JPH0347264B2 - - Google Patents

Info

Publication number
JPH0347264B2
JPH0347264B2 JP59236724A JP23672484A JPH0347264B2 JP H0347264 B2 JPH0347264 B2 JP H0347264B2 JP 59236724 A JP59236724 A JP 59236724A JP 23672484 A JP23672484 A JP 23672484A JP H0347264 B2 JPH0347264 B2 JP H0347264B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
indoles
regenerated
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59236724A
Other languages
Japanese (ja)
Other versions
JPS61115066A (en
Inventor
Makoto Kotani
Tadatoshi Pponda
Takashi Jinbo
Kazuhiro Terada
Tomoyuki Ueno
Shinji Kyono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59236724A priority Critical patent/JPS61115066A/en
Priority to CA000494544A priority patent/CA1253507A/en
Priority to DE8585114043T priority patent/DE3581587D1/en
Priority to EP85114043A priority patent/EP0180957B1/en
Priority to KR1019850008365A priority patent/KR870000522B1/en
Publication of JPS61115066A publication Critical patent/JPS61115066A/en
Priority to US07/117,904 priority patent/US4831158A/en
Publication of JPH0347264B2 publication Critical patent/JPH0347264B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Indole Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、アニリン類とエチレングリコール類
よりインドール類を製造する方法に関する。 (従来技術およびそれらの問題点) インドール類は化学工業原料として知られ、特
にインドールは近年香料やアミノ酸合成原料とし
て重要な物質となつてきている。 従来より、インドール類を合成しようとする試
みは数多くあつたが、いずれも副生物が多い、原
料が高価である、製造工程が複雑であるなどの問
題点を有していた。 最近に至り、安価な原料であるアニリン類とエ
チレングリコール類を用い、かつ短い工程でイン
ドール類を合成する反応に有効な触媒系が見出さ
れてきた。例えば、Cu−Cr、Cu−Co、Pd/
SiO2、Pt/SiO2、CdSなどが挙げられるが、い
ずれの触媒系も反応活性低下が激しい、反応活性
が低いなどの欠点を有しており、実用触媒として
の使用に耐えない。本発明者らは、この反応につ
いて種々の検討を加え、既に反応系に水を添加す
ること、反応を加圧で実施することなどにより反
応のパフオーマンスを向上させうることを明らか
にしてきた。 さらに、本発明者らは、周期律表第b族の元
素であるCu、Ag、およびAuのうちいずれかを有
効成分として含む触媒系がインドール類の製造に
対して有効であり、長時間にわたり反応を実施し
うることを見出した。 本発明の課題は、このようなインドール類の製
造法において反応に使用し劣化した触媒を再生
し、活性化して、繰り返し使用できるインドール
類の工業的製造方法を提供することである。 (問題点を解決するための手段) 本発明者らは、上記課題を解決する方法につい
て鋭意検討し、劣化した触媒を200〜450℃の温度
で酸素を含むガスと接触させることにより触媒が
再生され、さらに再生された触媒を還元活性化し
て活性化する方法を見出し、本発明を完成した。 すなわち、本発明の方法は、アニリン類とエチ
レングリコール類を原料とし、元素周期律表第
b族金属含有触媒の存在下、気相接触反応させイ
ンドール類を製造するに当り、反応に一度以上使
用された触媒を、再生処理し、反応に繰り返し使
用するに際し、還元活性化処理することを特徴と
するインドール類の製造方法である。 本発明の方法で使用されるアニリン類は、一般
式() (式中、Rは水素原子、ハロゲン原子、水酸
基、アルキル基または、アルコキシ基を示す)で
表わされる化合物である。例えば、アニリン、o
−・m−・もしくはp−トルイジン、o−・m・
もしくはp−ハロアニリン、o−・m−・もしく
はp−ヒドロキシアニリン、o−・m−・もしく
はp−アニシジン等があげられる。 またエチレングリコール類とは、エチレングリ
コール、プロピレングリコール、1,2−ブタン
ジオール、1,2,4−ブタントリオール、グリ
セロール、2,3−ブタンジオール、ジエチレン
グリコール等である。 本発明の方法に使用される触媒は、b族元素
であるCu、Ag及びAuの内、選ばれた一種以上を
有効成分として含有する触媒系であり、これらと
複合可能な元素として、B、C、O、Mg、Al、
Si、P、S、Ca、Ti、Cr、Mn、Fe、Co、Ni、
Zn、Ga、Ge、Se、Sr、Zr、Mo、Ru、Rh、Pd、
Cd、In、Sn、Sb、Te、Ba、La、Ce、W、Ir、
Pt、Tl、Pb、Bi、Thなどをあげることができ
る。前述の触媒は単独、あるいは通常の担体であ
るケイソウ土、活性白土、ゼオライト、シリカ、
アルミナ、シリカ−アルミナ、チタニア、クロミ
ア、トリア、マグネシア、カルシア、酸化亜鉛な
どに担持し使用される。 b族元素の原料としては、Cu及びAgの場
合、硝酸塩、硫酸塩、リン酸塩、炭酸塩、ハロゲ
ン化物、有機酸塩等、Auの場合は、塩化金酸、
塩化金酸アルカリ金属類、シアン化金、シアン化
金アルカリ金属類等が一般的に使用できる。 触媒の調整法としては、通常の混練法、共沈
法、含浸法及び前述の各法を組み合せた方法など
が適用可能である。例えば、各種の原料を混合
し、少量の水を添加し、ニーダー等で混練する方
法、各種原料を水溶液とし、これに沈殿剤を加
え、不溶性の沈殿として共沈させる方法、各種担
体に対し各種の原料を含浸させる方法、などで調
製できる。得られた触媒組成物は、通常180℃以
下で乾燥し、適当な造粒添加剤、成形助剤などを
添加し成形したり、あるいは触媒組成物をそのま
ま破砕して使用する。 本発明の方法では、このような触媒をインドー
ル類の製造に使用して劣化したものを、後述の再
生処理、ついで還元活性処理を行なつて、繰り返
