JPH0346520A - Signal detector - Google Patents

Signal detector

Info

Publication number
JPH0346520A
JPH0346520A JP1180285A JP18028589A JPH0346520A JP H0346520 A JPH0346520 A JP H0346520A JP 1180285 A JP1180285 A JP 1180285A JP 18028589 A JP18028589 A JP 18028589A JP H0346520 A JPH0346520 A JP H0346520A
Authority
JP
Japan
Prior art keywords
signal
photoconductor
current
superconductor
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1180285A
Other languages
Japanese (ja)
Other versions
JP2737006B2 (en
Inventor
Yasuko Motoi
泰子 元井
Takehiko Kawasaki
岳彦 川崎
Toru Den
透 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1180285A priority Critical patent/JP2737006B2/en
Priority to DE69009109T priority patent/DE69009109T2/en
Priority to DE69031501T priority patent/DE69031501T2/en
Priority to EP93203066A priority patent/EP0590738B1/en
Priority to EP90307302A priority patent/EP0407166B1/en
Priority to US07/548,212 priority patent/US5155093A/en
Publication of JPH0346520A publication Critical patent/JPH0346520A/en
Application granted granted Critical
Publication of JP2737006B2 publication Critical patent/JP2737006B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To detect signals of a wide range of wavelength bands by providing a signal input part where a current is generated by the input of a light signal and a signal detecting part consisting of a superconductor of a Josephson junction which detects the magnetic field generated by this current. CONSTITUTION:The oxide superconductor 1 is made into a band shape and a microbridge part is formed to about 8X12mum. Four pieces of electrodes consisting of Cr and Au are produced on the superconductor 1 to form the electrodes 2 for current implantation and the electrodes 3 for voltage measurement. A thin film of MgO is formed in the central part of the band to be an insulating layer. A CdS film is formed thereon as the signal input part (photoconductor) 6. This detector is put into liquid nitrogen and a prescribed voltage is impressed to a power source 5 for impressing bias current and a power source 7 for driving the photoconductor. A voltmeter 8 for signal detection is 0V and the superconduction is not broken when the photoconductor 6 is not irradiated with light at this time. The voltmeter 8 registers several mV when the photoconductor 6 is irradiated with an He-Ne laser. The generation of this voltage indicates that a photocurrent is generated in the photoconductor 6 and the critical current value is suppressed by the consequently generated magnetic field, by which the superconducting state is broken.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、超伝導体の磁気特性を利用して、入力信号を
磁気信号に変換し、光信号を検出する信号検出方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a signal detection method that utilizes the magnetic properties of a superconductor to convert an input signal into a magnetic signal and detect an optical signal.

[従来の技術] 従来の超伝導体を用いた信号検出器、特に光信号を検出
する検出器としては、ジョセフソン接合を利用したもの
が知られている[JapaneseJournal o
f Applied Physics vol、 23
 L333(1984)]。この光信号検出器は、第6
図に示すように酸化物超伝導体BaPbo、 、Bi、
、 5o3(BPBO)薄膜でマイクロブリッジ型ジョ
セフソン接合を形成し、この接合部に光を照射し、ジョ
セフソン接合の臨界電流値の変化を利用するものである
。かかる検出器においては、受光部の材料としてBPn
Oを用いており、これは臨界温度が約13にと低い。す
なわち、検出器を動作させるには、液体ヘリウム等を使
用しなければならない。また、かかる検出器の特性は、
ジョセフソン接合の特性によって決定される。
[Prior Art] As a conventional signal detector using a superconductor, especially a detector for detecting optical signals, one using a Josephson junction is known [Japanese Journal o
f Applied Physics vol, 23
L333 (1984)]. This optical signal detector
As shown in the figure, oxide superconductors BaPbo, , Bi,
, 5o3 (BPBO) thin film is used to form a microbridge type Josephson junction, this junction is irradiated with light, and changes in the critical current value of the Josephson junction are utilized. In such a detector, BPn is used as the material of the light receiving part.
O is used, which has a low critical temperature of about 13. That is, liquid helium or the like must be used to operate the detector. In addition, the characteristics of such a detector are:
Determined by the properties of the Josephson junction.

[発明が解決しようとする課題] 上記従来例においては、例えばイメージセンサ−のよう
に同時に多数の検出器を使用するとき、加工のバラツキ
等に起因する検出器間の特性のバラツキを補正しにくい
という問題がある。
[Problems to be Solved by the Invention] In the above conventional example, when a large number of detectors are used simultaneously, such as in an image sensor, it is difficult to correct variations in characteristics between detectors due to variations in processing, etc. There is a problem.

また、超伝導体の分光特性により、検出する光の波長域
も限定されるため、広範囲の波長帯域の信号検出に適し
ていないという問題もある。
Additionally, the wavelength range of light to be detected is limited due to the spectral characteristics of the superconductor, so there is also the problem that it is not suitable for signal detection over a wide range of wavelength bands.

さらには、接合部への光照射において、その領域が非常
に限定されるため、位置合せの精度を要するという問題
もある。
Furthermore, since the area of light irradiation to the joint is very limited, there is also the problem that alignment accuracy is required.

すなわち、本発明の目的とするところは、超伝導物質の
磁気特性を利用することにより、上述のような問題点を
解決することにある。
That is, an object of the present invention is to solve the above-mentioned problems by utilizing the magnetic properties of superconducting materials.

[課題を解決するための手段] 本発明の特徴とするところは、光信号の入力により電流
が生じる信号入力部と、該電流により発生した磁場を検
出する、ジョセフソン効果を用いた超伝導体より成る信
号検出部とを少なくとも有する信号検出器にある。
[Means for Solving the Problems] The present invention is characterized by a signal input section that generates a current upon input of an optical signal, and a superconductor using the Josephson effect that detects the magnetic field generated by the current. A signal detector comprising at least a signal detection section comprising:

また、前記信号検出部にマイクロブリッジ型ジョセフソ
ン接合を用いた信号検出器にある。
The present invention also provides a signal detector using a microbridge type Josephson junction in the signal detection section.

さらには、前記信号入力部に光伝導性材料を用いた信号
検出器を特徴とするものである。
Furthermore, the present invention is characterized by a signal detector using a photoconductive material in the signal input section.

ここで、かかる信号検出器を遠戚するために用いられる
信号検出部としての超伝導体としては、単結晶又は多結
晶から成る超伝導特性を有する材料が好ましい。尚、検
出器をより高い温度で動作させるためには、臨界温度の
高い材料が好ましい。この点でY−Ba−Cu−0系、
B1−5r−Ca−Cu−0系、T?5r−Ca−Cu
−0系セラくツクス材料のような液体窒素の沸点である
77により高い臨界温度を持つ物質が適している。
Here, the superconductor used as the signal detecting section used to remotely construct such a signal detector is preferably a single crystal or polycrystalline material having superconducting properties. Note that in order to operate the detector at a higher temperature, a material with a high critical temperature is preferable. In this respect, Y-Ba-Cu-0 system,
B1-5r-Ca-Cu-0 system, T? 5r-Ca-Cu
A material having a critical temperature higher than 77, which is the boiling point of liquid nitrogen, such as a -0 series ceramics material, is suitable.

一方、検出器の動作温度は、使用する超伝導体の臨界温
度より低い温度であれば良いが、入力信号の検出感度を
上げるためにも臨界温度に近い温度の方がより好ましい
On the other hand, the operating temperature of the detector may be lower than the critical temperature of the superconductor used, but a temperature close to the critical temperature is more preferable in order to increase the detection sensitivity of the input signal.

また、信号入力部に用いる材料としては、赤外、可視、
紫外光のような光信号に対応できる光導電性材料が好ま
しい。
In addition, the materials used for the signal input section include infrared, visible,
Photoconductive materials that are compatible with optical signals such as ultraviolet light are preferred.

特に、大きな光電流を生じる材料としては、InSb、
 Si、 GaAs、 a−5i、 CdS、 GdS
e等が好ましい。
In particular, materials that generate a large photocurrent include InSb,
Si, GaAs, a-5i, CdS, GdS
e etc. are preferred.

また、上記光電流発生部は信号の受信部であっても、あ
るいは信号の受信部に接続されている導線、例えば金属
材料を用いた配線であっても良いことはいうまでもない
Further, it goes without saying that the photocurrent generating section may be a signal receiving section, or may be a conducting wire connected to the signal receiving section, for example, a wiring made of a metal material.

E作 川] 例えば、光導電性材料より成る信号入力部に光を照射す
ると、価電子帯の電子は励起され伝導帯に遷移する。こ
の伝導帯中で励起された電子が印加された電場により移
動することで光電流が生ずる。
For example, when a signal input section made of a photoconductive material is irradiated with light, electrons in the valence band are excited and transition to the conduction band. A photocurrent is generated when electrons excited in this conduction band move due to an applied electric field.

一方、物質中に電流が流れると、この電流により磁場が
発生することは、物理の基本的法則として良く知られて
いる。
On the other hand, it is well known as a fundamental law of physics that when an electric current flows through a substance, a magnetic field is generated by this electric current.

また、超伝導体には第一種と第二種の超伝導体があり、
材料固有の磁場、つまり臨界磁場より大きな磁場を印加
すると、第一種超伝導体では超伝導状態がこわれ、第二
種超伝導体では材料固有の磁場()ICI)より強い磁
場により超伝導体中に磁束の一部が侵入し、さらに強い
材料固有磁場()lc2)以上を印加することにより、
超伝導状態がこわれてしまい、常伝導状態に転移するこ
とが知られている。本発明は、このような物理的現象を
利用するものである。
In addition, there are two types of superconductors: type 1 and type 2 superconductors.
When a magnetic field unique to the material, that is, a magnetic field larger than the critical magnetic field, is applied, the superconducting state is destroyed in type 1 superconductors, and in type 2 superconductors, the superconductor state is broken due to a magnetic field stronger than the magnetic field unique to the material (ICI). By entering a part of the magnetic flux into the material and applying a stronger material-specific magnetic field ()lc2),
It is known that the superconducting state breaks down and transitions to the normal conducting state. The present invention utilizes such a physical phenomenon.

すなわち、第2図に示すように、超伝導体の両端に臨界
電流I、より若干小さいバイアス電流1oを流しておく
That is, as shown in FIG. 2, a critical current I and a slightly smaller bias current 1o are caused to flow across the superconductor.

ここに、超伝導体上方に設けた光導電性材料は光を照射
して光電流を流す。この光電流により、かかる光電流量
に相当する磁場が発生し、この磁場により超伝導電流が
抑制され、接合間に電圧が発生する。
Here, the photoconductive material provided above the superconductor is irradiated with light and causes a photocurrent to flow. This photocurrent generates a magnetic field corresponding to the amount of photocurrent, and this magnetic field suppresses the superconducting current and generates a voltage between the junctions.

このジョセフソン接合と負荷抵抗を並列に接続しておけ
ば、動作点がAからBに移り、電圧の変化を読みとるこ
とが可能となるわけである。尚、ここで加える電流は、
光導電効果によるものに限らず、光起電力効果等電流発
生の可能なものならば何でも良い。
By connecting this Josephson junction and a load resistor in parallel, the operating point shifts from A to B, making it possible to read changes in voltage. The current applied here is
It is not limited to the one based on the photoconductive effect, but any type that can generate current, such as the photovoltaic effect, may be used.

[実施例] 以下、実施例により本発明を詳述する。[Example] Hereinafter, the present invention will be explained in detail with reference to Examples.

監凰里ユ 第1図に本発明に基づく一実施例の概念図を示ず。図中
1は超伝導体、2は電流注入用電極、3は電圧測定用電
極、4は負荷抵抗、5はバイアス電流印加用電源、6は
光導電体、7は光導電体駆動用電源、8は信号検出用電
圧計である。
FIG. 1 does not show a conceptual diagram of an embodiment based on the present invention. In the figure, 1 is a superconductor, 2 is an electrode for current injection, 3 is an electrode for voltage measurement, 4 is a load resistor, 5 is a power source for bias current application, 6 is a photoconductor, 7 is a power source for driving the photoconductor, 8 is a voltmeter for signal detection.

先ず、酸化物超伝導体YBa2Ca307   (0≦
δ≦−δ 0.5)をマグネトロンスパッタ法等によりMgO基板
(不図示)上に形成し、フォトリソグラフィー等の微細
加工技術により得られた薄膜を加工する。
First, the oxide superconductor YBa2Ca307 (0≦
δ≦−δ 0.5) is formed on an MgO substrate (not shown) by magnetron sputtering or the like, and the obtained thin film is processed by microfabrication technology such as photolithography.

本実施例では、酸化物超伝導体を厚さ5000Å、幅2
mm、長さ5+nmの帯状とし、マイクロブリッジ部は
、幅8μm1長さ12μmとした。次に、この超伝導体
上にCr、八Uの電極を4本厚さ1000入、幅500
μmで作製し、電流注入用電極2、電圧測定用電極3と
した。さらに、帯の中央部にMgO薄膜を形成して絶縁
層とし、最後にMgO膜の上にCdS膜を作製して信号
入力部6とした。
In this example, the oxide superconductor has a thickness of 5000 Å and a width of 2
The microbridge portion had a width of 8 μm and a length of 12 μm. Next, four Cr, 8U electrodes with a thickness of 1000mm and a width of 500mm were placed on this superconductor.
μm, and were used as a current injection electrode 2 and a voltage measurement electrode 3. Furthermore, a MgO thin film was formed at the center of the band to serve as an insulating layer, and finally a CdS film was formed on the MgO film to form a signal input section 6.

かかる構成にした場合の超伝導体の臨界温度は85にで
あった。この検出器を液体窒素中(77K)に入れ、バ
イアス電流印加用電源5に10mV、光導電体駆動用電
源7にIOV印加した。ここで、先導電体6に光を照朗
しない場合、信号検出用電圧計8はOVであり超伝導は
こわれていなかった。
The critical temperature of the superconductor in this configuration was 85. This detector was placed in liquid nitrogen (77 K), and 10 mV was applied to the bias current applying power source 5 and IOV was applied to the photoconductor driving power source 7. Here, when no light was shined on the leading electric body 6, the signal detection voltmeter 8 was OV, and the superconductivity was not broken.

次に、光導電体6にII e −N eレーザー5mW
を照射したところ、信号検出用電圧計8は3mVを示し
た。このことは、光照射により光導電体6に光電流が発
生し、これにより生じた磁場で臨界電流値が抑制されて
、超伝導状態をこわしたことを意味している。
Next, a 5 mW II e-N e laser was applied to the photoconductor 6.
When the voltage was irradiated, the signal detection voltmeter 8 showed 3 mV. This means that a photocurrent was generated in the photoconductor 6 by the light irradiation, and the critical current value was suppressed by the resulting magnetic field, destroying the superconducting state.

実10艷1 本発明の第2の実施例を第3図に示した。10 fruits 1 A second embodiment of the invention is shown in FIG.

かかる検出器の構成は、実施例1の構成において、信号
入力部6を検出部から分離したものとし、その代わりに
新たな電極9を設けた。よって、信号入力部である光導
電体6は、液体窒素にて冷却する必要がなく、実施例1
と同様な測定を行ったところ、光照射の有無と検出用電
圧計の電圧の有無が対応し、光検出可能なことが確かめ
られた。
The configuration of such a detector is such that the signal input section 6 is separated from the detection section in the configuration of Example 1, and a new electrode 9 is provided in its place. Therefore, the photoconductor 6, which is the signal input section, does not need to be cooled with liquid nitrogen, and the photoconductor 6 that is the signal input section does not need to be cooled with liquid nitrogen.
When similar measurements were performed, it was confirmed that the presence or absence of light irradiation corresponded to the presence or absence of the voltage of the detection voltmeter, and that optical detection was possible.

実施例3 実施例1ては、電流注入用電極2.電圧測定用電極3を
金属にて作製したが、本実施例では、超伝導体(例えば
YBa2Cu30.−6)を用いた。本構成においても
光検出可能なことが確認された。
Example 3 In Example 1, current injection electrode 2. The voltage measurement electrode 3 was made of metal, but in this example, a superconductor (for example, YBa2Cu30.-6) was used. It was confirmed that light detection was possible with this configuration as well.

丸教里1 第4図に本発明による分光測定装置の基本構造図を第5
図に光検出アレーの概念図を示す。
Marukyori 1 Figure 4 shows the basic structure of the spectrometer according to the present invention.
The figure shows a conceptual diagram of the photodetection array.

第4図示の分光測定装置において、入射光1oがスリッ
ト11とフィルタ12を介して、回折格子(等の分散素
子)13に入射される。回折格子13は固定されており
、反射光は光検出アレー14に入射されるようになって
いる。そして、かかる光検出素子アレー14は、冷却ブ
ロック15上に接合されに基板16上に設けられたジョ
セフソン接合を用いた光検出素子からなる。
In the spectrometer shown in FIG. 4, incident light 1o is incident on a diffraction grating (or other dispersive element) 13 via a slit 11 and a filter 12. The diffraction grating 13 is fixed, and the reflected light is made incident on the photodetection array 14. The photodetecting element array 14 is composed of photodetecting elements using a Josephson junction, which are bonded onto the cooling block 15 and provided on the substrate 16.

第5図示の光検出アレーにおいて、17は酸化物超伝導
体薄膜、18は光導電体薄膜、19は電流端子、20.
21.22は電圧端子である。
In the photodetection array shown in FIG. 5, 17 is an oxide superconductor thin film, 18 is a photoconductor thin film, 19 is a current terminal, 20.
21 and 22 are voltage terminals.

先ず、MgO基板上に超伝導薄膜(ここでは、B1−5
r−Ca−Cu−0を用いた。)を成膜し、微細加工技
術により超伝導体薄膜17のパターンを作製した。必要
に応じマイクロブリッジ部は、絶縁膜(ここでは、5i
02等)で覆われている。次に、光導電体薄膜18(こ
こでは、a−5t)を作製した。さらに、電極(ここで
は、Cr−八u)を蒸着し、配線ならびに電流端子19
、電圧端子20.21.22を作製した。そして、その
上に外部からのリード線と接続した。
First, a superconducting thin film (here, B1-5
r-Ca-Cu-0 was used. ) was formed into a film, and a pattern of a superconductor thin film 17 was created using microfabrication technology. If necessary, the micro bridge part is made of an insulating film (here, 5i
02 etc.). Next, a photoconductor thin film 18 (here, a-5t) was produced. Furthermore, electrodes (here, Cr-8U) are deposited, and wiring and current terminals 19
, voltage terminals 20, 21, and 22 were fabricated. Then, a lead wire from the outside was connected to it.

第4図に示す装置において、冷却ブロックの周辺は保温
のため真空に引かれたデユワ−内に置かれ、光検出素子
は77に付近の温度で動作させた。
In the apparatus shown in FIG. 4, the area around the cooling block was placed in a dewar which was evacuated to keep it warm, and the photodetector element was operated at a temperature around 77°C.

[発明の効果] 以上述べたように、本発明により信号入力部で発生した
電流により生ずる磁場を、超伝導体を用いて検出するこ
とができる。また、入力部と検出部を分けた形態にする
ことも可能なため、入力信号をジョセフソン接合の接合
部に必ずしも直接照射する必要がない。従って、信号と
検出器の位置合わせも従来に比べ簡単になる。さらに入
力部の材料を選択することで、検出信号(例えば検出す
る先の波長帯)を自由に選択することが可能となる。
[Effects of the Invention] As described above, according to the present invention, the magnetic field generated by the current generated in the signal input section can be detected using a superconductor. Furthermore, since the input section and the detection section can be separated, it is not necessary to directly irradiate the input signal to the Josephson junction. Therefore, alignment of the signal and the detector becomes easier than before. Furthermore, by selecting the material of the input section, it becomes possible to freely select the detection signal (for example, the wavelength band to be detected).

さらに、検出部のマイクロブリッジ型ジョセフソン接合
部をより臨界温度に近い温度で動作させることにより検
出感度を上げることができる。
Furthermore, detection sensitivity can be increased by operating the microbridge type Josephson junction in the detection section at a temperature closer to the critical temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例1の概念図を示す。 第2図は、光照射による本発明に係る検出器のI−V特
性の変化を示すグラフならびに等価回路を示す。第3図
は、本発明の実施例2の概念図を示す。第4図は、実施
例4の分光測定装置の基本構造図を示す。第5図は、実
施例4の光検出アレーのパターン概念図を示す。第6図
は、従来の検出方式に用いる検出器の概念図を示すもの
である。 1.17・・・超伝導体  、2・・・電流注入用電極
3・・・電圧測定用電極  4・・・負荷抵抗5・・・
バイアス電流印加用電源 6.18・・・光導電体(信号入力部)7・・・光導電
体駆動用電源 8・・・信号検出用電圧計 10・・・入射光11・・
・スリット 13・・・回折格子 15・・・冷却ブロック 19・・・電流端子 12・・・フィルタ 14・・・光検出アレー 16・・・基板 20、21.22・・・電圧端子
FIG. 1 shows a conceptual diagram of Embodiment 1 of the present invention. FIG. 2 shows a graph showing changes in the IV characteristics of the detector according to the present invention due to light irradiation, and an equivalent circuit. FIG. 3 shows a conceptual diagram of Example 2 of the present invention. FIG. 4 shows a basic structural diagram of the spectrometer of Example 4. FIG. 5 shows a conceptual diagram of the pattern of the photodetection array of Example 4. FIG. 6 shows a conceptual diagram of a detector used in the conventional detection method. 1.17...Superconductor, 2...Electrode for current injection 3...Electrode for voltage measurement 4...Load resistance 5...
Power supply for applying bias current 6.18...Photoconductor (signal input section) 7...Power supply for driving photoconductor 8...Voltmeter for signal detection 10...Incoming light 11...
- Slit 13...Diffraction grating 15...Cooling block 19...Current terminal 12...Filter 14...Photodetection array 16...Substrate 20, 21.22...Voltage terminal

Claims (3)

【特許請求の範囲】[Claims] (1)光信号の入力により電流が生じる信号入力部と、
該電流により発生した磁場を検出する、ジョセフソン効
果を用いた超伝導体より成る信号検出部とを少なくとも
有することを特徴とする信号検出器。
(1) A signal input section that generates a current when an optical signal is input;
A signal detector comprising at least a signal detecting section made of a superconductor using the Josephson effect and detecting a magnetic field generated by the current.
(2)前記信号検出部にマイクロブリッジ型ジョセフソ
ン接合を用いたことを特徴とする請求項1記載の信号検
出器。
(2) The signal detector according to claim 1, wherein a microbridge type Josephson junction is used in the signal detection section.
(3)前記信号入力部に光伝導性材料を用いたことを特
徴とする請求項1又は2記載の信号検出器。
(3) The signal detector according to claim 1 or 2, wherein a photoconductive material is used for the signal input section.
JP1180285A 1989-07-05 1989-07-14 Signal detector Expired - Fee Related JP2737006B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1180285A JP2737006B2 (en) 1989-07-14 1989-07-14 Signal detector
DE69009109T DE69009109T2 (en) 1989-07-05 1990-07-04 Device and method for measuring light.
DE69031501T DE69031501T2 (en) 1989-07-05 1990-07-04 Device and method for measuring light using a superconductor
EP93203066A EP0590738B1 (en) 1989-07-05 1990-07-04 Light detecting device and light detecting method using a superconductor
EP90307302A EP0407166B1 (en) 1989-07-05 1990-07-04 Light detecting device and light detection method
US07/548,212 US5155093A (en) 1989-07-05 1990-07-05 Light detecting device and light detecting method using a superconnector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1180285A JP2737006B2 (en) 1989-07-14 1989-07-14 Signal detector

Publications (2)

Publication Number Publication Date
JPH0346520A true JPH0346520A (en) 1991-02-27
JP2737006B2 JP2737006B2 (en) 1998-04-08

Family

ID=16080540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1180285A Expired - Fee Related JP2737006B2 (en) 1989-07-05 1989-07-14 Signal detector

Country Status (1)

Country Link
JP (1) JP2737006B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351720A (en) * 1989-07-19 1991-03-06 Canon Inc Photodetector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351720A (en) * 1989-07-19 1991-03-06 Canon Inc Photodetector

Also Published As

Publication number Publication date
JP2737006B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
EP0590738B1 (en) Light detecting device and light detecting method using a superconductor
Richards Bolometers for infrared and millimeter waves
US4521682A (en) Photodetecting device having Josephson junctions
Danerud et al. Nonequilibrium and bolometric photoresponse in patterned YBa2Cu3O7− δ thin films
US5665980A (en) Fabrication method of superconducting quantum interference device constructed from short weak links with ultrafine metallic wires
JPH0346520A (en) Signal detector
JPH02227690A (en) Radiation detector
EP0291050A2 (en) Superconducting device
JP2748167B2 (en) Optical signal detection element
JP2737003B2 (en) Signal detection method
JP2759508B2 (en) Photo detector
JP2737004B2 (en) Signal detection method
JP2737007B2 (en) Signal detector
JP2715321B2 (en) Photo detector
US5965900A (en) Tunnel-effect superconductive detector cell
Kruse High Tc superconducting IR detectors
RU2801920C1 (en) Differential superconducting detector
JP2715320B2 (en) Photodetector
JPH02205784A (en) Superconducting magnetoresistance element
Phase 6 03 039 3l9l'Ir
JPH0215683A (en) Electromagnetic wave detector
Williams Ultrafast photodetectors based on the hot-electron effect in superconductors
JPH09246613A (en) Electromagnetic wave detecting element
JP2734366B2 (en) Sampling circuit using single electron charging effect
JPH0351720A (en) Photodetector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees