JPS5973567A - Preparation of indole compound - Google Patents

Preparation of indole compound

Info

Publication number
JPS5973567A
JPS5973567A JP57182979A JP18297982A JPS5973567A JP S5973567 A JPS5973567 A JP S5973567A JP 57182979 A JP57182979 A JP 57182979A JP 18297982 A JP18297982 A JP 18297982A JP S5973567 A JPS5973567 A JP S5973567A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
ethylene glycol
carried out
activation treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57182979A
Other languages
Japanese (ja)
Other versions
JPH0314305B2 (en
Inventor
Shoei Kudo
工藤 昭英
Tadatoshi Honda
本多 忠敏
Makoto Kotani
誠 小谷
Kazuhiro Terada
寺田 和廣
Takeshi Tsuda
武 津田
Shinji Kiyono
真二 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP57182979A priority Critical patent/JPS5973567A/en
Publication of JPS5973567A publication Critical patent/JPS5973567A/en
Publication of JPH0314305B2 publication Critical patent/JPH0314305B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To prepare the titled compound economically, without lowering the catalytic activity, by the vapor-phase catalytic reaction of an aniline compound with ethylene glycol using a catalyst containing I b-group metal wherein said catalyst is preliminarily subjected to the high-temperature oxidative activation treatment prior to the reaction. CONSTITUTION:A catalyst system containing one or more elements selected from Cu, Ag and Au which are the I b-group elements, as active components, is subjected to the high-temperature oxidative activation treatment prior to the reaction. An aniline compound is made to react with ethylene glycol in vapor phase at 250-500 deg.C in the presence of the above catalyst to obtain the titled compound useful as a synthetic raw material of perfumes and amino acids. The amount of the ethylene glycol is preferably 0.05-1mol per 1mol of the aniline compound. The activation of the catalyst can be carried out e.g. by reducing the catalyst with H2 or CO in dry state at 50-450 deg.C, oxidizing with air, etc. at 350-650 deg.C, and again reducing the product.

Description

【発明の詳細な説明】 本発明は、アニリン類とエチレングリコール類よりイン
ドール類を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing indoles from anilines and ethylene glycols.

さらに詳しくは、アニリン類とエチレングリコール類を
原料とし、Ib族金属含有触媒の存在下、気相接触反応
させインドール類を製造するに際し、反応前にあらかじ
め高温で酸化活性化処理を実施した触媒を使用すること
を特徴とするインドール類の製造方法である。
More specifically, when producing indoles by subjecting anilines and ethylene glycols as raw materials to a gas phase catalytic reaction in the presence of a group Ib metal-containing catalyst, a catalyst that has been oxidized and activated at a high temperature before the reaction is used. This is a method for producing indoles, characterized by using the following methods.

インドール類は化学工業原料として知られ、特にインド
ールは近年香料やアミノ酸合成原料として重要な物質と
なってきている。
Indoles are known as raw materials for the chemical industry, and indoles in particular have become important substances in recent years as raw materials for fragrances and amino acid synthesis.

従来より、インドール類を合成しようとする試みは数多
くあったが、いずれも副生物が多い、原料が高価である
、製造工程が複雑であるなどの問題点を有していた。
There have been many attempts to synthesize indoles in the past, but all of them had problems such as a large number of by-products, expensive raw materials, and complicated manufacturing processes.

最近に至り、安価な原料であるアニリン類とエチレング
リコール類を用い、かつ短い工程でインドール類を合成
する反応に有効な触媒系が見出されてきた。例えば、C
u−Cr、 Cu−Co、 pd/5=o2、P t/
S =o2、Cd Sなどが挙げられるが、いずれのの
検討を加え、既に反応系に水を添加すること、反応を加
圧で実施することなどにより反応のパフォーマンスを向
上させうろことを明らかにして西だ。
Recently, a catalyst system has been discovered that is effective in the reaction of synthesizing indoles using inexpensive raw materials anilines and ethylene glycols and in a short process. For example, C
u-Cr, Cu-Co, pd/5=o2, Pt/
Examples include S = o2, Cd S, etc., but it has already been revealed that the performance of the reaction can be improved by adding water to the reaction system, carrying out the reaction under pressure, etc. It's west.

その後、更に鋭意検討を加えた結果、Ib族の元素であ
るCu1AQ及びAuのうちいずれかを有効成分として
含む触媒系に対して、あらかじめ反応前に高温酸化活性
化処理を加えることにより、触媒の安定性が増加し長時
間にわたり経時変化なく反応を実施しうることを見出し
、本発明の方法に到達したものである。
After that, as a result of further intensive studies, we found that the catalyst system containing one of the group Ib elements Cu1AQ and Au as an active ingredient was subjected to high-temperature oxidation activation treatment before the reaction. The method of the present invention was achieved by discovering that the stability is increased and the reaction can be carried out over a long period of time without any change over time.

すなわち、本発明の方法は、アニリン類とエチレングリ
コール類を原料とし、■b族金属含有触媒の存在下、気
相接触反応させインドール類を製造するに際し、反応前
にあらかじめ高温で酸化活性化処理を実施した触媒を使
用することを特徴とするインドール類の製造方法である
That is, in the method of the present invention, anilines and ethylene glycols are used as raw materials, and in the presence of a group B metal-containing catalyst, gas phase catalytic reaction is carried out to produce indoles. This is a method for producing indoles, which is characterized by using a catalyst that has been subjected to the above.

本発明の方法にお℃・て使用されるアニIJン類とは、
一般式〇) NN2 (式中、Rは水素原子、ハロゲン原子、水酸基−アルキ
ル基または、アルコキシ基を示す)で表わン等があげら
れる。
The amines used in the method of the present invention at ℃ are as follows:
General formula 〇) NN2 (wherein R represents a hydrogen atom, a halogen atom, a hydroxyl group-alkyl group, or an alkoxy group).

またエチレングリコール類とは、エチレングリコール、
プロピレングリコール、1.2−ブタンジオール、1.
2.4−ブタントリオール、グリセロール、2,3−ブ
タンジオ−ノへジエチレングリコール等である。
In addition, ethylene glycols include ethylene glycol,
Propylene glycol, 1,2-butanediol, 1.
These include 2,4-butanetriol, glycerol, 2,3-butanedio-hediethylene glycol, and the like.

本発明の方法に使用される触媒は、■1)族元素である
Cu、A9及びAuの内、選ばれた一種以上を有効成分
として含有する触媒系であり、これらと複合可能な元素
として、B、 C,O−Mり、Al、SL、P、S、C
,、TL、 Cr、 Mn1F<、 Co、 NQ、 
Zn、 Go。
The catalyst used in the method of the present invention is a catalyst system containing as an active ingredient one or more selected from group 1) elements Cu, A9, and Au, and as an element that can be combined with these, B, C, O-M, Al, SL, P, S, C
,,TL, Cr, Mn1F<, Co, NQ,
Zn, Go.

G、、S−e、、S r、 Z r、 Mo、 Ru1
Rh、 I’d、 C(+、 I n。
G,, S-e,, S r, Z r, Mo, Ru1
Rh, I'd, C(+, I n.

Sn、Sb、T、、Bo、、L a、 C4,W、 I
 r、 P t、 TI、門)、B=、Thなどをあげ
ることができる。前述の触媒は単独、あるいは通常の担
体であるケイソウ士、活性白土、ゼオライト、シリカ、
アルミナ、シリカ−アルミナ、チタニア、クロミア、ト
リア、マグネシア、カルシア、酸化亜鉛、活性炭などに
4(1持し使用される。
Sn, Sb, T,, Bo,, La, C4, W, I
r, P t, TI, gate), B=, Th, etc. The aforementioned catalysts may be used alone or in the presence of common carriers such as diatomaceous earth, activated clay, zeolite, silica,
4 (1) is used for alumina, silica-alumina, titania, chromia, thoria, magnesia, calcia, zinc oxide, activated carbon, etc.

Ib族元素の原料としては、Cu7i)びAりの場合、
3− 硝酸塩、硫酸塩、リン酸塩、炭酸塩、ハロゲン化物、有
機酸塩等、Auの場合は、塩化金酸、塩化金酸アルカリ
金属類、シアン化金、シアン化金アルカリ金属類等が一
般的に使用できる。
As raw materials for group Ib elements, in the case of Cu7i) and Ari,
3- Nitrate, sulfate, phosphate, carbonate, halide, organic acid salt, etc. In the case of Au, chloroauric acid, alkali metal chloroaurate, gold cyanide, alkali metal gold cyanide, etc. Can be used generally.

触媒の調整法としては、通常の混練法、共沈法、含浸法
及び前述の各法を組み合せた方法などが適用可能である
。例えば−各種の原料を混合し、少量の水を添加し、ニ
ーダ−等で混練する。方法、各種原料を水溶液とし、こ
れに沈殿剤を加え、不溶性の沈殿として共沈させる方法
、各種相体に対し各種の原料を含浸させる方法、などで
調製できる。
As a method for preparing the catalyst, the usual kneading method, coprecipitation method, impregnation method, and a method combining the above-mentioned methods can be applied. For example, various raw materials are mixed, a small amount of water is added, and the mixture is kneaded using a kneader or the like. It can be prepared by various methods, such as a method in which various raw materials are made into an aqueous solution, a precipitant is added thereto, and the resulting insoluble precipitate is co-precipitated, a method in which various materials are impregnated into various phases.

得られた触媒組成物は、通常180℃以下で乾燥し、適
当な造粒添加剤、成形助剤などを添加し成形したり、あ
るいは触媒組成物をそのまま破砕して使用する。
The obtained catalyst composition is usually dried at 180° C. or lower, and suitable granulation additives, molding aids, etc. are added and molded, or the catalyst composition is crushed and used as it is.

この様にして調製されたIb族元素を有効成分として含
有する触媒は、次に示す方法で活性化処理される。
The catalyst containing the Group Ib element as an active ingredient prepared in this manner is activated by the following method.

触媒の活性化処理 1、還元処理−I:N2、Co1C1(30H,NH,
、N2H。
Catalyst activation treatment 1, reduction treatment-I: N2, Co1C1 (30H, NH,
, N2H.

4 − などを使う乾式還元法の場合、50〜450℃の範囲で
還元を行なう。一方、Cl−130H1I−I CHO
lN、、 H4、アミン類などによる湿式還元法の場合
には、−1,0〜100℃の範囲で還元を実施する。
In the case of a dry reduction method using 4- or the like, the reduction is carried out in the range of 50 to 450°C. On the other hand, Cl-130H1I-I CHO
In the case of a wet reduction method using lN, H4, amines, etc., the reduction is carried out in the range of -1.0 to 100°C.

2、酸化活性化処理717項の還元処理を行った触媒に
対し、350〜650℃の範囲で、02、N20、空気
などによる酸化処理を実施する。
2. Oxidation Activation Treatment The catalyst that has been subjected to the reduction treatment in Section 717 is subjected to oxidation treatment using 02, N20, air, etc. at a temperature of 350 to 650°C.

3、還元処理−■=27項の酸化処理を行った触媒を再
度、N9、Co、 CI−f301−1. NH3、N
2H,などを使用し、200〜500℃の範囲で還元を
実施、反応に供する。
3. Reduction treatment - ■ = The catalyst subjected to the oxidation treatment in section 27 was again treated with N9, Co, CI-f301-1. NH3, N
Reduction is carried out using 2H, etc. in the range of 200 to 500°C, and the reaction is carried out.

本発明の方法は、前記2項に示した触媒の酸化活性化処
理に特徴がある。この反応前の高温酸化活性化処理によ
り、触媒の安定性が増加し、長時間にわたり経時変化な
く、反応を実施しうる。
The method of the present invention is characterized by the oxidation activation treatment of the catalyst shown in the above 2 items. This high-temperature oxidation activation treatment before the reaction increases the stability of the catalyst and allows the reaction to be carried out over a long period of time without any change over time.

本発明の方法において、アニリン類とエチレングリコー
ル類との反応は、前記触媒の存在下、気相で実施される
が、固定床、流動床または移動床のいずれハ反応様式で
も可能である。
In the method of the present invention, the reaction between anilines and ethylene glycols is carried out in the gas phase in the presence of the catalyst, but any reaction mode such as fixed bed, fluidized bed or moving bed is also possible.

反応装置に導入するアニリン類とエチレングリコール類
は、アニリン類1モルに対してエチレングリコール類0
゜旧〜5モルの範囲、好ましくは0005〜1モルの範
囲である。
The anilines and ethylene glycols introduced into the reactor are 0 ethylene glycols per mole of aniline.
The range is from 0.05 to 5 mol, preferably from 0.005 to 1 mol.

原料であるアニリン類とエチレングリコール類の導入量
は、液空間速度(LH8V)で0.01〜10hr  
の範囲であり、あらかじめ蒸発器にて気化後、反応装置
に導入する。またその際に、水蒸気、水素、−酸化炭素
、二酸化炭素、メタン、窒素、ネオン、アルゴンなどを
キャリアガスとして同伴させても良い。中でも、水蒸気
、水素、−酸化炭素は触媒のサービスライフを増大させ
る効果を有する為、好ましい。
The amount of introduction of anilines and ethylene glycols, which are raw materials, is 0.01 to 10 hr at liquid hourly space velocity (LH8V).
After being vaporized in an evaporator, it is introduced into the reactor. Further, at that time, water vapor, hydrogen, carbon oxide, carbon dioxide, methane, nitrogen, neon, argon, etc. may be accompanied as a carrier gas. Among them, water vapor, hydrogen, and carbon oxide are preferable because they have the effect of increasing the service life of the catalyst.

反応温度は200〜600℃の範囲、好ましくは250
〜500℃の範囲である。
The reaction temperature is in the range of 200 to 600°C, preferably 250°C.
~500°C.

反応圧力は減圧、常圧、加圧のいずれでも実施可能であ
るが常圧及び加圧状態の方が好ましい。
The reaction can be carried out under reduced pressure, normal pressure, or increased pressure, but normal pressure or increased pressure is preferable.

以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1及び比較例I Cu(No3)2m3I−r2o  35.0!li’
を100ccの水で溶解し、含浸液とした。次いで市販
のシリカ担体(比表面積29om/′g)40り に対
し、前述の含浸液5Qccを加え、30分間放置した。
Example 1 and Comparative Example I Cu(No3)2m3I-r2o 35.0! li'
was dissolved in 100 cc of water to obtain an impregnating solution. Next, 5 Qcc of the aforementioned impregnating solution was added to 40 ml of a commercially available silica carrier (specific surface area: 29 om/'g), and the mixture was allowed to stand for 30 minutes.

その後、沖過、120℃で乾燥し、Cu /’S L 
O2触媒とした。同触媒を内径20mmのパイレックス
製反応管2本にそれぞれ8CCづつ充填し、下記の異な
った2通りの方法で前処理を実施した。各前処理終了後
、反応器内温を360℃に保ち、アニリンとエチレング
リコールのモル比8:1の原料をLl−ISV O,2
8hr  ’で、水(1,69/hr)及び水素(1,
5Nvhr)、![に送り、反応を実施した。結果を表
1に示す。
After that, it was dried at 120℃ and Cu/'S L
It was used as an O2 catalyst. Two Pyrex reaction tubes each having an inner diameter of 20 mm were filled with 8 CC of the same catalyst, and pretreatment was performed using the following two different methods. After each pretreatment, the internal temperature of the reactor was maintained at 360°C, and the raw material with a molar ratio of aniline and ethylene glycol of 8:1 was converted into Ll-ISV O,2
8 hr', water (1,69/hr) and hydrogen (1,
5Nvhr),! [The reaction was carried out. The results are shown in Table 1.

■実施例1の前処理:N2  雰囲気下で250℃まで
昇温、142を15分間送り還元処理−■を行った。
(2) Pretreatment of Example 1: The temperature was raised to 250° C. in an N2 atmosphere, and 142 was sent for 15 minutes to perform reduction treatment-(2).

次いでN2雰囲気下で500℃まで昇温した後、空気を
導入し5時間酸化活性化処理を実施した。N。
Next, the temperature was raised to 500° C. in a N2 atmosphere, and then air was introduced to carry out oxidation activation treatment for 5 hours. N.

置換の後360℃まで降温し、I42にて還元処理−■
を行い反応に使用した。
After replacement, the temperature was lowered to 360°C, and reduction treatment was performed with I42 -■
and used in the reaction.

■比較例1の前処理二N2雰囲気下で250℃まで昇温
、N2を15分間送り還元処理を行った。その後、N2
  流通下360℃まで昇温し、反応に使用した。
(2) Pretreatment of Comparative Example 1 2 The temperature was raised to 250° C. under an N2 atmosphere, and N2 was supplied for 15 minutes to perform a reduction treatment. After that, N2
The temperature was raised to 360°C under circulation and used for the reaction.

7− 注1)インドール収率とは、エチレングリコール基準の
インドール収率である。
7- Note 1) Indole yield is the indole yield based on ethylene glycol.

実施例2及び比較例2 AりNO329,5gとPd(420,859を100
CCの水に溶解し、含浸液とした。次いで市販のアルミ
ナ担体(塩基性:比表面積220m/g)409に対し
、前述の含浸液50ccを加え、30分間放置した。
Example 2 and Comparative Example 2 Al NO329.5g and Pd (420,859 to 100g)
It was dissolved in water of CC to prepare an impregnating liquid. Next, 50 cc of the above-mentioned impregnating solution was added to a commercially available alumina carrier (basicity: specific surface area 220 m/g) 409 and left for 30 minutes.

その後濾過120℃で乾燥し、A 9−P d /Al
2O5触媒とした。以降は、実施例1、比較例1と同様
に前処理を実施し、反応を行った。結果を表2に示す。
After that, it was filtered, dried at 120°C, and A 9-P d /Al
A 2O5 catalyst was used. Thereafter, the pretreatment was carried out in the same manner as in Example 1 and Comparative Example 1, and the reaction was carried out. The results are shown in Table 2.

一8= 表2 注1)表1に同じ 実施例3及び比較例3 A9NO,44,39とl−lAuC4・41−120
4.19を100CCの水に溶解し、含浸液とした。次
いで市販の塩基性酸化マグネシウムを500℃にて焼成
し調製したマグネシア相体(比表面積85mj/′g)
 409に対し、前述の含浸液5Qccを加え、30分
間放置した。その後、沖過120℃で乾燥し、AクーA
u/′MgO触媒とした。
-8 = Table 2 Note 1) Same as Table 1 Example 3 and Comparative Example 3 A9NO, 44, 39 and l-lAuC4・41-120
4.19 was dissolved in 100 cc of water to prepare an impregnating solution. Next, a magnesia phase body (specific surface area 85 mj/'g) was prepared by calcining commercially available basic magnesium oxide at 500 °C.
5Qcc of the above-mentioned impregnating solution was added to 409 and left for 30 minutes. After that, it was dried at 120℃ in the ocean, and
u/′MgO catalyst.

以降は、実施例1、比較例1と同様に前処理を実施し、
反応を行った。結果を表3に示す。
Thereafter, pretreatment was performed in the same manner as in Example 1 and Comparative Example 1,
The reaction was carried out. The results are shown in Table 3.

表3 特許出願人 三井東圧化学株式会社 11−Table 3 patent applicant Mitsui Toatsu Chemical Co., Ltd. 11-

Claims (1)

【特許請求の範囲】[Claims] 1)アニリン類とエチレングリコール類を原料とし、I
b族金属含有触媒の存在下、気相接触反応させインドー
ル類を製造するに際し、反応前にあらかじめ高温で酸化
活性化処理を実施した触媒を使用することを特徴とする
インドール類の製造方法。
1) Using anilines and ethylene glycols as raw materials, I
A method for producing indoles, which comprises using a catalyst that has been oxidized and activated at a high temperature before the reaction, in the production of indoles by gas-phase catalytic reaction in the presence of a group B metal-containing catalyst.
JP57182979A 1982-10-20 1982-10-20 Preparation of indole compound Granted JPS5973567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57182979A JPS5973567A (en) 1982-10-20 1982-10-20 Preparation of indole compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57182979A JPS5973567A (en) 1982-10-20 1982-10-20 Preparation of indole compound

Publications (2)

Publication Number Publication Date
JPS5973567A true JPS5973567A (en) 1984-04-25
JPH0314305B2 JPH0314305B2 (en) 1991-02-26

Family

ID=16127641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57182979A Granted JPS5973567A (en) 1982-10-20 1982-10-20 Preparation of indole compound

Country Status (1)

Country Link
JP (1) JPS5973567A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115066A (en) * 1984-11-12 1986-06-02 Mitsui Toatsu Chem Inc Production of indole
US4727161A (en) * 1984-11-19 1988-02-23 Mitsui Toatsu Chemicals, Incorporated Process for the preparation of indoles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115066A (en) * 1984-11-12 1986-06-02 Mitsui Toatsu Chem Inc Production of indole
JPH0347264B2 (en) * 1984-11-12 1991-07-18 Mitsui Toatsu Chemicals
US4727161A (en) * 1984-11-19 1988-02-23 Mitsui Toatsu Chemicals, Incorporated Process for the preparation of indoles

Also Published As

Publication number Publication date
JPH0314305B2 (en) 1991-02-26

Similar Documents

Publication Publication Date Title
KR920000904B1 (en) Process for preparing a cycloalkanone and/or cycloalkanol
RU2156729C2 (en) Catalyst and method of production of nitrogen from ammonia-containing exhausting gas
JPS5973567A (en) Preparation of indole compound
JPH0325224B2 (en)
JPH0427968B2 (en)
KR870000522B1 (en) Contisuous process preparing indole
US4014952A (en) Process for the preparation of isoprene
US4456760A (en) Process for the preparation of indoles
JPH026414A (en) Preparation of isobutylene
JPH10511669A (en) Method for producing aliphatic α, ω-aminonitrile in gas phase
JPS611630A (en) Production of lower alcohol
US6075170A (en) Process for preparing cyclohexanol and cyclohexanone
JP3229655B2 (en) Method for producing indole
JPS61186332A (en) Production of cyclohexylbenzene
JP2003522765A (en) Epoxidation catalyst containing lanthanum series metals
US4833255A (en) Process for the preparation of indoline
JPH0347264B2 (en)
JPS58121238A (en) Preparation of anthraquinone
JPS61115065A (en) Production of indole compound
JP2002338543A (en) Method for producing indole compounds
JPS6331451B2 (en)
JPS6355101A (en) Method for decomposing methanol
JPH04266834A (en) Production of dialkylnaphthalene
JPH0146508B2 (en)
JPH01143865A (en) Production of gamma-butyrolactone