し使用する。 本発明の方法で、アニリン類とエチレングリコ
ール類との反応は、触媒の存在下、気相で実施さ
れるが、固定床、流動床または移動床のいずれの
反応様式でも可能である。 反応装置に導入するアニリン類とエチレングリ
コール類は、アニリン類1モルに対してエチレン
グリコール類0.01〜5モルの範囲、好ましくは
0.05〜1モルの範囲である。 原料であるアニリン類とエチレングリコール類
の導入量は、液空間速度(LHSV)で0.01〜
10hr-1の範囲であり、あらかじめ蒸発器にて気化
後、反応装置に導入する。またその際に、水蒸
気、水素、一酸化炭素、二酸化炭素、メタン、窒
素、ネオン、アルゴンなどをキヤリアガスとして
同伴させても良い。中でも、水蒸気、水素、一酸
化炭素は触媒のサービスライフを増大させる効果
を有する為、好ましい。 反応温度は200〜600℃の範囲、好ましくは250
〜500℃の範囲である。 反応圧力は減圧、常圧、加圧のいずれでも実施
可能であるが常圧及び加圧状態の方が好ましい。 以上の条件によるインドール類の製造に一度以
上使用した触媒は、つぎのように再生処理、つい
で還元活性化処理される。 すなわち、再生処理は、劣化した触媒が、触媒
上に炭素質が析出しているので、これを燃焼除去
することによつて再生される。再生方法として
は、例えば、劣化した触媒を200〜450℃の温度範
囲で酸素を5vol%以下含有する不活性ガスと接触
させる方法があげられる。この再生方法におい
て、酸素濃度は好ましくは2%以下でであり、不
活性ガスとしては窒素、アルゴン、ヘリウム、一
酸化炭素、水蒸気等が使用される。必要に応じ、
つづいて熱処理を行なうこともある。しかし、上
記再生法に限定されるものではない。 ついで、再生処理をした触媒は繰り返し使用す
るに際し、反応開始前につぎのように還元活性化
処理を行なう。 この還元活性化処理において、還元剤として水
素、一酸化炭素、メタノール、アンモニア、ヒド
ラジン等が用いられる。通常、インドール類を製
造する際には水素含有ガスをキヤリヤとして使用
する場合が多いので、水素を還元剤として使用す
るのが便利である。 還元活性化温度は100〜500℃、好ましくは200
〜450℃、さらに好ましくは300〜400℃である。
処理圧力は加圧、減圧、常圧下のいずれでも良
い。 還元処理時間は、いくら長くてもよいが、2時
間以上で触媒性能は一定となる。 通常、加圧ないし常圧においては、少なくとも
1分以上、好ましくは30分以上である。 上記還元剤は単独で使用しても、また不活性ガ
スで希釈して用いてもよい。 (作用および発明の効果) 本発明のように劣化触媒を再生し、この再生触
媒を繰り返し使用する際に、あらかじめ還元活性
化処理することによつて、インドール類の製造に
1度以上用いて劣化し、再生された触媒は、活性
が一段と向上する。還元活性化によつて発現した
活性は極めて安定であり、長時間にわたり反応を
継続することができる。 すなわち、本発明の方法によつて、アニリン類
とエチレングリコール類からインドール類を製造
する方法において、用いる触媒を再生、活性化し
て繰り返し使用するインドール類の工業的製造方
法が提供される。 (実施例) 以下、実施例および比較例により本発明を詳し
く説明する。 実施例1及び比較例1 内径20mmのステンレス製反応管に市販の打錠成
形した直径3mm、高さ2.5mmのSiO2に銀を13%担
持したペレツト状触媒400c.c.を充填した。反応管
を350℃に保ち、あらかじめ気化させたアニリン、
エチレングリコール、および水のモル比で12:
1:30の原料を300g/hrで、また、同時に水素
ガスを60STP/hrで反応管に供給し、インド
ール合成反応を常圧下で行なつた。一定時間反応
させた後、触媒の再生条件を酸素含有ガスの入口
温度を300℃、酸素濃度を1.5vol%、空筒線速度
15Ncm/secで再生を行なつた。さらに再生後500
℃、空気雰囲気下15時間、触媒を熱処理した。そ
の後、N2雰囲気下で320℃とし、H2を2/min
で1時間送り還元処理し、再生前と同じ条件で再
び反応を行なつた。 反応でのエチレングリコールの転化率および生
成したインドールの収率を表1に示した。なお、
エチレングリコールの転化率およびインドールの
収率は以下の定義に従う。 エチレングリコールの転化率= 消費されたエチレングリコールのモル数/供給したエチ
レングリコールのモル数×100 インドールの収率= 生成したインドールのモル数/供給したエチレングリコ
ールのモル数×100 また、実施例1に示した方法に準じ、反応前の
高温還元活性化処理のみ実施せず、反応を行なつ
た。
(Industrial Application Field) The present invention relates to a method for producing indoles from anilines and ethylene glycols. (Prior art and their problems) Indoles are known as raw materials for the chemical industry, and indoles in particular have recently become important substances as raw materials for perfumes and amino acid synthesis. There have been many attempts to synthesize indoles in the past, but all of them had problems such as a large number of by-products, expensive raw materials, and complicated manufacturing processes. Recently, a catalyst system has been discovered that is effective in the reaction of synthesizing indoles using inexpensive raw materials anilines and ethylene glycols and in a short process. For example, Cu-Cr, Cu-Co, Pd/
Examples include SiO 2 , Pt/SiO 2 , CdS, etc., but all catalyst systems have drawbacks such as severe reduction in reaction activity and low reaction activity, and cannot be used as practical catalysts. The present inventors have conducted various studies on this reaction and have already clarified that the performance of the reaction can be improved by adding water to the reaction system, carrying out the reaction under pressure, etc. Furthermore, the present inventors have found that a catalyst system containing any one of Cu, Ag, and Au, which are elements of group b of the periodic table, is effective for the production of indoles and lasts for a long time. It has been found that the reaction can be carried out. An object of the present invention is to provide an industrial method for producing indoles that can be used repeatedly by regenerating and activating the degraded catalyst used in the reaction in such a method for producing indoles. (Means for Solving the Problems) The present inventors have diligently studied methods for solving the above problems, and have regenerated the catalyst by bringing the deteriorated catalyst into contact with a gas containing oxygen at a temperature of 200 to 450°C. Furthermore, they discovered a method of reductively activating the regenerated catalyst and completed the present invention. That is, in the method of the present invention, anilines and ethylene glycols are used as raw materials, and in the presence of a catalyst containing a Group B metal of the Periodic Table of Elements to produce indoles, the method uses anilines and ethylene glycols as raw materials more than once in the reaction. This method for producing indoles is characterized in that the catalyst is regenerated and subjected to reduction activation treatment when used repeatedly in reactions. The anilines used in the method of the present invention have the general formula () (wherein R represents a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group, or an alkoxy group). For example, aniline, o
-・m-・or p-toluidine, o-・m・
Alternatively, examples thereof include p-haloaniline, o-, m-, or p-hydroxyaniline, o-, m-, or p-anisidine, and the like. Ethylene glycols include ethylene glycol, propylene glycol, 1,2-butanediol, 1,2,4-butanetriol, glycerol, 2,3-butanediol, diethylene glycol, and the like. The catalyst used in the method of the present invention is a catalyst system containing one or more selected from group B elements Cu, Ag, and Au as an active ingredient, and elements that can be combined with these include B, C, O, Mg, Al,
Si, P, S, Ca, Ti, Cr, Mn, Fe, Co, Ni,
Zn, Ga, Ge, Se, Sr, Zr, Mo, Ru, Rh, Pd,
Cd, In, Sn, Sb, Te, Ba, La, Ce, W, Ir,
Examples include Pt, Tl, Pb, Bi, and Th. The aforementioned catalysts may be used alone or in the presence of common carriers such as diatomaceous earth, activated clay, zeolite, silica,
It is used supported on alumina, silica-alumina, titania, chromia, thoria, magnesia, calcia, zinc oxide, etc. Raw materials for Group B elements include nitrates, sulfates, phosphates, carbonates, halides, organic acid salts, etc. for Cu and Ag, and chloroauric acid, chlorauric acid, etc. for Au.
Alkali metal chloroaurates, gold cyanide, alkali metal gold cyanide, etc. can generally be used. As a method for preparing the catalyst, the usual kneading method, coprecipitation method, impregnation method, and a method combining the above-mentioned methods can be applied. For example, a method of mixing various raw materials, adding a small amount of water, and kneading with a kneader, etc., a method of making various raw materials into an aqueous solution, adding a precipitant to this, and co-precipitating as an insoluble precipitate; It can be prepared by impregnating raw materials. The obtained catalyst composition is usually dried at 180° C. or lower, and suitable granulation additives, molding aids, etc. are added and molded, or the catalyst composition is crushed and used as it is. In the method of the present invention, such a catalyst is used in the production of indoles and is deteriorated. The catalyst is subjected to a regeneration treatment as described below, followed by a reduction activation treatment, and then used repeatedly. In the method of the present invention, the reaction between anilines and ethylene glycols is carried out in the gas phase in the presence of a catalyst, but any reaction mode such as a fixed bed, fluidized bed or moving bed is possible. The anilines and ethylene glycols introduced into the reactor are in the range of 0.01 to 5 mol of ethylene glycol per 1 mol of aniline, preferably
It is in the range of 0.05 to 1 mole. The amount of introduced raw materials anilines and ethylene glycols is 0.01 to 0.01 in terms of liquid hourly space velocity (LHSV).
It is in the range of 10 hr -1 and is introduced into the reactor after being vaporized in an evaporator. Further, at that time, water vapor, hydrogen, carbon monoxide, carbon dioxide, methane, nitrogen, neon, argon, etc. may be entrained as a carrier gas. Among them, water vapor, hydrogen, and carbon monoxide are preferable because they have the effect of increasing the service life of the catalyst. The reaction temperature ranges from 200 to 600℃, preferably 250℃
~500℃ range. The reaction can be carried out under reduced pressure, normal pressure, or increased pressure, but normal pressure or increased pressure is preferable. The catalyst used more than once for the production of indoles under the above conditions is subjected to regeneration treatment and then reduction activation treatment as follows. That is, in the regeneration process, the deteriorated catalyst is regenerated by burning off carbonaceous substances deposited on the catalyst. Examples of the regeneration method include a method of bringing the deteriorated catalyst into contact with an inert gas containing 5 vol% or less of oxygen at a temperature range of 200 to 450°C. In this regeneration method, the oxygen concentration is preferably 2% or less, and the inert gas used is nitrogen, argon, helium, carbon monoxide, water vapor, or the like. As needed,
Subsequently, heat treatment may be performed. However, the regeneration method is not limited to the above regeneration method. Then, when the regenerated catalyst is to be used repeatedly, it is subjected to the following reduction activation treatment before starting the reaction. In this reduction activation treatment, hydrogen, carbon monoxide, methanol, ammonia, hydrazine, etc. are used as a reducing agent. Usually, when producing indoles, a hydrogen-containing gas is often used as a carrier, so it is convenient to use hydrogen as a reducing agent. Reduction activation temperature is 100-500℃, preferably 200℃
-450°C, more preferably 300-400°C.
The processing pressure may be increased pressure, reduced pressure, or normal pressure. The reduction treatment time may be as long as desired, but the catalyst performance becomes constant at 2 hours or more. Usually, under pressure or normal pressure, the time is at least 1 minute, preferably 30 minutes or more. The above reducing agent may be used alone or after being diluted with an inert gas. (Operation and Effects of the Invention) When a deteriorated catalyst is regenerated as in the present invention and the regenerated catalyst is repeatedly used, it is possible to perform reduction activation treatment in advance so that it can be used more than once for the production of indoles and deteriorated. However, the activity of the regenerated catalyst is further improved. The activity expressed by reductive activation is extremely stable, and the reaction can be continued for a long time. That is, the method of the present invention provides an industrial method for producing indoles in which the catalyst used is regenerated, activated, and repeatedly used in a method for producing indoles from anilines and ethylene glycols. (Examples) Hereinafter, the present invention will be explained in detail with reference to Examples and Comparative Examples. Example 1 and Comparative Example 1 A stainless steel reaction tube with an inner diameter of 20 mm was filled with 400 c.c. of a commercially available tablet-formed SiO 2 catalyst with a diameter of 3 mm and a height of 2.5 mm, which supported 13% silver. Keep the reaction tube at 350℃ and pre-vaporize aniline,
Ethylene glycol and water molar ratio: 12:
The indole synthesis reaction was carried out under normal pressure by supplying 1:30 raw materials at 300 g/hr and simultaneously supplying hydrogen gas at 60 STP/hr to the reaction tube. After reacting for a certain period of time, the conditions for regenerating the catalyst were as follows: the inlet temperature of the oxygen-containing gas was 300℃, the oxygen concentration was 1.5vol%, and the cylinder linear velocity.
Regeneration was performed at 15Ncm/sec. 500 more after playing
The catalyst was heat treated for 15 hours at °C under an air atmosphere. After that, the temperature was increased to 320℃ under N 2 atmosphere, and H 2 was added at 2/min.
The mixture was sent for 1 hour and subjected to reduction treatment, and then the reaction was performed again under the same conditions as before regeneration. Table 1 shows the conversion rate of ethylene glycol in the reaction and the yield of indole produced. In addition,
The conversion rate of ethylene glycol and the yield of indole follow the definitions below. Conversion rate of ethylene glycol = Number of moles of ethylene glycol consumed/Number of moles of ethylene glycol supplied x 100 Yield of indole = Number of moles of indole produced/Number of moles of ethylene glycol supplied x 100 Also, Example 1 The reaction was carried out according to the method shown in , without performing the high-temperature reduction activation treatment before the reaction.

【表】 化率
は、インドールの収率
実施例2及び比較例2 実施例1、比較例1に示した方法に準じ、触媒
のみをかえて反応を行なつた。 なお、触媒は、実施例1で用いた触媒の担体と
同じものに銅を2.5%担持したものである。 反応でのエチレングリコールの転化率および生
成したインドールの収率を表−2に示した。
[Table] conversion rate
Yield of indole Example 2 and Comparative Example 2 The reaction was carried out according to the method shown in Example 1 and Comparative Example 1, except that only the catalyst was changed. The catalyst was the same as the catalyst carrier used in Example 1, with 2.5% copper supported thereon. Table 2 shows the conversion rate of ethylene glycol in the reaction and the yield of indole produced.

【表】 化率
は、インドールの収率
[Table] conversion rate
is the yield of indole

Claims (1)

【特許請求の範囲】[Claims] 1 アニリン類とエチレングリコール類を原料と
し、元素の周期律表第b属金属含有触媒の存在
下、気相接触反応させインドール類を製造する方
法において、反応に使用された触媒を200〜450℃
の温度範囲で酸素を5vol%以下含有する不活性ガ
スと接触させて再生し、さらに、100〜500℃の温
度範囲で還元活性化処理を行つた後の再生処理触
媒を反応に供することを特徴とするインドール類
化合物の製造法。
1. A method for producing indoles using anilines and ethylene glycols as raw materials and subjecting them to a gas phase catalytic reaction in the presence of a catalyst containing a metal from Group B of the Periodic Table of the Elements, in which the catalyst used in the reaction is heated at 200 to 450°C.
The catalyst is regenerated by contacting with an inert gas containing 5 vol% or less of oxygen at a temperature range of 100 to 500 °C, and then subjected to a reduction activation treatment at a temperature range of 100 to 500 °C.The regenerated catalyst is then subjected to a reaction. A method for producing an indole compound.
JP59236724A 1984-11-08 1984-11-12 Production of indole Granted JPS61115066A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59236724A JPS61115066A (en) 1984-11-12 1984-11-12 Production of indole
CA000494544A CA1253507A (en) 1984-11-08 1985-11-04 Preparation process of indoles
DE8585114043T DE3581587D1 (en) 1984-11-08 1985-11-05 MANUFACTURING METHOD FOR INDOLE.
EP85114043A EP0180957B1 (en) 1984-11-08 1985-11-05 Preparation process of indoles
KR1019850008365A KR870000522B1 (en) 1984-11-08 1985-11-08 Contisuous process preparing indole
US07/117,904 US4831158A (en) 1984-11-08 1987-11-02 Preparation process indoles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59236724A JPS61115066A (en) 1984-11-12 1984-11-12 Production of indole

Publications (2)

Publication Number Publication Date
JPS61115066A JPS61115066A (en) 1986-06-02
JPH0347264B2 true JPH0347264B2 (en) 1991-07-18

Family

ID=17004840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59236724A Granted JPS61115066A (en) 1984-11-08 1984-11-12 Production of indole

Country Status (1)

Country Link
JP (1) JPS61115066A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655366A (en) * 1979-10-15 1981-05-15 Mitsui Toatsu Chem Inc Preparation of indoles
JPS5973567A (en) * 1982-10-20 1984-04-25 Mitsui Toatsu Chem Inc Preparation of indole compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655366A (en) * 1979-10-15 1981-05-15 Mitsui Toatsu Chem Inc Preparation of indoles
JPS5973567A (en) * 1982-10-20 1984-04-25 Mitsui Toatsu Chem Inc Preparation of indole compound

Also Published As

Publication number Publication date
JPS61115066A (en) 1986-06-02

Similar Documents

Publication Publication Date Title
RU2154630C2 (en) Method of preparing aliphatic alpha, omega-aminotriles
JPH05505975A (en) Gas-phase catalytic hydrogenation method of maleic anhydride to γ-butyrolactone with high conversion and high selectivity using active catalyst
US4855267A (en) Regeneration of methanol dissociation catalysts
CN111889097B (en) Aniline hydrogenation catalyst, preparation method and application
TW201228724A (en) Promoted copper/zinc catalyst for hydrogenating aldehydes to alcohols
EP0171297A2 (en) A method for preparing dual colloid catalyst compositions
KR870000522B1 (en) Contisuous process preparing indole
JP3773293B2 (en) Method for producing ammonia synthesis catalyst
JPH0347264B2 (en)
JPH0314306B2 (en)
JP3229655B2 (en) Method for producing indole
JPS5941974B2 (en) Hydrogenation method for α,β-unsaturated aldehydes
JP2002155051A (en) Method for producing indole compound
JPH0314305B2 (en)
JP2002338543A (en) Method for producing indole compounds
KR100201356B1 (en) Regenerating method of raney nickel catalyst for preparing neopentyl glycol
JPH06157397A (en) Production of glycolate
JPS6144847B2 (en)
JPH0929095A (en) Catalyst and method for selectively oxidizing hydrogen and dehydrogenation of hydrocarbon
JP3751247B2 (en) Syngas production catalyst, production method thereof, and synthesis gas production method
JP4014287B2 (en) Method for producing 3-acyloxycyclohexene
JPH0347263B2 (en)
JPH0544452B2 (en)
JP2001224970A (en) Method for regenerating carbonylated catalyst
JPH0432065B2 (en)