JP2737003B2 - Signal detection method - Google Patents

Signal detection method

Info

Publication number
JP2737003B2
JP2737003B2 JP1171917A JP17191789A JP2737003B2 JP 2737003 B2 JP2737003 B2 JP 2737003B2 JP 1171917 A JP1171917 A JP 1171917A JP 17191789 A JP17191789 A JP 17191789A JP 2737003 B2 JP2737003 B2 JP 2737003B2
Authority
JP
Japan
Prior art keywords
superconductor
current
signal
signal detection
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1171917A
Other languages
Japanese (ja)
Other versions
JPH0337527A (en
Inventor
透 田
克彦 新庄
素子 元井
岳彦 川崎
典夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1171917A priority Critical patent/JP2737003B2/en
Priority to DE69031501T priority patent/DE69031501T2/en
Priority to EP93203066A priority patent/EP0590738B1/en
Priority to DE69009109T priority patent/DE69009109T2/en
Priority to EP90307302A priority patent/EP0407166B1/en
Priority to US07/548,212 priority patent/US5155093A/en
Publication of JPH0337527A publication Critical patent/JPH0337527A/en
Application granted granted Critical
Publication of JP2737003B2 publication Critical patent/JP2737003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超伝導体の電流−電圧特性に基づき発生す
る電圧を検出することで光信号を検出する信号検出方法
に関する。
Description: TECHNICAL FIELD The present invention relates to a signal detection method for detecting an optical signal by detecting a voltage generated based on current-voltage characteristics of a superconductor.

[従来の技術] 従来の超伝導体を用いた信号検出方法、特に光信号を
検出する方法としては、ジョセフソン接合を利用したも
のが知られている[Japanese Journal of Applied Phys
ics vol.23 L333(1984)]この光信号検出方法は、第
4図に示すように、酸化物超伝導体BaPb0.7Bio0.3O3(B
PBO)薄膜でマイクロブリッジ型ジョセフソン接合を形
成し、この接合部に光を照射し、ジョセフソン接合の臨
界電流値の変化を利用するものである。かかる検出方法
を提供する検出器においては、受光部の材料としてBPBO
を用いており、これは臨界温度が約13Kと低い。すなわ
ち、検出器を動作させるには、液体ヘリウム等を使用し
なければならない。また、かかる検出器の特性は、ジョ
セフソン接合の特性によって決定される。
[Prior art] As a conventional signal detection method using a superconductor, particularly a method for detecting an optical signal, a method using a Josephson junction is known [Japanese Journal of Applied Physics].
ics vol.23 L333 (1984)] The optical signal detection method, as shown in FIG. 4, the oxide superconductor BaPb 0. 7 Bio 0. 3 O 3 (B
A microbridge-type Josephson junction is formed from a PBO) thin film, and this junction is irradiated with light to utilize the change in the critical current value of the Josephson junction. In a detector that provides such a detection method, BPBO
Which has a low critical temperature of about 13K. That is, to operate the detector, liquid helium or the like must be used. The characteristics of such a detector are determined by the characteristics of the Josephson junction.

[発明が解決しようとする課題] 上記従来例においては、例えばイメージセンサーのよ
うに同時に多数の検出器を使用するとき、加工のバラツ
キ等に起因する検出器間の特性のバラツキを補正しにく
いという問題がある。
[Problems to be Solved by the Invention] In the above conventional example, when a large number of detectors are used at the same time, for example, as in an image sensor, it is difficult to correct variations in characteristics between the detectors due to processing variations. There's a problem.

また、超伝導体の分光特性により、検出する光の波長
域も限定されるため、広範囲の波長帯域の信号検出に適
していないという問題もある。
Further, since the wavelength range of light to be detected is also limited by the spectral characteristics of the superconductor, there is a problem that it is not suitable for signal detection in a wide wavelength band.

さらには、接合部への光照射において、その領域が非
常に限定されるため、位置合せの精度を要するという問
題もある。
Further, there is a problem that the accuracy of alignment is required because the area of the light irradiation to the joint is very limited.

すなわち、本発明の目的とするところは、超伝導体の
電流−電圧特性に基づき発生する電圧を検出することで
光信号を検出することにより、上述のような問題点を解
決することにある。
That is, an object of the present invention is to solve the above-described problems by detecting an optical signal by detecting a voltage generated based on current-voltage characteristics of a superconductor.

[課題を解決するための手段] 本発明の特徴とするところは、信号入力部に光信号を
入力することで電流を生じさせ、該電流を、該信号入力
部とは電気的に接続されているが分離して配置された、
超伝導体を用いた信号検出部に注入し、該超伝導体に該
超伝導体の臨界電流値を越える電流を流して該超伝導体
の両端に発生する電圧を検出することで光信号を検出す
る信号検出方法にある。
[Means for Solving the Problems] A feature of the present invention is that a current is generated by inputting an optical signal to a signal input portion, and the current is electrically connected to the signal input portion. Are located separately
An optical signal is injected into a signal detector using a superconductor, and a current exceeding a critical current value of the superconductor is applied to the superconductor to detect a voltage generated at both ends of the superconductor. There is a signal detection method to detect.

ここで、かかる方法を達成するために用いられる信号
検出部としての超伝導体としては、単結晶又は多結晶か
ら成る超伝導体特性を有する材料を細線状にしたものが
好ましい。尚、検出器をより高い温度で動作させるため
には、臨界温度の高い材料が好ましい。この点でY-Ba-C
u-O系、Bi-Sr-Ca-Cu-O系,Tl-Sr-Ca-Cu-O系セラミックス
材料のような77Kより高い臨界温度を持つ物質が適して
いる。
Here, as the superconductor as a signal detection unit used for achieving such a method, a material in which a material having a superconductor property of a single crystal or a polycrystal is formed into a thin wire is preferable. In order to operate the detector at a higher temperature, a material having a higher critical temperature is preferable. In this regard, Y-Ba-C
Materials having a critical temperature higher than 77K, such as uO, Bi-Sr-Ca-Cu-O, and Tl-Sr-Ca-Cu-O ceramic materials, are suitable.

一方、検出器の動作温度は、使用する超伝導体の臨界
温度より低い温度であれば良いが、入力信号の検出感度
を上げるためにも臨界温度に近い温度の方がより好まし
い。
On the other hand, the operating temperature of the detector may be lower than the critical temperature of the superconductor to be used, but a temperature close to the critical temperature is more preferable in order to increase the detection sensitivity of the input signal.

また、信号入力部に用いる材料としては、赤外,可
視,紫外光のような光信号に対応できる光導電性材料が
好ましい。
Further, as a material used for the signal input portion, a photoconductive material that can cope with an optical signal such as infrared, visible, or ultraviolet light is preferable.

特に、大きな光電流を生じる材料としてはInSb,Si,Ga
As,a-Si,CdS,CdSe等が好ましい。
In particular, InSb, Si, Ga
As, a-Si, CdS, CdSe and the like are preferable.

[作用] 光導電性材料より成る信号入力部に光を照射すると、
価電子帯の電子は励起され伝導帯に遷移する。この伝導
帯中で励起された電子が印加された磁場により移動する
ことで光電流が生ずる。
[Operation] When a signal input portion made of a photoconductive material is irradiated with light,
The electrons in the valence band are excited and transition to the conduction band. The electrons excited in this conduction band are moved by the applied magnetic field to generate a photocurrent.

一方、超伝導物質中に電流が流れると、ある一定値ま
で電圧は発生しないが、臨界電流値を越えると超伝導状
態がこわれ電圧が発生する。
On the other hand, when a current flows through the superconducting material, no voltage is generated to a certain value, but when the current exceeds a critical current value, the superconducting state is broken and a voltage is generated.

本発明は、このような物理的現象を利用するものであ
る。すなわち、超伝導体の両端に臨界電流より若干少な
いバイアス電流を流しておく。この電流にさらに、例え
ば光導電効果により得られた電流を加えてやると、合計
した電流値が超伝導臨界電流より大きくなれば超伝導が
こわれ、超伝導体両端に電圧が発生することになる。こ
こで加える電流は、光導電効果によるものに限らず、光
起電力効果,デンバー効果等、電流発生の可能なものな
らば何でも良い。
The present invention utilizes such a physical phenomenon. That is, a bias current slightly smaller than the critical current is applied to both ends of the superconductor. If the current obtained by the photoconductive effect is further added to this current, if the total current value becomes larger than the superconducting critical current, the superconductivity is broken, and a voltage is generated across the superconductor. . The current applied here is not limited to the one due to the photoconductive effect, but may be anything that can generate a current, such as the photovoltaic effect and the Denver effect.

すなわち、上記発生した電圧を検出することにより、
入力信号を検出することができることになる。
That is, by detecting the generated voltage,
The input signal can be detected.

[実施例] 以下、実施例により本発明を詳述する。EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples.

実施例1 第1図に本発明に基づく一実施例の概念図を示す。図
中1は超伝導体、2は電流注入用電極、3は電圧測定用
電極、4はバイアス電流印加用電源、5は光導電セル駆
動用電源、6は光導電セル、7は信号検出用電圧計であ
る。
Embodiment 1 FIG. 1 shows a conceptual diagram of an embodiment based on the present invention. In the figure, 1 is a superconductor, 2 is a current injection electrode, 3 is a voltage measurement electrode, 4 is a bias current application power source, 5 is a photoconductive cell driving power source, 6 is a photoconductive cell, and 7 is a signal detection. It is a voltmeter.

先ず、酸化物超伝導体YBa2Cu3O7-δ(0≦δ<0.5)
をマグネトロンスパッタ法等によりMgO基板(不図示)
上に形成し、フォトリソグラフィー技術等により得られ
た薄膜を加工する。本実施例では、酸化物超伝導体を厚
さ5000Å、幅20μm、長さ5mmの帯状超伝導体1とし
た。次に、この帯上にCr,Auの電極を4本厚さ1000Å、
巾50μmの寸法に作成し、電流注入用電極2、電圧測定
用電極3とした。
First, the oxide superconductor YBa 2 Cu 3 O 7-δ (0 ≦ δ <0.5)
To MgO substrate (not shown) by magnetron sputtering
A thin film formed on the upper surface and obtained by a photolithography technique or the like is processed. In this example, the oxide superconductor was a belt-shaped superconductor 1 having a thickness of 5000 mm, a width of 20 μm, and a length of 5 mm. Next, four electrodes of Cr and Au were put on this band and the thickness was 1000 mm.
The electrode was prepared to have a width of 50 μm, and was used as a current injection electrode 2 and a voltage measurement electrode 3.

かかる構成にした場合の超伝導体の臨界温度は88Kで
あった。この検出器を液体窒素中(77K)に入れ、バイ
アス電流印加用電源4に10mV、光導電セル駆動用電源5
に10V印加した。ここで、光導電セル6は室温部に置
き、これに光を照射しない場合、信号検出用電圧計7は
OVであり超伝導はこわれていなかった。次に、光導電セ
ル6にHe-Neレーザーの5mWを照射したところ、信号検出
用電圧計7は3mVを示した。このことは、光照射により
超伝導体1に臨界電流値以上の電流が流れ、超伝導状態
をこわしたことを意味している。
The critical temperature of the superconductor in such a configuration was 88K. This detector is put in liquid nitrogen (77K), and the power supply 4 for bias current application is 10 mV, and the power supply 5 for driving the photoconductive cell is 5
10V was applied. Here, the photoconductive cell 6 is placed in a room temperature part, and when the light is not irradiated to this, the signal detection voltmeter 7
It was OV and superconductivity was not broken. Next, when the photoconductive cell 6 was irradiated with 5 mW of He-Ne laser, the voltmeter 7 for signal detection showed 3 mV. This means that a current higher than the critical current value has flowed into the superconductor 1 due to the light irradiation, which has broken the superconducting state.

実施例2 本発明の第2の実施例を図2に示した。検出器の構成
は、信号受信部である光起電力効果を用いたPN接合部8
と検出部の一体型になっている。液体窒素中でPN接合部
8に光を照射しない場合電圧はOVであるが、PN接合部8
に実施例1同様の光を照射すると電圧が発生した。これ
は光起電力効果により超伝導体1に流れる電流が増大
し、超伝導状態がこわれた為である。
Embodiment 2 FIG. 2 shows a second embodiment of the present invention. The configuration of the detector is a PN junction 8 using the photovoltaic effect, which is a signal receiving unit.
And a detection unit. When light is not irradiated to the PN junction 8 in liquid nitrogen, the voltage is OV.
When the same light was applied to Example 1, a voltage was generated. This is because the current flowing in the superconductor 1 increased due to the photovoltaic effect, and the superconducting state was broken.

尚、受光感度を上げる為、実施例1では光導電セル6
を室温で用いたように、本実施例ではPN接合部に小型ヒ
ーターを取り付けることが可能である。
In order to increase the light receiving sensitivity, the photoconductive cell 6 is used in the first embodiment.
In this example, a small heater can be attached to the PN junction as was used at room temperature.

実施例3 第2図で示した光検出器をアレー状にした素子の実施
例を第3図に示す。図中1は、線巾15μm,膜厚0.5μm,
長さ50μmの超伝導細線で一直線上に並べてある。図中
9は、各超伝導細線部の電圧を読み込む電圧測定回路系
である。ここで図中8の一連の受光部(PN接合部)は、
1の超伝導体部分から離れており、1の部分と8の部分
で別々の温度設定ができるようになっている。この素子
の左側半分に10mルクスの光を入射したところ、左側半
分に電圧が発生した。このことは、この素子がラインセ
ンサーとして使用できることを意味している。
Embodiment 3 FIG. 3 shows an embodiment of an element in which the photodetector shown in FIG. 2 is formed into an array. In the figure, 1 is a line width of 15 μm, a film thickness of 0.5 μm,
Superconducting thin wires of 50 μm length are arranged on a straight line. Reference numeral 9 in the figure denotes a voltage measurement circuit system for reading the voltage of each superconducting thin wire portion. Here, a series of light receiving units (PN junctions) 8 in the figure
It is separated from the superconductor part 1 so that different temperatures can be set in the part 1 and the part 8. When 10 mlux light was incident on the left half of this device, a voltage was generated on the left half. This means that the element can be used as a line sensor.

[発明の効果] 以上述べたように、本発明の信号検出方法によれば、 1.従来(例えばジョセフソン接合の接合部に光を照射す
るといった場合)に比べ、光信号と検出器の位置合せが
容易、すなわち、必要とする任意の大きさの入力部(受
信部)に信号を入力することが可能となる。
[Effects of the Invention] As described above, according to the signal detection method of the present invention, 1. Compared with the conventional method (for example, when irradiating a junction of a Josephson junction with light), the optical signal and the position of the detector It is easy to match, that is, it is possible to input a signal to an input unit (reception unit) of any required size.

2.光信号入力部(受信部)の材料を適宜選択することに
より、従来に比べ広範囲の波長帯域の光信号の検出が可
能となる。
2. By appropriately selecting the material of the optical signal input section (receiving section), it is possible to detect an optical signal in a wider wavelength band than in the past.

3.従来(例えばジョセフソン接合においては、検出特性
が接合特性で決定され、マルチ構成とした場合には素子
としての特性のバラツキが大きい)に比べ、超伝導体と
して単純細線形状のものを用いるため、加工精度,再現
性,信頼性等が向上し、特性のバラツキが小さくなる。
これにより素子の集積化が容易となる。
3. Compared with the conventional one (for example, in the case of a Josephson junction, the detection characteristics are determined by the junction characteristics, and the characteristics of the element are greatly varied when a multi-configuration is used), and a simple thin wire-shaped superconductor is used. Therefore, processing accuracy, reproducibility, reliability, and the like are improved, and variations in characteristics are reduced.
This facilitates integration of elements.

といったような効果がある。There are such effects.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の信号検出方法を達成するための光導電
セルを用いた検出器の構成を示す概略図である。 第2図は、本発明の信号検出方法を達成するための光起
電力効果を用いた別の検出器の構成を示す概略図であ
る。 第3図は、第2図で示した光検出器をアレー状にした素
子の概略構成図を示す。 第4図は、従来の信号検出方法で用いる検出器の概略構
成斜視図である。 1……超伝導体、2……電流注入用電極 3……電圧測定用電極、4……バイアス電流印加電源 5……光導電セル駆動用電源、6……光導電セル 7……信号検出用電圧計、8……PN接合部 9……電圧測定回路系、10……光ファイバー 11……BPBO膜
FIG. 1 is a schematic diagram showing a configuration of a detector using a photoconductive cell for achieving the signal detection method of the present invention. FIG. 2 is a schematic diagram showing the configuration of another detector using the photovoltaic effect for achieving the signal detection method of the present invention. FIG. 3 is a schematic configuration diagram of an element in which the photodetector shown in FIG. 2 is arranged in an array. FIG. 4 is a schematic perspective view of a detector used in a conventional signal detection method. DESCRIPTION OF SYMBOLS 1 ... Superconductor, 2 ... Current injection electrode 3 ... Voltage measurement electrode 4, ... Bias current application power supply 5 ... Photoconductive cell drive power supply, 6 ... Photoconductive cell 7 ... Signal detection Voltmeter for 8 PN junction 9 Voltage measurement circuit system 10 Optical fiber 11 BPBO film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川崎 岳彦 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 金子 典夫 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭64−86575(JP,A) 特開 昭64−50486(JP,A) 特開 平1−184423(JP,A) 特開 平1−102973(JP,A) ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Takehiko Kawasaki 3- 30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (72) Inventor Norio Kaneko 3- 30-2 Shimomaruko, Ota-ku, Tokyo Canon (56) References JP-A-64-86575 (JP, A) JP-A-64-50486 (JP, A) JP-A-1-184423 (JP, A) JP-A-1-102973 (JP, A A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】信号入力部に光信号を入力することで電流
を生じさせ、該電流を、該信号入力部とは電気的に接続
されているが分離して配置された、超伝導体を用いた信
号検出部に注入し、該超伝導体に該超伝導体の臨界電流
値を越える電流を流して該超伝導体の両端に発生する電
圧を検出することで光信号を検出することを特徴とする
信号検出方法。
1. An optical signal is input to a signal input section to generate a current, and the current is generated by a superconductor electrically connected to the signal input section but arranged separately from the signal input section. The optical signal is detected by injecting the signal into the used signal detection unit and detecting a voltage generated at both ends of the superconductor by flowing a current exceeding the critical current value of the superconductor to the superconductor. Characteristic signal detection method.
JP1171917A 1989-07-05 1989-07-05 Signal detection method Expired - Fee Related JP2737003B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1171917A JP2737003B2 (en) 1989-07-05 1989-07-05 Signal detection method
DE69031501T DE69031501T2 (en) 1989-07-05 1990-07-04 Device and method for measuring light using a superconductor
EP93203066A EP0590738B1 (en) 1989-07-05 1990-07-04 Light detecting device and light detecting method using a superconductor
DE69009109T DE69009109T2 (en) 1989-07-05 1990-07-04 Device and method for measuring light.
EP90307302A EP0407166B1 (en) 1989-07-05 1990-07-04 Light detecting device and light detection method
US07/548,212 US5155093A (en) 1989-07-05 1990-07-05 Light detecting device and light detecting method using a superconnector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1171917A JP2737003B2 (en) 1989-07-05 1989-07-05 Signal detection method

Publications (2)

Publication Number Publication Date
JPH0337527A JPH0337527A (en) 1991-02-18
JP2737003B2 true JP2737003B2 (en) 1998-04-08

Family

ID=15932239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1171917A Expired - Fee Related JP2737003B2 (en) 1989-07-05 1989-07-05 Signal detection method

Country Status (1)

Country Link
JP (1) JP2737003B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486575A (en) * 1987-06-17 1989-03-31 Hitachi Ltd Superconducting device
JPS6450486A (en) * 1987-08-20 1989-02-27 Mitsubishi Electric Corp Optical switch element
JPH01184423A (en) * 1988-01-18 1989-07-24 Fujitsu Ltd Superconducting photodetector

Also Published As

Publication number Publication date
JPH0337527A (en) 1991-02-18

Similar Documents

Publication Publication Date Title
EP0407166B1 (en) Light detecting device and light detection method
Forrester et al. Optical response of epitaxial films of YBa2Cu3O7− δ
US6111254A (en) Infrared radiation detector
US4521682A (en) Photodetecting device having Josephson junctions
US4578691A (en) Photodetecting device
JP2737003B2 (en) Signal detection method
US5332911A (en) Semiconductor component with adiabatic transport in edge channels
Forrester et al. Optical response of epitaxial and granular films of YBa/sub 2/Cu/sub 3/O/sub 7-delta/at temperatures from 25 K to 100 K
JP2737007B2 (en) Signal detector
JP2737006B2 (en) Signal detector
EP0291050A2 (en) Superconducting device
JP2759508B2 (en) Photo detector
JP2715321B2 (en) Photo detector
JP2748167B2 (en) Optical signal detection element
JP2737004B2 (en) Signal detection method
JP2540511B2 (en) Superconducting phototransistor
US5965900A (en) Tunnel-effect superconductive detector cell
JP2896788B2 (en) Photodetector
Osterman et al. Superconducting infrared detector arrays with integrated processing circuitry
JPH0215683A (en) Electromagnetic wave detector
JP2715320B2 (en) Photodetector
JP2737008B2 (en) Photodetector
Williams Ultrafast photodetectors based on the hot-electron effect in superconductors
Ogita et al. Some aspects of position‐sensitive photodetectors made of amorphous silicon
JPH0652198B2 (en) Photo detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees