JP2737006B2 - Signal detector - Google Patents

Signal detector

Info

Publication number
JP2737006B2
JP2737006B2 JP1180285A JP18028589A JP2737006B2 JP 2737006 B2 JP2737006 B2 JP 2737006B2 JP 1180285 A JP1180285 A JP 1180285A JP 18028589 A JP18028589 A JP 18028589A JP 2737006 B2 JP2737006 B2 JP 2737006B2
Authority
JP
Japan
Prior art keywords
signal
superconductor
detector
current
signal detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1180285A
Other languages
Japanese (ja)
Other versions
JPH0346520A (en
Inventor
泰子 元井
岳彦 川崎
透 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1180285A priority Critical patent/JP2737006B2/en
Priority to EP90307302A priority patent/EP0407166B1/en
Priority to EP93203066A priority patent/EP0590738B1/en
Priority to DE69009109T priority patent/DE69009109T2/en
Priority to DE69031501T priority patent/DE69031501T2/en
Priority to US07/548,212 priority patent/US5155093A/en
Publication of JPH0346520A publication Critical patent/JPH0346520A/en
Application granted granted Critical
Publication of JP2737006B2 publication Critical patent/JP2737006B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超伝導体の磁気特性を利用して、入力信号
を磁気信号に変換し、光信号を検出する信号検出器に関
する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal detector that converts an input signal into a magnetic signal using a magnetic property of a superconductor and detects an optical signal.

[従来の技術] 従来の超伝導体を用いた信号検出器、特に光信号を検
出する検出器としては、ジョセフソン接合を利用したも
のが知られている[Japanese Journal of Applied Phys
ics vol. 23 L333(1984)]。この光信号検出器は、第
6図に示すように酸化物超伝導体BaPb0.7Bi0.3O3(BPB
O)薄膜でマイクロブリッジ型ジョセフソン接合を形成
し、この接合部に光を照射し、ジョセフソン接合の臨界
電流値の変化を利用するものである。かかる検出器にお
いては、受光部の材料としてBPBOを用いており、これは
臨界温度が約13Kと低い。すなわち、検出器を動作させ
るには、液体ヘリウム等を使用しなければならない。ま
た、かかる検出器の特性は、ジョセフソン接合の特性に
よって決定される。
[Prior art] As a signal detector using a conventional superconductor, particularly a detector using a Josephson junction is known as a detector for detecting an optical signal [Japanese Journal of Applied Physics]
ics vol. 23 L333 (1984)]. This optical signal detector is composed of an oxide superconductor BaPb 0.7 Bi 0.3 O 3 (BPB
O) A microbridge-type Josephson junction is formed from a thin film, and this junction is irradiated with light to utilize the change in the critical current value of the Josephson junction. In such a detector, BPBO is used as the material of the light receiving section, and its critical temperature is as low as about 13K. That is, to operate the detector, liquid helium or the like must be used. The characteristics of such a detector are determined by the characteristics of the Josephson junction.

[発明が解決しようとする課題] 上記従来例においては、例えばイメージセンサーのよ
うに同時に多数の検出器を使用するとき、加工のバラツ
キ等に起因する検出器間の特性のバラツキを補正しにく
いという問題がある。
[Problems to be Solved by the Invention] In the above conventional example, when a large number of detectors are used at the same time, for example, as in an image sensor, it is difficult to correct variations in characteristics between the detectors due to processing variations. There's a problem.

また、超伝導体の分光特性により、検出する光の波長
域も限定されるため、広範囲の波長帯域の信号検出に適
していないという問題もある。
Further, since the wavelength range of light to be detected is also limited by the spectral characteristics of the superconductor, there is a problem that it is not suitable for signal detection in a wide wavelength band.

さらには、接合部への光照射において、その領域が非
常に限定されるため、位置合せの精度を要するという問
題もある。
Further, there is a problem that the accuracy of alignment is required because the area of the light irradiation to the joint is very limited.

すなわち、本発明の目的とするところは、超伝導物質
の磁気特性を利用することにより、上述のような問題点
を解決することにある。
That is, an object of the present invention is to solve the above-described problems by utilizing the magnetic properties of a superconducting material.

[課題を解決するための手段] 本発明の特徴とするところは、光信号の入力により電
流が生じる信号入力部と、該電流により発生した磁場を
検出する、ジョセフソン効果を用いた超伝導体より成る
信号検出部とを少なくとも有する光信号を検出する信号
検出器にある。
[Means for Solving the Problems] The present invention is characterized in that a signal input section in which a current is generated by input of an optical signal and a superconductor using the Josephson effect for detecting a magnetic field generated by the current. And a signal detector for detecting an optical signal.

また、前記信号検出部にマイクロブリッジ型ジョセフ
ソン接合を用いた信号検出器にある。
Further, there is provided a signal detector using a micro-bridge type Josephson junction for the signal detecting section.

さらには、前記信号入力部に光伝導性材料を用いた信
号検出器を特徴とするものである。
Further, a signal detector using a photoconductive material for the signal input section is characterized.

ここで、かかる信号検出器を達成するために用いられ
る信号検出部としての超伝導体としては、単結晶又は多
結晶から成る超伝導特性を有する材料が好ましい。尚、
検出器をより高い温度で動作させるためには、臨界温度
の高い材料が好ましい。この点でY−Ba−Cu−O系、Bi
−Sr−Ca−Cu−O系、Tl−Sr−Ca−Cu−O系セラミック
ス材料のような液体窒素の沸点である77Kより高い臨界
温度を持つ物質が適している。
Here, as a superconductor as a signal detecting portion used to achieve such a signal detector, a material having superconducting characteristics made of a single crystal or a polycrystal is preferable. still,
To operate the detector at a higher temperature, a material with a higher critical temperature is preferred. In this regard, the Y-Ba-Cu-O system, Bi
A substance having a critical temperature higher than the boiling point of liquid nitrogen, 77 K, such as a -Sr-Ca-Cu-O-based or Tl-Sr-Ca-Cu-O-based ceramic material is suitable.

一方、検出器の動作温度は、使用する超伝導体の臨界
温度より低い温度であれば良いが、入力信号の検出感度
を上げるためにも臨界温度に近い温度の方がより好まし
い。
On the other hand, the operating temperature of the detector may be lower than the critical temperature of the superconductor to be used, but a temperature close to the critical temperature is more preferable in order to increase the detection sensitivity of the input signal.

また、信号入力部に用いる材料としては、赤外,可
視,紫外光のような光信号に対応できる光導電性材料が
好ましい。
Further, as a material used for the signal input portion, a photoconductive material that can cope with an optical signal such as infrared, visible, or ultraviolet light is preferable.

特に、大きな光電流を生じる材料としては、InSb,Si,
GaAs,a−Si,CdS,CdSe等が好ましい。
In particular, materials that generate a large photocurrent include InSb, Si,
GaAs, a-Si, CdS, CdSe and the like are preferable.

また、上記光電流発生部は信号の受信部であっても、
あるいは信号の受信部に接続されている導線、例えば金
属材料を用いた配線であっても良いことはいうまでもな
い。
Further, even if the photocurrent generating unit is a signal receiving unit,
Alternatively, it is needless to say that a conductive wire connected to the signal receiving unit, for example, a wiring using a metal material may be used.

[作 用] 例えば、光導電性材料より成る信号入力部に光を照射
すると、価電子帯の電子は励起され伝導帯に遷移する。
この伝導帯中で励起された電子が印加された電場により
移動することで光電流が生ずる。
[Operation] For example, when light is irradiated on a signal input portion made of a photoconductive material, electrons in the valence band are excited and transit to the conduction band.
A photocurrent is generated by the electrons excited in the conduction band moving by the applied electric field.

一方、物質中に電流が流れると、この電流により磁場
が発生することは、物理の基本的法則として良く知られ
ている。
On the other hand, when a current flows through a substance, the generation of a magnetic field by the current is well known as a basic law of physics.

また、超伝導体には第一種と第二種の超伝導体があ
り、材料固有の磁場、つまり臨界磁場より大きな磁場を
印加すると、第一種超伝導体では超伝導状態がこわれ、
第二種超伝導体では材料固有の磁場(Hc1)より強い磁
場により超伝導体中に磁束の一部が侵入し、さらに強い
材料固有磁場(Hc2)以上を印加することにより、超伝
導状態がこわれてしまい、常伝導状態に転移することが
知られている。本発明は、このような物理的現象を利用
するものである。
In addition, there are first and second types of superconductors, and when a magnetic field unique to the material, that is, a magnetic field larger than the critical magnetic field is applied, the superconductivity in the first type superconductor breaks down,
In the second-class superconductor, a part of the magnetic flux penetrates into the superconductor due to a magnetic field stronger than the material-specific magnetic field (Hc 1 ), and is applied to a material strength magnetic field (Hc 2 ) or higher. It is known that the state is broken and changes to a normal conduction state. The present invention utilizes such a physical phenomenon.

すなわち、第2図に示すように、超伝導体の両端に臨
界電流IJより若干小さいバイアス電流IOを流しておく。
That is, as shown in FIG. 2, previously flushed with slightly smaller bias current I O than the critical current I J across the superconductor.

ここに、超伝導体上方に設けた光導電性材料に光を照
射して光電流を流す。この光電流により、かかる光電流
量に相当する磁場が発生し、この磁場により超伝導電流
が抑制され、接合間に電圧が発生する。
Here, photocurrent is caused to flow by irradiating light to the photoconductive material provided above the superconductor. This photocurrent generates a magnetic field corresponding to the photoelectric flow, which suppresses the superconducting current and generates a voltage between the junctions.

このジョセフソン接合と負荷抵抗を並列に接続してお
けば、動作点がAからBに移り、電圧の変化を読みとる
ことが可能となるわけである。尚、ここで加える電流
は、光導電効果によるものに限らず、光起電力効果等電
流発生の可能なものならば何でも良い。
If the Josephson junction and the load resistance are connected in parallel, the operating point shifts from A to B, and it becomes possible to read the change in voltage. Note that the current applied here is not limited to the one due to the photoconductive effect, but may be anything that can generate a current such as a photovoltaic effect.

[実施例] 以下、実施例により本発明を詳述する。EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples.

実施例1 第1図に本発明に基づく一実施例の概念図を示す。図
中1は超伝導体、2は電流注入用電極、3は電圧測定用
電極、4は負荷抵抗、5はバイアス電流印加用電源、6
は光導電体、7は光導電体駆動用電源、8は信号検出用
電圧計である。
Embodiment 1 FIG. 1 shows a conceptual diagram of an embodiment based on the present invention. In the figure, 1 is a superconductor, 2 is a current injection electrode, 3 is a voltage measurement electrode, 4 is a load resistance, 5 is a bias current application power source, 6
Is a photoconductor, 7 is a power supply for driving the photoconductor, and 8 is a voltmeter for signal detection.

先ず、酸化物超伝導体YBa2Ca3O7−δ(0≦δ≦0.
5)をマグネトロンスパッタ法等によりMgO基板(不図
示)上に形成し、フォトリソグラフィー等の微細加工技
術により得られた薄膜を加工する。本実施例では、酸化
物超伝導体を厚さ5000Å、幅2mm、長さ5mmの帯状とし、
マイクロブリッジ部は、幅8μm、長さ12μmとした。
次に、この超伝導体上にCr,Auの電極を4本厚さ1000
Å、幅500μmで作製し、電流注入用電極2、電圧測定
用電極3とした。さらに、帯の中央部にMgO薄膜を形成
して絶縁層とし、最後にMgO膜の上にCdS膜を作製して信
号入力部6とした。
First, the oxide superconductor YBa 2 Ca 3 O 7-δ (0 ≦ δ ≦ 0.
5) is formed on an MgO substrate (not shown) by a magnetron sputtering method or the like, and a thin film obtained by a fine processing technique such as photolithography is processed. In this embodiment, the oxide superconductor is formed in a belt shape having a thickness of 5000 mm, a width of 2 mm, and a length of 5 mm,
The microbridge was 8 μm wide and 12 μm long.
Next, four Cr and Au electrodes having a thickness of 1000 were formed on the superconductor.
Å, prepared with a width of 500 μm, and used as an electrode 2 for current injection and an electrode 3 for voltage measurement. Further, an MgO thin film was formed at the center of the band to form an insulating layer. Finally, a CdS film was formed on the MgO film to form a signal input section 6.

かかる構成にした場合の超伝導体の臨界温度は85Kで
あった。この検出器を液体窒素中(77K)に入れ、バイ
アス電流印加用電源5に10mV、光導電体駆動用電源7に
10V印加した。ここで、光導電体6に光を照射しない場
合、信号検出用電圧計8は0Vであり超伝導はこわれてい
なかった。
The critical temperature of the superconductor in such a configuration was 85K. This detector is put in liquid nitrogen (77K), and the power supply 5 for bias current application is 10 mV, and the power supply 7 for photoconductor drive is
10 V was applied. Here, when the photoconductor 6 was not irradiated with light, the voltmeter 8 for signal detection was 0 V, and the superconductivity was not broken.

次に、光導電内6にHe−Neレーザー5mWを照射したと
ころ、信号検出用電圧計8は3mVを示した。このこと
は、光照射により光導電体6に光電流が発生し、これに
より生じた磁場で臨界電流値が抑制されて、超伝導状態
をこわしたことを意味している。
Next, when the photoconductive chamber 6 was irradiated with 5 mW of a He-Ne laser, the voltmeter 8 for signal detection showed 3 mV. This means that a photocurrent was generated in the photoconductor 6 by the light irradiation, and the critical current value was suppressed by the magnetic field generated by this, and the superconducting state was broken.

実施例2 本発明の第2の実施例を第3図に示した。Embodiment 2 FIG. 3 shows a second embodiment of the present invention.

かかる検出器の構成は、実施例1の構成において、信
号入力部6を検出部から分離したものとし、その代わり
に新たな電極9を設けた。よって、信号入力部である光
導電体6は、液体窒素にて冷却する必要がなく、実施例
1と同様な測定を行ったところ、光照射の有無と検出用
電圧計の電圧の有無が対応し、光検出可能なことが確か
められた。
In the configuration of such a detector, the signal input unit 6 is separated from the detection unit in the configuration of the first embodiment, and a new electrode 9 is provided instead. Therefore, it was not necessary to cool the photoconductor 6 serving as the signal input unit with liquid nitrogen, and the same measurement as in Example 1 was performed. As a result, it was confirmed that light detection was possible.

実施例3 実施例1では、電流注入用電極2,電圧測定用電極3を
金属にて作製したが、本実施例では、超伝導体(例えば
YBa2Cu3O7−δ)を用いた。本構成においても光検出可
能なことが確認された。
Example 3 In Example 1, the current injection electrode 2 and the voltage measurement electrode 3 were made of metal, but in this example, the superconductor (for example,
YBa 2 Cu 3 O 7-δ ) was used. It was confirmed that light detection was also possible in this configuration.

実施例4 第4図に本発明による分光測定装置の基本構造図を第
5図に光検出アレーの概念図を示す。
Embodiment 4 FIG. 4 shows a basic structural diagram of a spectrometer according to the present invention, and FIG. 5 shows a conceptual diagram of a light detection array.

第4図示の分光測定装置において、入射光10がスリッ
ト11とフィルタ12を介して、回折格子(等の分散素子)
13に入射される。回折格子13は固定されており、反射光
は光検出アレー14に入射されるようになっている。そし
て、かかる光検出素子アレー14は、冷却ブロック15上に
接合された基板16上に設けられたジョセフソン接合を用
いた光検出素子からなる。
In the spectrometer shown in FIG. 4, the incident light 10 passes through a slit 11 and a filter 12 and is then diffracted by a diffraction grating (e.g.
It is incident on 13. The diffraction grating 13 is fixed, and the reflected light is incident on the light detection array 14. The photodetector array 14 is composed of photodetectors using a Josephson junction provided on a substrate 16 bonded on a cooling block 15.

第5図示の光検出アレーにおいて、17は酸化物超伝導
体薄膜、18は光導電体薄膜、19は電流端子、20,21,22は
電圧端子である。
In the photodetection array shown in FIG. 5, 17 is an oxide superconductor thin film, 18 is a photoconductor thin film, 19 is a current terminal, and 20, 21 and 22 are voltage terminals.

先ず、MgO基板上に超伝導薄膜(ここでは、Bi−Sr−C
a−Cu−Oを用いた。)を成膜し、微細加工技術により
超伝導体薄膜17のパターンを作製した。必要に応じマイ
クロブリッジ部は、絶縁膜(ここでは、SiO2等)で覆わ
れている。次に、光導電体薄膜18(ここでは、a−Si)
を作製した。さらに、電極(ここでは、Cr−Au)を蒸着
し、配線ならびに電流端子19、電圧端子20,21,22を作製
した。そして、その上に外部からのリード線と接続し
た。
First, a superconducting thin film (here, Bi-Sr-C
a-Cu-O was used. ) Was formed, and a pattern of the superconductor thin film 17 was formed by a fine processing technique. If necessary, the microbridge portion is covered with an insulating film (here, SiO 2 or the like). Next, the photoconductor thin film 18 (here, a-Si)
Was prepared. Further, an electrode (here, Cr-Au) was vapor-deposited, and wiring, a current terminal 19, and voltage terminals 20, 21, and 22 were produced. Then, a lead wire from outside was connected thereon.

第4図に示す装置において、冷却ブロックの周辺は保
温のため真空に引かれたデュワー内に置かれ、光検出素
子は77K付近の温度で動作させた。
In the apparatus shown in FIG. 4, the periphery of the cooling block was placed in a dewar that was evacuated to keep the temperature, and the photodetector was operated at a temperature around 77K.

[発明の効果] 以上述べたように、本発明により信号入力部で発生し
た電流により生ずる磁場を、超伝導体を用いて検出する
ことができる。また、入力部と検出部を分けた形態にす
ることも可能なため、入力信号をジョセフソン接合の接
合部に必ずしも直接照射する必要がない。従って、信号
と検出器の位置合わせも従来に比べ簡単になる。さらに
入力部の材料を選択することで、検出信号(例えば検出
する光の波長帯)を自由に選択することが可能となる。
[Effects of the Invention] As described above, a magnetic field generated by a current generated in a signal input unit according to the present invention can be detected using a superconductor. In addition, since the input unit and the detection unit can be configured separately, it is not always necessary to directly irradiate an input signal to the junction of the Josephson junction. Therefore, the alignment between the signal and the detector becomes easier than before. Further, by selecting a material of the input section, it is possible to freely select a detection signal (for example, a wavelength band of light to be detected).

さらに、検出部のマイクロブリッジ型ジョセフソン接
合部をより臨界温度に近い温度で動作させることにより
検出感度を上げることができる。
Further, the detection sensitivity can be increased by operating the microbridge-type Josephson junction of the detection unit at a temperature closer to the critical temperature.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の実施例1の概念図を示す。第2図
は、光照射による本発明に係る検出器のI−V特性の変
化を示すグラフならびに等価回路を示す。第3図は、本
発明の実施例2の概念図を示す。第4図は、実施例4の
分光測定装置の基本構造図を示す。第5図は、実施例4
の光検出アレーのパターン概念図を示す。第6図は、従
来の検出方式に用いる検出器の概念図を示すものであ
る。 1,17……超伝導体、2……電流注入用電極 3……電圧測定用電極、4……負荷抵抗 5……バイアス電流印加用電源 6,18……光導電体(信号入力部) 7……光導電体駆動用電源 8……信号検出用電圧計、10……入射光 11……スリット、12……フィルタ 13……回折格子、14……光検出アレー 15……冷却ブロック、16……基板 19……電流端子、20,21,22……電圧端子
FIG. 1 shows a conceptual diagram of Embodiment 1 of the present invention. FIG. 2 shows a graph showing an IV characteristic change of the detector according to the present invention due to light irradiation and an equivalent circuit. FIG. 3 shows a conceptual diagram of Embodiment 2 of the present invention. FIG. 4 shows a basic structural diagram of the spectrometer of Example 4. FIG. 5 shows Embodiment 4.
FIG. 1 shows a conceptual diagram of a pattern of a light detection array of FIG. FIG. 6 is a conceptual diagram of a detector used in a conventional detection method. 1,17 ... superconductor, 2 ... electrode for current injection 3 ... electrode for voltage measurement, 4 ... load resistance 5 ... power supply for bias current application 6,18 ... photoconductor (signal input section) 7 Power supply for photoconductor driving 8 Voltage meter for signal detection 10 Incident light 11 Slit 12 Filter 13 Diffraction grating 14 Photodetection array 15 Cooling block 16 ... board 19 ... current terminal, 20, 21, 22 ... voltage terminal

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−102973(JP,A) 特開 昭64−38618(JP,A) 特開 平2−61522(JP,A) 特開 平1−308928(JP,A) 特開 平1−110279(JP,A) 特開 平1−96582(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-102973 (JP, A) JP-A-64-38618 (JP, A) JP-A-2-61522 (JP, A) JP-A-1 308928 (JP, A) JP-A-1-110279 (JP, A) JP-A-1-96582 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光信号を検出する信号検出器であって、光
信号の入力により電流が生じる信号入力部と、該電流に
より発生した磁場を検出する、ジョセフソン効果を用い
た超伝導体より成る信号検出部とを少なくとも有するこ
とを特徴とする信号検出器。
1. A signal detector for detecting an optical signal, comprising: a signal input section in which a current is generated by input of an optical signal; and a superconductor using a Josephson effect for detecting a magnetic field generated by the current. And a signal detector comprising:
【請求項2】前記信号検出部にマイクロブリッジ型ジョ
セフソン接合を用いたことを特徴とする請求項1記載の
信号検出器。
2. The signal detector according to claim 1, wherein a micro-bridge type Josephson junction is used for the signal detector.
【請求項3】前記信号入力部に光伝導性材料を用いたこ
とを特徴とする請求項1又は2記載の信号検出器。
3. The signal detector according to claim 1, wherein a photoconductive material is used for the signal input section.
JP1180285A 1989-07-05 1989-07-14 Signal detector Expired - Fee Related JP2737006B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1180285A JP2737006B2 (en) 1989-07-14 1989-07-14 Signal detector
EP90307302A EP0407166B1 (en) 1989-07-05 1990-07-04 Light detecting device and light detection method
EP93203066A EP0590738B1 (en) 1989-07-05 1990-07-04 Light detecting device and light detecting method using a superconductor
DE69009109T DE69009109T2 (en) 1989-07-05 1990-07-04 Device and method for measuring light.
DE69031501T DE69031501T2 (en) 1989-07-05 1990-07-04 Device and method for measuring light using a superconductor
US07/548,212 US5155093A (en) 1989-07-05 1990-07-05 Light detecting device and light detecting method using a superconnector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1180285A JP2737006B2 (en) 1989-07-14 1989-07-14 Signal detector

Publications (2)

Publication Number Publication Date
JPH0346520A JPH0346520A (en) 1991-02-27
JP2737006B2 true JP2737006B2 (en) 1998-04-08

Family

ID=16080540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1180285A Expired - Fee Related JP2737006B2 (en) 1989-07-05 1989-07-14 Signal detector

Country Status (1)

Country Link
JP (1) JP2737006B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2896788B2 (en) * 1989-07-19 1999-05-31 キヤノン株式会社 Photodetector

Also Published As

Publication number Publication date
JPH0346520A (en) 1991-02-27

Similar Documents

Publication Publication Date Title
EP0590738B1 (en) Light detecting device and light detecting method using a superconductor
Richards Bolometers for infrared and millimeter waves
Willardson et al. Semiconductors and semimetals
Forrester et al. Optical response of epitaxial films of YBa2Cu3O7− δ
US4521682A (en) Photodetecting device having Josephson junctions
Danerud et al. Nonequilibrium and bolometric photoresponse in patterned YBa2Cu3O7− δ thin films
JP2737006B2 (en) Signal detector
JPH02227690A (en) Radiation detector
EP0291050A2 (en) Superconducting device
JP2737004B2 (en) Signal detection method
JP2737007B2 (en) Signal detector
JP2737003B2 (en) Signal detection method
JP2715321B2 (en) Photo detector
JP2748167B2 (en) Optical signal detection element
US4814598A (en) Optical wavelength analyzer and image processing system utilizing Josephson junctions
JP2759508B2 (en) Photo detector
US5965900A (en) Tunnel-effect superconductive detector cell
Zheng et al. Y-Ba-Cu-O thin film infrared detectors
Kruse High Tc superconducting IR detectors
JP2715320B2 (en) Photodetector
Osterman et al. Superconducting infrared detector arrays with integrated processing circuitry
Monticone et al. Niobium Josephson junction bolometers for optical detection in the visible-infrared region
JP2896788B2 (en) Photodetector
JPH0652198B2 (en) Photo detector
JPH01152322A (en) Array-like photo detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees