をポリマーと予備溶融混合するに
は、通常の単軸押出機及び多軸混練機(多軸押出機)を
用いることができる。しかし過度の発熱を生じないよう
な条件を選ぶべきことは無論である。
In order to preliminarily melt-mix such fine particles with a polymer, an ordinary single-screw extruder and a multi-screw kneader (multi-screw extruder) can be used. However, it is a matter of course that conditions that do not generate excessive heat should be selected.

押出機への原料の投入は、ポリマーと粒子を事前に混
合するのが望ましいが、混練作用の高い例えば多軸押出
機の場合は、ポリマーと粒子を別個に投入することもで
きる。即ちポリマーと粒子を同一投入口から供給する場
合、あるいはポリマーを先に供給し、その溶融過程ある
いは混練過程で粒子を供給することなどができる。なお
ベント口を備えた押出機においては、ベント口で液体を
分離,除去できるので、粒子を液体に分散して供給する
こともできる。
It is desirable that the polymer and the particles are mixed beforehand when the raw materials are charged into the extruder. However, for example, in the case of a multi-screw extruder having a high kneading action, the polymer and the particles can be separately charged. That is, the polymer and the particles can be supplied from the same inlet, or the polymer can be supplied first, and the particles can be supplied in the melting process or the kneading process. In an extruder equipped with a vent port, the liquid can be separated and removed at the vent port, so that the particles can be dispersed in the liquid and supplied.

本発明においては、かくして得られる予備混合物を多
孔体に通過させる。この多孔体は例えば球形あるいは突
起を有する異形の金属あるいはセラミック等の粒子を集
合して、互いの接触点を固着した連続性気孔を有する多
孔体シートである。例えば球形のブロンズ粒子あるいは
異形のステンレス粒子を焼結した多孔質のシート状成形
品が好都合である。
In the present invention, the premix thus obtained is passed through the porous body. This porous body is, for example, a porous sheet having continuous pores in which particles such as spherical or irregularly shaped metal or ceramic having protrusions are aggregated and their contact points are fixed. For example, a porous sheet-shaped molded article obtained by sintering spherical bronze particles or irregularly shaped stainless particles is convenient.

後述の評価法による粒子の分散効果は、実験的知見に
よれば、粒子の平均粒径と多孔体の平均孔径との間に相
関関係がある。粒子の粒形,粒度分布にもよるが、同一
粒子の場合には一般に多孔体の孔径が小さい程凝集粒子
の分離,分散作用が高い。しかし平均孔径が粒子の平均
粒径の10倍未満になると、粒子が多孔体に捕捉される作
用が顕著になって、ポリマーが多孔体を通過する時の圧
力損失が急速に増大することがある。一方平均孔径が粒
子の平均粒径(X)の を越える場合は、本発明の凝集粒子を分離,分散させる
作用が乏しくなることが多い。
According to the experimental findings, the dispersion effect of particles by the evaluation method described below has a correlation between the average particle diameter of the particles and the average pore diameter of the porous body. Although it depends on the particle shape and particle size distribution, in the case of the same particles, generally, the smaller the pore size of the porous body, the higher the separation and dispersion action of the aggregated particles. However, if the average pore size is less than 10 times the average particle size of the particles, the effect of trapping the particles in the porous body becomes remarkable, and the pressure loss when the polymer passes through the porous body may increase rapidly. . On the other hand, the average pore size is the average particle size (X) of the particles. If it exceeds, the effect of separating and dispersing the aggregated particles of the present invention is often poor.

従って押出機で溶融ポリマーと予備混合した粒子を、
多孔体を通過させることによって高度に分離,分散させ
るためには、多孔体の平均孔径が粒子の平均粒径の10倍
以上、 以下でなければならないが、好ましくは15倍以上 以下、更に好ましくは20倍以上 以下である。粒子の形状,粒度分布等に合わせて最適な
孔径の多孔体を選ぶことが望ましい。
Therefore, the particles premixed with the molten polymer in the extruder are
In order to highly separate and disperse by passing through the porous body, the average pore size of the porous body is 10 times or more of the average particle size of the particles, Must be below, but preferably 15 times or more Or less, more preferably 20 times or more It is the following. It is desirable to select a porous body with an optimal pore size according to the shape of the particles, particle size distribution, etc.

粒子の粒度分布あるいは多孔体の平均孔径にもよる
が、粗大粒子の一部が多孔体に捕捉されて多孔体に目詰
りを生じることは避け難い。その結果ポリマーが多孔体
を通過する際の圧力損失が時間と共に増大する。この昇
圧傾向を緩和し長時間の連続運転を可能にするために
は、ポリマーが多孔体を通過する際の流速を低下するこ
と、あるいは多孔体の耐圧性を高めることが必要であ
る。その具体的方策は、一般にポリマーフィルターとし
て用いられているような多孔体を円筒状あるいはディス
ク状に加工したものが好適に利用できる。
Although it depends on the particle size distribution of the particles or the average pore diameter of the porous body, it is unavoidable that some of the coarse particles are trapped by the porous body to cause clogging of the porous body. As a result, the pressure loss when the polymer passes through the porous body increases with time. In order to alleviate this pressure rising tendency and enable continuous operation for a long time, it is necessary to reduce the flow rate of the polymer when passing through the porous body, or to increase the pressure resistance of the porous body. As a concrete measure, a porous body which is generally used as a polymer filter is preferably processed into a cylindrical shape or a disk shape.

本発明の方法を実施するにあたり、押出機で粒子と溶
融ポリマーを予備混合し、引き続いて多孔体を通過させ
る方法、あるいは予備混合物を押出し、一旦冷却して、
例えばチップ状に成形し、しかる後再度該予備混合物を
押出機で溶融し、要すれば他のポリマーと溶融混合して
後、多孔体を通過させて押出す方法を用いることができ
る。そして得られたポリマー(粒子がポリマー中に高度
に分散したポリマー)を用いて例えば粒子分散性の優れ
たフイルム等を成形することができる。加えて、粒子は
“水との接触角”が10゜以上の親油性のものを用いる結
果、一般にポリマーとの親和性が高く、延伸等の操作に
よって粒子界面にしばしば発生するボイドを大幅に抑制
することが出来る。
In carrying out the method of the present invention, a method of premixing particles and molten polymer with an extruder and then passing through a porous body, or extruding the premix, cooling once,
For example, a method may be used in which the material is molded into chips, and then the preliminary mixture is melted again by an extruder, melt-mixed with other polymer if necessary, and then extruded through a porous body. Then, using the obtained polymer (a polymer in which the particles are highly dispersed in the polymer), for example, a film or the like having excellent particle dispersibility can be formed. In addition, the particles used are lipophilic with a “contact angle with water” of 10 ° or more. As a result, they generally have a high affinity with polymers and greatly suppress the voids that often occur at the particle interface due to operations such as stretching. You can do it.

なお本発明における種々の物性値及び特性は以下の如
くして測定したものであり、かつ定義する。
The various physical properties and properties in the present invention are measured and defined as follows.

1)粒子の平均粒径(X) 電顕試料台上に粉体を個々の粒子ができるだけ重なら
ないように散在せしめ、金スパッター装置により表面に
金薄膜蒸着層(層厚み200〜300Å)を成形せしめ、走査
型電子顕微鏡にて1万〜3万倍の倍率で観察し、日本レ
ギュレーター(株)製ルーゼックス(Luzex)500にて、
少なくとも100個の粒子の面積円相当径を求め、その数
平均値を持って平均粒径を表わす。
1) Average particle size (X) The particles are scattered on the electron microscope sample stand so that the individual particles do not overlap as much as possible, and a gold thin film deposition layer (layer thickness 200-300Å) is formed on the surface by a gold sputtering device. Then, observe with a scanning electron microscope at a magnification of 10,000 to 30,000 times, and use Luzex 500 manufactured by Nippon Regulator Co., Ltd.
The area-equivalent diameter of at least 100 particles is determined, and the number average value thereof is used to express the average particle diameter.

2)多孔体の平均孔径 ASTM−E−128−61を参考規格とする測定法で、配管
の一端が空気供給源に至り、他端はラッパ状の開放端で
あってこの開放口を上にして容器の底部に固定してある
装置で、開放口に被測定物の多孔体の板をすき間のない
ように取付ける。容器にイソプロピルアルコールの液面
が多孔体板上15mmとなるように入れ、25℃に調整する。
2) Average pore size of porous material A measurement method with ASTM-E-128-61 as a reference standard. One end of the pipe reaches the air supply source and the other end is a trumpet-shaped open end with this open port facing up. Using a device fixed to the bottom of the container, attach a porous plate of the DUT to the opening so that there is no gap. Fill the container so that the liquid level of isopropyl alcohol is 15 mm above the porous plate, and adjust to 25 ° C.

次いで配管内の空気圧を徐々に増加し、メディアから
気泡が出始めて更に空気量を増すと、空気流量の変化率
がほぼ一定となる。この時の空気圧を流量ゼロに外挿し
た時の値を交点バブルポイント圧P(mmH2O)とし、多
孔体の平均孔径D(μm)は次式で求める。
Next, when the air pressure in the pipe is gradually increased and air bubbles start to emerge from the medium and the air amount is further increased, the rate of change in the air flow rate becomes substantially constant. The value when the air pressure at this time is extrapolated to zero flow rate is taken as the bubble point pressure P (mmH 2 O) at the intersection, and the average pore diameter D (μm) of the porous body is obtained by the following formula.

D=3700/P 3)分散効果 粒子を溶融ポリマーに混合した混合物を、常法により
ダイから押出し、急冷して厚さ15μの非晶性フイルムを
成形する。このフイルムを透過光下で顕微鏡観察し、2
個以上の一次粒子が凝集している二次粒子も、単一粒子
もすべて1個の粒子とみなして100個の粒子を無秩序に
選び、その中に占める単一粒子の個数をもって表わす。
D = 3700 / P 3) Dispersion effect A mixture obtained by mixing particles with a molten polymer is extruded from a die by a conventional method and rapidly cooled to form an amorphous film having a thickness of 15μ. This film was observed under a microscope under transmitted light, and 2
Secondary particles in which more than one primary particles are aggregated and single particles are all regarded as one particle, and 100 particles are randomly selected and expressed by the number of single particles in them.

4)接触角 粒子1gをエチルアルコール0.5〜1.0mlの適量(粒子の
密度等により決定)と混合してペースト状になし、平滑
なガラス板上に塗布して厚さ約0.2mmの平滑な被膜を形
成する。この被膜表面を水平に保持してその上に水滴を
のせ、平衡状態になったとき水滴の周辺において、水と
粒子の集合体で形成した被膜とのなす角度をもって表わ
す。
4) Contact angle 1g of particles is mixed with an appropriate amount of 0.5-1.0ml of ethyl alcohol (determined by the density of particles, etc.) to form a paste, and applied on a smooth glass plate to form a smooth film with a thickness of about 0.2mm. To form. The surface of this coating is held horizontally, and water droplets are placed on it. The equilibrium state is represented by the angle formed by water and the coating formed of aggregates of particles.

[実施例] 以下、本発明を実施例によって具体的に説明する。[Examples] Hereinafter, the present invention will be specifically described with reference to Examples.

実施例1〜3 平均粒径0.7μm、水との接触角60゜の球状シリカ粒
子を500倍重量のポリエチレンテレフタレートチップに
均一に固相混合し、単軸押出機に投入して溶融混合の
後、異形のステンレス粒子を焼結して成型した3種の異
なる多孔体にそれぞれ個別に通過し、ダイからシート状
に押出し急冷して厚さ15μmのフイルムを得た。
Examples 1 to 3 Spherical silica particles having an average particle size of 0.7 μm and a contact angle with water of 60 ° were uniformly solid-phase mixed with 500 times the weight of polyethylene terephthalate chips, and then charged into a single-screw extruder and melt-mixed. Then, the shaped stainless steel particles were separately passed through three different porous bodies formed by sintering, extruded in a sheet form from a die and rapidly cooled to obtain a film having a thickness of 15 μm.

ここで用いた多孔体の平均孔径及びその多孔体を通過
して得たフイルムの粒子分散効果は第1表の通りであ
り、後述の比較例に比べて分散効果が大幅に改善されて
いる。
The average pore size of the porous body used here and the particle dispersion effect of the film obtained by passing through the porous body are as shown in Table 1, and the dispersion effect is significantly improved as compared with Comparative Examples described later.

比較例1 実施例1において、溶融混合物を多孔体に通さないで
直接押出すことだけに変更して同様に製膜し、評価し
た。この結果は第2表の通り。
Comparative Example 1 The same procedure as in Example 1 was repeated except that the molten mixture was not directly passed through the porous body but was directly extruded. The results are shown in Table 2.

比較例2〜3 実施例1において、多孔体が第2表に記載の構成であ
ることのみ変更して、同様に製膜し、評価した。この結
果は第2表の通り。
Comparative Examples 2-3 In Example 1, except that the porous body had the configuration described in Table 2, the same film formation and evaluation were performed. The results are shown in Table 2.

実施例4 平均粒径1.0μm、水との接触角110゜の球状シリコー
ン樹脂粒子で、700倍重量のポリエチレンテレフタレー
トチップに均一に固相混合し、二軸押出機(日本製鋼
製,TEX−44)で溶融混合して、第3表に構成を示す2層
構造多孔体(リーフディスク構造に成形)を通過して、
厚さ15μmの非晶性フイルムを製膜し、分散効果を評価
した。この結果は第3表の通りであり、粒子の分散性が
優れたフイルムである。
Example 4 A spherical silicone resin particle having an average particle size of 1.0 μm and a contact angle with water of 110 ° was uniformly mixed in a solid phase with a 700-fold weight polyethylene terephthalate chip, and a twin-screw extruder (made by Nippon Steel, TEX-44) was used. ) Is melt-mixed and passed through a two-layer structure porous body (molded into a leaf disk structure) having the structure shown in Table 3,
A 15 μm-thick amorphous film was formed into a film, and the dispersion effect was evaluated. The results are shown in Table 3, and the film has excellent dispersibility of particles.

実施例5 実施例1と同一の粒子、製膜装置、多孔体を用いて厚
さ210μmの非晶性フイルムをつくり、85℃で縦方向に
3.6倍、100℃で横方向に3.9倍延伸し、続いて220℃で熱
処理し、厚さ15μmの2軸延伸フイルムを製膜した。
Example 5 An amorphous film having a thickness of 210 μm was prepared by using the same particles, a film forming apparatus and a porous body as in Example 1, and the film was vertically oriented at 85 ° C.
The film was stretched 3.6 times and 3.9 times in the transverse direction at 100 ° C. and then heat treated at 220 ° C. to form a biaxially stretched film having a thickness of 15 μm.

フイルムを透過光で顕微鏡観察の結果、水との接触角
が0゜(水滴が粒子で形成した被膜の中に浸透)である
以外実施例1と同様の粒子を含んでなる同様の延伸フイ
ルムでは凝集粒子を多数含み又その粒子の周りにボイド
が認められたが、本実施例のフイルムにはボイドは認め
られず、粒子とポリマーとの密着性が勝れている。
As a result of microscopic observation of the film with transmitted light, the same stretched film containing the same particles as in Example 1 except that the contact angle with water was 0 ° (water droplets penetrated into the film formed by the particles). Although a large number of agglomerated particles were found and voids were found around the particles, no voids were found in the film of this example, and the adhesion between the particles and the polymer was excellent.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平均粒径が0.7〜5μmでかつ水との接触
角が10゜以上の、カーボンブラックを除く無機物又は有
機物の粒子0.005〜4重量%(ポリマーに対し)と溶融
ポリマーとを押出機中で予備混合し、次いで得られた予
備混合物を、平均孔径が上記粒子の平均粒径(X)の10
倍以上、 以下である連続性気孔を有する無機質の多孔体中に通過
させて該粒子を均一に分散させることを特徴とする粒子
をポリマーに均一に分散させる方法。
1. Extrusion of 0.005 to 4% by weight (based on the polymer) of inorganic or organic particles except carbon black having an average particle size of 0.7 to 5 μm and a contact angle with water of 10 ° or more and a molten polymer. Pre-mixing in a machine and then the resulting pre-mixture was mixed with an average pore size of 10 times the average particle size (X) of the above particles.
More than double, A method for uniformly dispersing particles in a polymer, which is characterized in that the particles are uniformly dispersed by allowing the particles to pass through an inorganic porous body having the following continuous pores.
JP1298472A 1989-11-16 1989-11-16 Method to evenly disperse particles in polymer Expired - Fee Related JP2535422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1298472A JP2535422B2 (en) 1989-11-16 1989-11-16 Method to evenly disperse particles in polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1298472A JP2535422B2 (en) 1989-11-16 1989-11-16 Method to evenly disperse particles in polymer

Publications (2)

Publication Number Publication Date
JPH03158208A JPH03158208A (en) 1991-07-08
JP2535422B2 true JP2535422B2 (en) 1996-09-18

Family

ID=17860147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1298472A Expired - Fee Related JP2535422B2 (en) 1989-11-16 1989-11-16 Method to evenly disperse particles in polymer

Country Status (1)

Country Link
JP (1) JP2535422B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330685A (en) * 1998-12-15 2002-01-09 积水化学工业株式会社 Polyolefin resin composition, process for producing polyolefin resin molding material, molded polyolefin resin, and weatherstrip and for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108053A (en) * 1985-11-07 1987-05-19 帝人株式会社 Laminated polyester film

Also Published As

Publication number Publication date
JPH03158208A (en) 1991-07-08

Similar Documents

Publication Publication Date Title
TWI389942B (en) Moulding material and moulding comprising a thermo-plastic containing nanoscale, inorganic particles, process for the preparation of the moulding material and moulding and uses thereof
Favis et al. Factors influencing structure formation and phase size in an immiscible polymer blend of polycarbonate and polypropylene prepared by twin-screw extrusion
DE60027653T2 (en) Process for the preparation of aromatic liquid-crystalline polyesters and the films produced therewith
DE69919450T2 (en) Aromatic liquid crystalline polyesters and resin composition made therefrom
JP2008527109A (en) Slurries containing microfibers and micropowder, and methods of use and production thereof
JP2653524B2 (en) Method for producing thermoplastic resin composition
KR960000507B1 (en) Ultrahigh-molecular-weight polyolefin composition and process for production thereof
CN100398589C (en) Polymer processing aid and method for processing polymers
EP0816421B1 (en) Polyester composition, process and apparatus for preparation thereof
JP2535422B2 (en) Method to evenly disperse particles in polymer
JPS619433A (en) Production of thermoplastic resin microsphere
JP2578479B2 (en) Method for producing polymer containing powder additive
JPH0675864B2 (en) Method for uniformly dispersing particles in polymer
JP2575515B2 (en) Method for dispersing particles uniformly in polymer
JP2004276598A (en) Method for manufacturing thermoplastic resin pellet
JPH07156139A (en) Method of dispersing evenly particle into polymer
US7795346B2 (en) Sintered porous high melt-flow index materials and methods of making same
JPH0841267A (en) Tetrafluoroethylene/perfluoro(alkylvinylether) copolymer composition
JPH0347710A (en) Manufacture of thermoplastic resin composition and molded material
JP3709442B2 (en) Method for producing liquid crystalline polyester / polyethylene terephthalate blend extrudate
WO2022153945A1 (en) Liquid crystal polyester composition, method for producing liquid crystal polyester composition, and method for producing injection molded article
JPH0762076B2 (en) Method for producing master chip with improved pigment dispersibility
JPH11216721A (en) Manufacture of thermoplastic resin composition
WO1994017128A1 (en) Pellet of random cycloolefin copolymer and process for producing the same
JP2008238449A (en) Method for manufacturing white polyester resin composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees