JP2737004B2 - Signal detection method - Google Patents
Signal detection methodInfo
- Publication number
- JP2737004B2 JP2737004B2 JP1171918A JP17191889A JP2737004B2 JP 2737004 B2 JP2737004 B2 JP 2737004B2 JP 1171918 A JP1171918 A JP 1171918A JP 17191889 A JP17191889 A JP 17191889A JP 2737004 B2 JP2737004 B2 JP 2737004B2
- Authority
- JP
- Japan
- Prior art keywords
- superconductor
- signal
- detection method
- detector
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、超伝導体の磁気特性を利用して、入力信号
を磁気信号に変換し、光信号を検出する信号検出方法に
関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal detection method for converting an input signal into a magnetic signal using a magnetic property of a superconductor and detecting an optical signal.
[従来の技術] 従来の超伝導体を用いた信号検出方法、特に光信号を
検出する方法としては、ジョセフソン接合を利用したも
のが知られている[Japanese Journal of Applied Phys
ics Vol.23 L333(1984)]。この光信号検出方法は、
第4図に示すように酸化物超伝導体BaPb0.7Bi0.3O3(BP
BO)薄膜でマイクロブリッジ型ジョセフソン接合を形成
し、この接合部に光を照射し、ジョセフソン接合の臨界
電流値の変化を利用するものである。かかる検出方法を
提供する検出器においては、受光部の材料としてBPBOを
用いており、これは臨界温度が約13Kと低い。すなわ
ち、検出器を動作させるには、液体ヘリウム等を使用し
なければならない。また、かかる検出器の特性は、ジョ
セフソン接合の特性によって決定される。[Prior art] As a conventional signal detection method using a superconductor, particularly a method for detecting an optical signal, a method using a Josephson junction is known [Japanese Journal of Applied Physics].
ics Vol.23 L333 (1984)]. This optical signal detection method
The fourth oxide as shown in FIG superconductor BaPb 0. 7 Bi 0. 3 O 3 (BP
BO) A microbridge-type Josephson junction is formed from a thin film, and this junction is irradiated with light to utilize the change in the critical current value of the Josephson junction. In a detector that provides such a detection method, BPBO is used as the material of the light receiving unit, and the critical temperature is as low as about 13K. That is, to operate the detector, liquid helium or the like must be used. The characteristics of such a detector are determined by the characteristics of the Josephson junction.
[発明が解決しようとする課題] 上記従来例においては、例えばイメージセンサーのよ
うに同時に多数の検出器を使用するとき、加工のバラツ
キ等に起因する検出器間の特性のバラツキを補正しにく
いという問題がある。[Problems to be Solved by the Invention] In the above conventional example, when a large number of detectors are used at the same time, for example, as in an image sensor, it is difficult to correct variations in characteristics between the detectors due to processing variations. There's a problem.
また、超伝導体の分光特性により、検出する光の波長
域も限定されるため、広範囲の波長帯域の信号検出に適
していないという問題もある。Further, since the wavelength range of light to be detected is also limited by the spectral characteristics of the superconductor, there is a problem that it is not suitable for signal detection in a wide wavelength band.
さらには、接合部への光照射において、その領域が非
常に限定されるため、位置合せの精度を要するという問
題もある。Further, there is a problem that the accuracy of alignment is required because the area of the light irradiation to the joint is very limited.
すなわち、本発明の目的とするところは、超伝導物質
の磁気特性を利用することにより、上述のような問題点
を解決することにある。That is, an object of the present invention is to solve the above-described problems by utilizing the magnetic properties of a superconducting material.
[課題を解決するための手段] 本発明の特徴とするところは、信号入力部に光信号を
入力することで電流を生じさせ、該電流により発生した
磁場によって超伝導体の電気特性を変化させ、かかる変
化を検出することで光信号を検出する信号検出方法にあ
る。[Means for Solving the Problems] A feature of the present invention is that a current is generated by inputting an optical signal to a signal input unit, and the electric characteristics of a superconductor are changed by a magnetic field generated by the current. A signal detection method for detecting an optical signal by detecting such a change.
ここで、かかる方法を達成するために用いられる信号
検出部としての超伝導体としては、単結晶又は多結晶か
ら成る超伝導特性を有する材料を細線状にしたものが好
ましい。尚、検出器をより高い温度で動作させるために
は、臨界温度の高い材料が好ましい。この点でY-Ba-Cu-
O系、Bi-Sr-Ca-Cu-O系,Tl-Sr-Ca-Cu-O系セラミックス材
料のような77Kより高い臨界温度を持つ物質が適してい
る。Here, as the superconductor as a signal detecting portion used for achieving such a method, a material having a superconducting property made of a single crystal or a polycrystal and having a thin line shape is preferable. In order to operate the detector at a higher temperature, a material having a higher critical temperature is preferable. In this regard, Y-Ba-Cu-
Materials having a critical temperature higher than 77K, such as O-based, Bi-Sr-Ca-Cu-O-based, and Tl-Sr-Ca-Cu-O-based ceramic materials, are suitable.
一方、検出器の動作温度は、使用する超伝導体の臨界
温度より低い温度であれば良いが、入力信号の検出感度
を上げるためにも臨界温度に近い温度の方がより好まし
い。On the other hand, the operating temperature of the detector may be lower than the critical temperature of the superconductor to be used, but a temperature close to the critical temperature is more preferable in order to increase the detection sensitivity of the input signal.
また、信号入力部に用いる材料としては、赤外,可
視,紫外光のような光信号に対応できる光導電性材料が
好ましい。Further, as a material used for the signal input portion, a photoconductive material that can cope with an optical signal such as infrared, visible, or ultraviolet light is preferable.
特に、大きな光電流を生じる材料としては、InSb,Si,
GaAs,a-Si,CdS,CdSe等が好ましい。In particular, materials that generate a large photocurrent include InSb, Si,
GaAs, a-Si, CdS, CdSe and the like are preferable.
また、上記光電流発生部は信号の受信部であっても、
あるいは信号の受信部に接続されている導線、例えば金
属材料を用いた配線であっても良いことはいうまでもな
い。Further, even if the photocurrent generating unit is a signal receiving unit,
Alternatively, it is needless to say that a conductive wire connected to the signal receiving unit, for example, a wiring using a metal material may be used.
[作用] 光導電性材料より成る信号入力部に光を照射すると、
価電子帯の電子は励起され伝導帯に遷移する。この伝導
帯中で励起された電子が印加された電場により移動する
ことで光電流が生ずる。[Operation] When a signal input portion made of a photoconductive material is irradiated with light,
The electrons in the valence band are excited and transition to the conduction band. A photocurrent is generated by the electrons excited in the conduction band moving by the applied electric field.
一方、物質中に電流が流れると、この電流により磁場
が発生することは、物理の基本的法則として良く知られ
ている。On the other hand, when a current flows through a substance, the generation of a magnetic field by the current is well known as a basic law of physics.
また、超伝導体には第1種と第2種の超伝導体があ
り、材料固有の磁場、つまり臨界磁場より大きな磁場を
印加すると、第一種超伝導体では超伝導状態がこわれ、
第二種超伝導体では材料固有の磁場(Hc1)より強い磁
場により超伝導体中に磁束の一部が侵入し、さらに強い
材料固有磁場(Hc2)以上を印加することにより、超伝
導状態がこわれてしまうことが知られている。本発明
は、このような物理的現象を利用するものである。In addition, there are first and second types of superconductors, and when a magnetic field unique to the material, that is, a magnetic field larger than the critical magnetic field is applied, the superconductivity in the first type superconductor is broken,
By the second type superconductors which are part of the magnetic flux in superconductors by a strong magnetic field than the material-specific field (Hc 1) penetrates, to apply a more stronger material intrinsic magnetic field (Hc 2), superconducting It is known that the state is broken. The present invention utilizes such a physical phenomenon.
すなわち、超伝導体上に絶縁層を介して設けた光導電
性材料に光を照射して光電流を流す。この光電流によ
り、かかる光電流量に相当する磁場が発生し、この磁場
により超伝導体の電気特性が変化する。超伝導体の電気
特性としては、超伝導体中を流れる電流値が低下する、
あるいは、超伝導状態がこわれ電気抵抗が発生するとい
うような変化が考えられるが、利用可能な超伝導特性の
変化であれば何でも良い。That is, a photocurrent is caused to flow by irradiating light to a photoconductive material provided on a superconductor via an insulating layer. This photocurrent generates a magnetic field corresponding to the photoelectric flow, and the magnetic field changes the electrical characteristics of the superconductor. As the electrical characteristics of the superconductor, the current value flowing in the superconductor decreases,
Alternatively, a change such that the superconducting state is broken and an electric resistance is generated is conceivable, but any change in the superconducting characteristics that can be used is possible.
かかる変化を検出することで入力信号を検出するもの
である。By detecting such a change, an input signal is detected.
[実施例] 以下、実施例により本発明を詳述する。EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples.
実施例1 第1図に本発明に基づく一実施例の概念図を示す。第
1図(a)は平面図、第1図(b)は断面図である。1
は超伝導体、2は超伝導体と導線を電気的に絶縁するた
めの絶縁層、3は信号の入力部(受信部)である。Embodiment 1 FIG. 1 shows a conceptual diagram of an embodiment based on the present invention. FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view. 1
Is a superconductor, 2 is an insulating layer for electrically insulating the superconductor and the conductor, and 3 is a signal input unit (reception unit).
先ず、酸化物超伝導体YBa2Cu3O7-δ(0≦δ<0.5)
をマグネトロンスパッタ法等により、MgO基板(不図
示)上に形成し、フォトリソグラフィー技術等により得
られた薄膜を加工する。本実施例では、酸化物超伝導体
を厚さ5000Å、幅10μm、長さ10mmの帯状超伝導体1と
した。次に、この帯の中央部に4×4mm2の大きさで厚さ
2000ÅのMgO薄膜を形成し絶縁層2とした。最後にかか
る絶縁層の上に3×3mm2、厚さ3000ÅのCdS膜を形成
し、信号入力部3とした。First, the oxide superconductor YBa 2 Cu 3 O 7-δ (0 ≦ δ <0.5)
Is formed on an MgO substrate (not shown) by a magnetron sputtering method or the like, and a thin film obtained by a photolithography technique or the like is processed. In this example, the oxide superconductor was a belt-shaped superconductor 1 having a thickness of 5000 mm, a width of 10 μm, and a length of 10 mm. Next, the thickness of a size of 4 × 4 mm 2 in the central portion of the strip
An insulating layer 2 was formed by forming a 2000 mm MgO thin film. Finally, a CdS film having a size of 3 × 3 mm 2 and a thickness of 3000 ° was formed on the insulating layer to form a signal input section 3.
このような構成の検出器において、酸化物超伝導体1
は臨界温度が82K、つまり82K以下で電気抵抗が0にな
る。かかる検出器を液体窒素中に入れて冷却し(77
K)、CdS膜より成る信号入力部3にAr+レーザーの514.5
mm光(出力5mW)を照射した。CdS膜上のくし型形状の電
極7に10Vの電圧を印加したとき、超伝導体1を流れる
電流はレーザー光のON-OFFに対応して変化し、レーザー
光が照射されているON状態のときには、OFF状態のとき
に比べ10%電流値が低下した。これはAr+レーザー光に
よりCdS膜に光電流が発生し、これにより生じた磁場を
超伝導体1が検出したことを意味するものである。In the detector having such a configuration, the oxide superconductor 1
Has a critical temperature of 82K, that is, has an electrical resistance of 0 below 82K. The detector is cooled by placing it in liquid nitrogen (77).
K) 514.5 of Ar + laser is applied to the signal input section 3 made of CdS film.
mm light (output 5 mW) was applied. When a voltage of 10 V is applied to the comb-shaped electrode 7 on the CdS film, the current flowing through the superconductor 1 changes according to the ON / OFF of the laser light, and the current in the ON state where the laser light is irradiated Occasionally, the current value decreased by 10% compared to the OFF state. This means that a photocurrent was generated in the CdS film by the Ar + laser beam, and the resulting magnetic field was detected by the superconductor 1.
実施例2 本発明の第2の実施例を第2図に示した。検出器の構
成は、信号受信部(信号入力部)と検出部を分離してあ
る。第2図に示す検出器においては、動作温度に温度制
御するのは領域5のみでよく、かかる領域をクライオス
タットを用いて77Kに冷却した。Embodiment 2 FIG. 2 shows a second embodiment of the present invention. In the configuration of the detector, the signal receiving unit (signal input unit) and the detecting unit are separated. In the detector shown in FIG. 2, only the region 5 needs to be temperature-controlled to the operating temperature, and the region is cooled to 77 K using a cryostat.
実施例1と同じ材料を用いた場合、レーザー光の照射
により超伝導体を流れる電流は10〜20%低下した。本実
施例では、信号受信部の上部に透明電極8を下部に金属
電極9を用いた。When the same material as in Example 1 was used, the current flowing through the superconductor was reduced by 10 to 20% due to the irradiation of the laser beam. In this embodiment, the transparent electrode 8 is used above the signal receiving unit, and the metal electrode 9 is used below the signal receiving unit.
比較例 第3図に示すように、検出器の構成において絶縁層2
と導体(信号入力部)3の間に超伝導体1′を形成し
た。このような状態で実施例1と同様に光照射を行った
ところ、レーザー光が10mW(514.5mm)の出力になって
も超伝導体1を流れる電流に変化はなかった。このこと
は、超伝導体1′のマイスナー効果のために超伝導体1
が磁場を検出できなかったためである。Comparative Example As shown in FIG.
A superconductor 1 ′ was formed between the conductor and the conductor (signal input part) 3. When light irradiation was performed in this state in the same manner as in Example 1, there was no change in the current flowing through the superconductor 1 even when the laser light output 10 mW (514.5 mm). This is due to the Meissner effect of the superconductor 1 '.
Could not detect the magnetic field.
[発明の効果] 以上述べたように、光信号の入力部(受信部)に生じ
た電流によって発生する磁場を、超伝導体の電気特性の
変化として検出する本発明の信号検出方法によれば、 1.従来(例えばジョセフソン接合の接合部に光を照射す
るといった場合)に比べ、光信号と検出器の位置合せが
容易、すなわち、必要とする任意の大きさの入力部(受
信部)に光信号を入力することが可能となる。[Effects of the Invention] As described above, according to the signal detection method of the present invention, a magnetic field generated by a current generated in an input portion (reception portion) of an optical signal is detected as a change in electrical characteristics of a superconductor. 1. Compared with the conventional case (for example, when illuminating the junction of a Josephson junction with light), the alignment between the optical signal and the detector is easier, that is, the required size of the input unit (reception unit) It is possible to input an optical signal.
2.光信号入力部(受信部)の材料を適宜選択することに
より、従来に比べ広範囲の波長帯域の光信号の検出が可
能となる。2. By appropriately selecting the material of the optical signal input section (receiving section), it is possible to detect an optical signal in a wider wavelength band than in the past.
3.従来(例えばジョセフソン接合においては、検出特性
が接合特性で決定され、マルチ構成とした場合には素子
としての特性のバラツキが大きい)に比べ、超伝導体と
して単純細線形状のものを用いるため、加工精度,再現
性,信頼性等が向上し、特性のバラツキが小さくなる。
これにより素子の集積化が容易となる。3. Compared with the conventional one (for example, in the case of a Josephson junction, the detection characteristics are determined by the junction characteristics, and the characteristics of the element are greatly varied when a multi-configuration is used), and a simple thin wire-shaped superconductor is used. Therefore, processing accuracy, reproducibility, reliability, and the like are improved, and variations in characteristics are reduced.
This facilitates integration of elements.
といったような効果画がある。There is an effect picture like this.
第1図(a)及び(b)は、本発明の信号検出方法を達
成するための検出器の構成を概略的に示した平面図,断
面図である。 第2図は、本発明の信号検出方法を達成するための別の
検出器実施例であり、信号受信部と検出部を分離したも
のを示す。 第3図は、本発明の有効性を調べるために用いた検出器
の概略構成断面図を示す。 第4図は、従来の信号検出方法で用いる検出器の概略構
成斜視図である。 1,1′……超伝導体、2……絶縁体(絶縁層) 3……信号入力部(信号受信部) 5……冷却部、6……電極 7……くし型電極、8……上部透明電極 9……下部金属電極、10……光ファイバー 11……BPBO膜1 (a) and 1 (b) are a plan view and a sectional view schematically showing a configuration of a detector for achieving the signal detection method of the present invention. FIG. 2 shows another embodiment of the detector for achieving the signal detecting method of the present invention, in which a signal receiving section and a detecting section are separated. FIG. 3 is a schematic sectional view of a detector used for checking the effectiveness of the present invention. FIG. 4 is a schematic perspective view of a detector used in a conventional signal detection method. 1, 1 '... superconductor, 2 ... insulator (insulating layer) 3 ... signal input section (signal receiving section) 5 ... cooling section, 6 ... electrode 7 ... comb-shaped electrode, 8 ... Upper transparent electrode 9: Lower metal electrode, 10: Optical fiber 11: BPBO film
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田 透 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 金子 典夫 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 平1−102973(JP,A) 特開 昭64−38618(JP,A) 特開 平2−61522(JP,A) 特開 平1−308928(JP,A) 特開 平1−110279(JP,A) 特開 平1−96582(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toru Tadashi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Norio Kaneko 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon (56) References JP-A-1-102973 (JP, A) JP-A-64-38618 (JP, A) JP-A-2-61522 (JP, A) JP-A-1-3088928 (JP, A) A) JP-A-1-110279 (JP, A) JP-A-1-96582 (JP, A)
Claims (1)
を生じさせ、該電流により発生した磁場によって超伝導
体の電気特性を変化させ、かかる変化を検出することで
光信号を検出することを特徴とする信号検出方法。1. An optical signal is input to a signal input unit to generate a current, a magnetic field generated by the current changes electric characteristics of a superconductor, and an optical signal is detected by detecting the change. A signal detection method characterized by the above-mentioned.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1171918A JP2737004B2 (en) | 1989-07-05 | 1989-07-05 | Signal detection method |
EP93203066A EP0590738B1 (en) | 1989-07-05 | 1990-07-04 | Light detecting device and light detecting method using a superconductor |
DE69031501T DE69031501T2 (en) | 1989-07-05 | 1990-07-04 | Device and method for measuring light using a superconductor |
EP90307302A EP0407166B1 (en) | 1989-07-05 | 1990-07-04 | Light detecting device and light detection method |
DE69009109T DE69009109T2 (en) | 1989-07-05 | 1990-07-04 | Device and method for measuring light. |
US07/548,212 US5155093A (en) | 1989-07-05 | 1990-07-05 | Light detecting device and light detecting method using a superconnector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1171918A JP2737004B2 (en) | 1989-07-05 | 1989-07-05 | Signal detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0337528A JPH0337528A (en) | 1991-02-18 |
JP2737004B2 true JP2737004B2 (en) | 1998-04-08 |
Family
ID=15932259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1171918A Expired - Fee Related JP2737004B2 (en) | 1989-07-05 | 1989-07-05 | Signal detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2737004B2 (en) |
-
1989
- 1989-07-05 JP JP1171918A patent/JP2737004B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0337528A (en) | 1991-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0407166B1 (en) | Light detecting device and light detection method | |
US4521682A (en) | Photodetecting device having Josephson junctions | |
Kraus | Superconductive bolometers and calorimeters | |
US4970395A (en) | Wavelength tunable infrared detector based upon super-schottky or superconductor-insulator-superconductor structures employing high transition temperature superconductors | |
US4578691A (en) | Photodetecting device | |
US5665980A (en) | Fabrication method of superconducting quantum interference device constructed from short weak links with ultrafine metallic wires | |
US5057485A (en) | Light detecting superconducting Josephson device | |
US5347143A (en) | Tunnelling barrier between two non-tunnelling superconductor-insulator-controlling superconductor-insulator-superconductor structures | |
JP5076051B2 (en) | Electromagnetic wave detecting element and electromagnetic wave detecting device using the same | |
JP2737004B2 (en) | Signal detection method | |
Chana et al. | Alternating current Josephson effect in intrinsic Josephson bridges in Tl 2 Ba 2 CaCu 2 O 8 thin films | |
US5332911A (en) | Semiconductor component with adiabatic transport in edge channels | |
JP2737006B2 (en) | Signal detector | |
EP0291050A2 (en) | Superconducting device | |
JP2748167B2 (en) | Optical signal detection element | |
JP2715321B2 (en) | Photo detector | |
JP2737007B2 (en) | Signal detector | |
US5965900A (en) | Tunnel-effect superconductive detector cell | |
JP2759508B2 (en) | Photo detector | |
JP2737003B2 (en) | Signal detection method | |
US5121173A (en) | Proximity effect very long wavlength infrared (VLWIR) radiation detector | |
JP4058548B2 (en) | Particle beam detector | |
US5254850A (en) | Method and apparatus for improving photoconductor signal output utilizing a geometrically modified shaped confinement region | |
JP2715320B2 (en) | Photodetector | |
JPH1197753A (en) | Chip carrier for superconductive circuit chip and measuring device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |