JPH0314305B2 - - Google Patents

Info

Publication number
JPH0314305B2
JPH0314305B2 JP57182979A JP18297982A JPH0314305B2 JP H0314305 B2 JPH0314305 B2 JP H0314305B2 JP 57182979 A JP57182979 A JP 57182979A JP 18297982 A JP18297982 A JP 18297982A JP H0314305 B2 JPH0314305 B2 JP H0314305B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
temperature
raw materials
anilines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57182979A
Other languages
Japanese (ja)
Other versions
JPS5973567A (en
Inventor
Shoei Kudo
Tadatoshi Pponda
Makoto Kotani
Kazuhiro Terada
Takeshi Tsuda
Shinji Kyono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP57182979A priority Critical patent/JPS5973567A/en
Publication of JPS5973567A publication Critical patent/JPS5973567A/en
Publication of JPH0314305B2 publication Critical patent/JPH0314305B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、アニリン類とエチレングリコール類
よりインドール類を製造する方法に関する。 さらに詳しくは、アニリン類とエチレングリコ
ール類を原料とし、b族金属含有触媒の存在
下、気相接触反応させインドール類を製造するに
際し、反応前にあらかじめ高温で酸化活性化処理
を実施した触媒を使用することを特徴とするイン
ドール類の製造方法である。 インドール類は化学工業原料として知られ、特
にインドールは近年香料やアミノ酸合成原料とし
て重要な物質となつてきている。 従来より、インドール類を合成しようとする試
みは数多くあつたが、いずれも副生物が多い、原
料が高価である製造工程が複雑であるなどの問題
点を有していた。 最近に至り、安価な原料であるアニリン類とエ
チレングリコール類を用い、かつ短い工程でイン
ドール類を合成する反応に有効な触媒系が見出さ
れてきた。例えば、Cu−Cr、Cu−Co、Pd/
SiO2、Pt/SiO2、CdSなどが挙げられるが、い
ずれの触媒系も反応活性低下が激しい、反応活性
が低いなどの欠点を有しており、実用触脳として
の使用に耐えない。本発明者らは、この反応につ
いて種々の検討を加え、既に反応系に水を添加す
ること、反応を加圧で実施することなどにより反
応のパフオーマンスを向上させうることを明らか
りしてきた。 その後、更に鋭意検討を加えた結果、b族の
元素であるCu、Ag及びAuのうちいずれかを有効
成分として含む触媒系に対して、あらかじめ反応
前に高温酸化活性化処理を加えることにより、触
触の安定性が増加し長時間にわたり経時変化なく
反応を実施しうることを見出し、本発明の方法に
到達したものである。 すなわち、本発明の方法は、アニリン類とエチ
レングリコール類を原料とし、b族金属含有触
媒の存在下、気相接触反応させインドール類を製
造するに際し、反応前にあらかじめ高温で酸化活
性化処理を実施した触媒を使用することを特徴と
するインドール類の製造方法である。 本発明の方法において使用されるアニリン類と
は、一般式() (式中Rは水素原子、ハロゲン原子、水酸基、
アルキル基または、アルコキシ基を示す)で表わ
される化合物である。例えば、アニリン、0−・
m−・もしくはp−トルイジン、o−・m・もし
くはp−ハロアニリン、o−・m−・もしくはp
−ヒドロキシアニリン、o−・m−・もしくはp
−アニシジン等があげられる。 またエチレングリコール類とは、エチレングリ
コール、プロピレングリコール、1,2−ブタン
ジオール、1,2,4−ブタントリオール、グリ
セロール、2,3−ブタンジオール、ジエチレン
グリコール等である。 本発明の方法に使用される触媒は、b族元素
であるCu、Ag及びAuの内、選ばれた一種以上を
有効成分として含有する触媒系であり、これらと
複合可能な元素として、B,C,O,Mg,Al,
Si,P,S,Ca,Ti,Cr,Mn,Fe,Co,Ni,
Zn,Ga,Ge,Se,Sr,Zr,Mo,Ru,Rh,Pb,
Cd,In,Sn,Sb,Te,Ba,La,Ce,W,Ir,
Pt,Tl,Pb,Bi,Thなどをあげることができ
る。前述の触媒は単独、あるいは通常の担体であ
るケイソウ土、活性白土、ゼオライト、シリカ、
アルミナ、シリカーアルミナ、チタニア、クロミ
ア、トリア、マグネシア、カルシア、酸化亜鉛、
活性炭などに担持し使用される。 b族元素の原料としてはCu及びAgの場合、
硝酸塩、硫酸塩、リン酸塩、炭酸塩、ハロゲン化
物、有機酸塩等、Auの場合は、塩化金酸、塩化
金酸アルカリ金属類、シアン化金、シアン化金ア
ルカリ金属類等が一般的に使用できる。 触媒の調整法としては、通常の混練法、共沈
法、含浸法及び前述の各法を組み合わせた方法な
どが適用可能である。例えば、各種の原料を混合
し、少量の水を添加し、ニーダー等で混練する方
法、各種原料を水溶液とし、これに沈殿剤を加
え、不溶性の沈殿として共沈させる方法、各種担
体に対し各種の原料を含浸させる方法、などで調
製できる。得られた触媒組成物は、通常180℃以
下で乾燥し、適当な造粒添加剤、成形助剤などを
添加し成形したりあるいは触媒組成物をそのまま
破砕して使用する。 この様にして調製されたIb族元素を有効成分と
して含有する触媒は、次に示す方法で活性化処理
される。 触媒の活性化処理 1.還元処理−:H2,CO,CH3OH,NH3
N2H4などを使う乾式還元法の場合、50〜450℃
の範囲で還元を行なう。一方、CH3OH、
HCHO、N2H4、アミン類などによる湿式還元法
の場合には、−10〜100℃の範囲で還元を実施す
る。 2.酸化活性化処理:1項の還元処理を行なつた触
媒に対し、350〜650℃の範囲で、O2,N2O、空
気などによる酸化処理を実施する。 3.還元処理−:2項の酸化処理を行つた触媒を
再度、H2,CO,CH3OH,NH3、N2H4などを使
用し、200〜500℃の範囲で還元を実施、反応に供
する。 本発明の方法は前記2項に示した触媒の酸化活
性化処理に特徴がある。この反応前の高温酸化活
性化処理により、触媒の安定性が増加し、長時間
にわたり経時変化なく、反応を実施しうる。 本発明の方法において、アニリン類とエチレン
グリコール類との反応は、前記触媒の存在下、気
相で実施されるが、固定床、流動床または移動床
のいずれの反応様式でも可能である。 反応装置に導入するアニリン類とエチレングリ
コール類は、アニリン類1モルに対してエチレン
グリコール類0.01〜5モルの範囲、好ましくは
0.05〜1モルの範囲である。 原料であるアニリン類とエチレングリコール類
の導入量は、液空間速度(LHSV)で0.01〜
10hr-1の範囲であり、あらかじめ蒸発器にて気化
後、反応装置に導入する。またその際に、水蒸
気、水素、一酸化炭素、二酸化炭素、メタン、窒
素、ネオン、アルゴンなどをキヤリアガスとして
同伴させても良い。中でも、水蒸気、水素、一酸
化炭素は触媒のサービスライフを増大させる効果
を有する為、好ましい。 反応温度は200〜600℃の範囲、好ましくは250
〜500℃の範囲である。 反応圧力は減圧、常圧、
加圧のいずれでも実施可能であるが常圧及び加圧
状態の方が好ましい。 以下、実施例により本発明を説明する。 実施例1及び比較例1 Cu(NO32・3H2O 35.0gを100c.c.の水で溶解
し、含浸液とした。次いで市販のシリカ担体(比
表面積290/g)40gに対し、前述の含浸液50
c.c.を加え、30分間放置した。その後、過、120
℃で乾燥し、Cu/SiO2触媒とした。同触媒を内
径200mmのパイレツクス製反応管2本にそれぞれ
8c.c.づつ充填し、下記の異なつた2通りの方法で
前処理を実施した。各前処理終了後、、反応器内
温を360℃に保ち、アニリンとエチレングリコー
ルのモル比8:1の原料をLHSV、0.28hr-1で、
水(1.6g/hr)及び水素(1.5Nl/hr)と共に送
り、反応を実施した。結果を表1に示す。 実施例1の前処理:N2雰囲気下で250℃まで
昇温、H2を15分間送り還元処理−を行つた。
次いでN2雰囲気下で500℃まで昇温した後、空
気を導入し5時間酸化活性化処理を実施した。
N2,置換の後360℃まで降温し、H2にて、還
元処理−を行い反応に使用した。 比較例1の前処理:N2雰囲気下で250℃、ま
で昇温、H2を15分間送り還元処理を行つた。
その後、H2流通下360℃まで昇温し、反応に使
用した。
The present invention relates to a method for producing indoles from anilines and ethylene glycols. More specifically, when producing indoles by using anilines and ethylene glycols as raw materials and subjecting them to a gas phase catalytic reaction in the presence of a group B metal-containing catalyst, a catalyst that has been oxidized and activated at a high temperature before the reaction is used. This is a method for producing indoles, characterized by using the following methods. Indoles are known as raw materials for the chemical industry, and indoles in particular have become important substances in recent years as raw materials for fragrances and amino acid synthesis. There have been many attempts to synthesize indoles in the past, but all of them had problems such as a large number of by-products, expensive raw materials, and complicated manufacturing processes. Recently, a catalyst system has been discovered that is effective in the reaction of synthesizing indoles using inexpensive raw materials anilines and ethylene glycols and in a short process. For example, Cu-Cr, Cu-Co, Pd/
Examples include SiO 2 , Pt/SiO 2 , and CdS, but all of these catalyst systems have drawbacks such as severe reduction in reaction activity and low reaction activity, making them unsuitable for use as a practical tentacle. The present inventors have conducted various studies on this reaction and have already found that the performance of the reaction can be improved by adding water to the reaction system, carrying out the reaction under pressure, etc. Subsequently, as a result of further intensive studies, we found that by applying high-temperature oxidation activation treatment before the reaction to a catalyst system containing one of group B elements Cu, Ag, and Au as an active ingredient, The method of the present invention was achieved by discovering that the stability to the touch was increased and the reaction could be carried out over a long period of time without any change over time. That is, the method of the present invention uses anilines and ethylene glycols as raw materials, and when producing indoles by subjecting them to gas phase catalytic reaction in the presence of a group B metal-containing catalyst, an oxidative activation treatment is performed at high temperature in advance before the reaction. This is a method for producing indoles, characterized by using the catalyst according to the present invention. The anilines used in the method of the present invention have the general formula () (In the formula, R is a hydrogen atom, a halogen atom, a hydroxyl group,
This is a compound represented by an alkyl group or an alkoxy group. For example, aniline, 0-
m-・or p-toluidine, o-・m・or p-haloaniline, o-・m-・or p
-Hydroxyaniline, o-, m-, or p
- Examples include anisidine. Ethylene glycols include ethylene glycol, propylene glycol, 1,2-butanediol, 1,2,4-butanetriol, glycerol, 2,3-butanediol, diethylene glycol, and the like. The catalyst used in the method of the present invention is a catalyst system containing one or more selected from group B elements Cu, Ag, and Au as an active ingredient, and elements that can be combined with these elements include B, Ag, and Au. C, O, Mg, Al,
Si, P, S, Ca, Ti, Cr, Mn, Fe, Co, Ni,
Zn, Ga, Ge, Se, Sr, Zr, Mo, Ru, Rh, Pb,
Cd, In, Sn, Sb, Te, Ba, La, Ce, W, Ir,
Examples include Pt, Tl, Pb, Bi, and Th. The aforementioned catalysts may be used alone or in the presence of common carriers such as diatomaceous earth, activated clay, zeolite, silica,
Alumina, silica alumina, titania, chromia, thoria, magnesia, calcia, zinc oxide,
It is used supported on activated carbon, etc. In the case of Cu and Ag as raw materials for group b elements,
Nitrate, sulfate, phosphate, carbonate, halide, organic acid salt, etc. In the case of Au, chloroauric acid, alkali metal chloroaurate, gold cyanide, alkali metal gold cyanide, etc. are common. Can be used for As a method for preparing the catalyst, the usual kneading method, coprecipitation method, impregnation method, and a combination of the above-mentioned methods can be applied. For example, a method of mixing various raw materials, adding a small amount of water, and kneading with a kneader, etc., a method of making various raw materials into an aqueous solution, adding a precipitant to this, and co-precipitating it as an insoluble precipitate; It can be prepared by impregnating raw materials. The obtained catalyst composition is usually dried at 180° C. or lower, and suitable granulation additives, molding aids, etc. are added and molded, or the catalyst composition is crushed and used as it is. The catalyst containing a group Ib element as an active ingredient prepared in this way is activated by the following method. Catalyst activation treatment 1. Reduction treatment: H 2 , CO, CH 3 OH, NH 3 ,
In the case of dry reduction method using N2H4 etc. , 50-450℃
Refunds will be made within the range of On the other hand, CH 3 OH,
In the case of a wet reduction method using HCHO, N2H4 , amines , etc., the reduction is carried out at a temperature in the range of -10 to 100C. 2. Oxidation activation treatment: The catalyst subjected to the reduction treatment in Section 1 is subjected to oxidation treatment using O 2 , N 2 O, air, etc. at a temperature of 350 to 650°C. 3. Reduction treatment: The catalyst subjected to the oxidation treatment in Section 2 is reduced again using H 2 , CO, CH 3 OH, NH 3 , N 2 H 4 , etc. at a temperature of 200 to 500°C. Provide for reaction. The method of the present invention is characterized by the oxidation activation treatment of the catalyst shown in the above 2 items. This high-temperature oxidative activation treatment before the reaction increases the stability of the catalyst and allows the reaction to be carried out over a long period of time without any change over time. In the method of the present invention, the reaction between anilines and ethylene glycols is carried out in the gas phase in the presence of the catalyst, but any reaction mode such as fixed bed, fluidized bed or moving bed is possible. The anilines and ethylene glycols introduced into the reactor are in the range of 0.01 to 5 moles of ethylene glycol per mole of aniline, preferably
It is in the range of 0.05 to 1 mole. The amount of introduced raw materials anilines and ethylene glycols is 0.01 to 0.01 in terms of liquid hourly space velocity (LHSV).
It is in the range of 10 hr -1 and is introduced into the reactor after being vaporized in an evaporator. Further, at this time, water vapor, hydrogen, carbon monoxide, carbon dioxide, methane, nitrogen, neon, argon, etc. may be entrained as a carrier gas. Among them, water vapor, hydrogen, and carbon monoxide are preferable because they have the effect of increasing the service life of the catalyst. The reaction temperature ranges from 200 to 600℃, preferably 250℃
~500℃ range. Reaction pressure is reduced pressure, normal pressure,
It can be carried out under any pressure, but normal pressure and pressurized conditions are preferable. The present invention will be explained below with reference to Examples. Example 1 and Comparative Example 1 35.0 g of Cu(NO 3 ) 2 ·3H 2 O was dissolved in 100 c.c. of water to prepare an impregnation liquid. Next, 50 g of the above impregnating solution was added to 40 g of a commercially available silica carrier (specific surface area 290/g).
cc was added and left for 30 minutes. After that, 120
It was dried at ℃ and used as a Cu/SiO 2 catalyst. Two Pyrex reaction tubes each having an inner diameter of 200 mm were filled with 8 c.c. of the same catalyst, and pretreatment was carried out using the following two different methods. After each pretreatment, the reactor internal temperature was maintained at 360℃, and the raw material with a molar ratio of aniline and ethylene glycol of 8:1 was heated at LHSV and 0.28hr -1 .
The reaction was carried out by feeding with water (1.6 g/hr) and hydrogen (1.5 Nl/hr). The results are shown in Table 1. Pretreatment of Example 1: The temperature was raised to 250° C. in an N 2 atmosphere, and a reduction treatment was performed by sending H 2 for 15 minutes.
Next, the temperature was raised to 500° C. in an N 2 atmosphere, and then air was introduced to perform oxidation activation treatment for 5 hours.
After substitution with N2 , the temperature was lowered to 360°C, and reduction treatment was performed with H2 , followed by use in the reaction. Pretreatment of Comparative Example 1: The temperature was raised to 250° C. in an N 2 atmosphere, and H 2 was sent for 15 minutes to perform a reduction treatment.
Thereafter, the temperature was raised to 360°C under H 2 flow and used for reaction.

【表】 ール基準のインドール収率である。
実施例2及び比較例2 AgNO329.5gとPbCl20.85gを100c.c.の水に溶
解し、含浸液とした。次いで市販のアルミナ担体
(塩基性:比表面積220/g)40gに対し、前述
の含浸液50c.c.を加え、30分間放置した。その後
過120℃で乾燥し、Ag−Pd/Al2O3触媒とした。
以降は、実施例1、比較例1と同様に前処理を実
施し、反応を行つた。結果を表2に示す。
[Table] Indole yield based on ole.
Example 2 and Comparative Example 2 29.5 g of AgNO 3 and 0.85 g of PbCl 2 were dissolved in 100 c.c. of water to prepare an impregnating liquid. Next, 50 c.c. of the above-mentioned impregnating solution was added to 40 g of a commercially available alumina carrier (basicity: specific surface area 220/g) and left for 30 minutes. Thereafter, it was dried at 120° C. to obtain an Ag-Pd/Al 2 O 3 catalyst.
Thereafter, the same pretreatment and reaction as in Example 1 and Comparative Example 1 were carried out. The results are shown in Table 2.

【表】 実施例3及び比較例3 AgNO344.3gとHAuCl4・4H2O4R1gを100c.c.
の水に溶解し、含浸液とした。次いで市販の塩基
性酸化マグネシウムを500℃にて焼成し調製した
マグネシア担体(比表面積85/g)40gに対
し、前述の含浸液50c.c.を加え、30分間放置した。
その後、過120℃で乾燥し、Ag−Au/MgO触
媒とした。 以降は、実施例1、比較例1と同様に前処理を
実施し、反応を行つた。結果を表3に示す。
[Table] Example 3 and Comparative Example 3 44.3 g of AgNO 3 and 1 g of HAuCl 4.4H 2 O4R were added to 100 c.c.
was dissolved in water to obtain an impregnating solution. Next, 50 c.c. of the impregnating solution described above was added to 40 g of a magnesia carrier (specific surface area: 85/g) prepared by firing commercially available basic magnesium oxide at 500° C., and left for 30 minutes.
Thereafter, it was dried at 120°C to obtain an Ag-Au/MgO catalyst. Thereafter, the same pretreatment and reaction as in Example 1 and Comparative Example 1 were carried out. The results are shown in Table 3.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 アニリン類とエチレングリコール類を原料と
し、b族金属含有触媒の存在下、気相接触反応
させインドール類を製造するに際し、反応前にあ
らかじめ高温で酸化活性化処理を実施した触媒を
使用することを特徴とするインドール類の製造方
法。
1. When producing indoles by subjecting anilines and ethylene glycols to a gas phase catalytic reaction in the presence of a Group B metal-containing catalyst, use a catalyst that has been oxidized and activated at a high temperature before the reaction. A method for producing indoles characterized by:
JP57182979A 1982-10-20 1982-10-20 Preparation of indole compound Granted JPS5973567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57182979A JPS5973567A (en) 1982-10-20 1982-10-20 Preparation of indole compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57182979A JPS5973567A (en) 1982-10-20 1982-10-20 Preparation of indole compound

Publications (2)

Publication Number Publication Date
JPS5973567A JPS5973567A (en) 1984-04-25
JPH0314305B2 true JPH0314305B2 (en) 1991-02-26

Family

ID=16127641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57182979A Granted JPS5973567A (en) 1982-10-20 1982-10-20 Preparation of indole compound

Country Status (1)

Country Link
JP (1) JPS5973567A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115066A (en) * 1984-11-12 1986-06-02 Mitsui Toatsu Chem Inc Production of indole
CA1253508A (en) * 1984-11-19 1989-05-02 Mitsui Chemicals, Incorporated Preparation process of indoles

Also Published As

Publication number Publication date
JPS5973567A (en) 1984-04-25

Similar Documents

Publication Publication Date Title
JPS6038380B2 (en) Catalytic amination method
JPH07204509A (en) Production of unsaturated alcohol
JPH0656722A (en) Production of unsaturated alcohol
JPH0314305B2 (en)
EP0069242B1 (en) Process for the preparation of indoles
US4831158A (en) Preparation process indoles
EP3325455A1 (en) Post treated silver catalysts for epoxidation
CA1194492A (en) Preparation process for indoles
JPH0347263B2 (en)
US4937353A (en) Preparation process for indoles
JP6579545B2 (en) Method for synthesizing indole derivatives
JPH0347264B2 (en)
US4456760A (en) Process for the preparation of indoles
JP3229655B2 (en) Method for producing indole
SU1310383A1 (en) Method for producing aldehyde
JPH0314306B2 (en)
JP2004530667A (en) Method for producing hydroxyalkyl carboxylic acid ester
JPH03218351A (en) Preparation of indoles
JPS62266144A (en) Catalyst for gaseous phase hydrogen transfer reaction
JPS6331451B2 (en)
JP2002338543A (en) Method for producing indole compounds
JPS59108775A (en) Preparation of benzofuranol
JPS60155145A (en) Magnesium-containing catalyst activated in vacuum, in nitrogen or in air and use for ortho-alkylation
JPH07109239A (en) Production of unsaturated alcohol
JPH0243736B2 (en)