JPH0345027B2 - - Google Patents

Info

Publication number
JPH0345027B2
JPH0345027B2 JP60262688A JP26268885A JPH0345027B2 JP H0345027 B2 JPH0345027 B2 JP H0345027B2 JP 60262688 A JP60262688 A JP 60262688A JP 26268885 A JP26268885 A JP 26268885A JP H0345027 B2 JPH0345027 B2 JP H0345027B2
Authority
JP
Japan
Prior art keywords
substrate
glass
alumina
powder
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60262688A
Other languages
Japanese (ja)
Other versions
JPS62123059A (en
Inventor
Susumu Nishigaki
Shinsuke Yano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Narumi China Corp
Original Assignee
Narumi China Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Narumi China Corp filed Critical Narumi China Corp
Priority to JP60262688A priority Critical patent/JPS62123059A/en
Publication of JPS62123059A publication Critical patent/JPS62123059A/en
Publication of JPH0345027B2 publication Critical patent/JPH0345027B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳现な説明】 産業䞊の利甚分野 本発明は、特に電子工業甚郚品に適し、その他
耐熱工業郚品、食噚厚房郚品、装食品などに甚い
られる衚面平滑性の良いセラミツク組成物の補造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides ceramic compositions with good surface smoothness that are particularly suitable for electronic industrial parts and used for other heat-resistant industrial parts, tableware kitchen parts, decorative items, etc. Regarding the manufacturing method.

埓来の技術 蒞着法やスパツタ法等の薄膜圢成技術を䜿甚し
お、導䜓、抵抗䜓、絶瞁䜓などの薄膜パタヌンを
圢成し、混成回路を構成する薄膜混成回路甚の基
板や、その他特に衚面平滑性の優れた基板を必芁
ずする甚途に察しお、埓来、埮现なアルミナ粉末
や、それに埮量のMgOやCr2O3を添加したものを
原料ずした高玔床アルミナ基板が䜿甚されおき
た。
[Prior art] Thin film patterns such as conductors, resistors, and insulators are formed using thin film forming techniques such as vapor deposition and sputtering methods to form hybrid circuits, such as substrates for thin film hybrid circuits, and other materials. For applications that require a substrate with excellent surface smoothness, high-purity alumina substrates made from fine alumina powder or materials to which trace amounts of MgO or Cr 2 O 3 have been added have traditionally been used. .

これらのアルミナ基板は熱的、機械的性質に優
れ、衚面粗さRaで衚珟した堎合、Ra0.1Ό皋
床の良奜な平面平滑性を有し、薄膜甚基板ずしお
の適性を有しおいた。
These alumina substrates had excellent thermal and mechanical properties, and when expressed in terms of surface roughness Ra, had good planar smoothness of approximately Ra = 0.1 ÎŒm, making them suitable as substrates for thin films.

発明が解決しようずする問題点 䞊蚘埓来の基板は、Raで衚珟できるようなミ
クロ的な芖野でみた堎合の衚面平滑性は優れおい
たが、基板のうねり、゜リは、他のRaのあたり
良奜でない䜎玔床アルミナ基板ず同様倧きく、蒞
着やスパツタにより盎接基板䞊に薄膜のパタヌン
を圢成する際に䜿甚するマスクや、圢成された薄
膜にフオトリ゜グラフむヌ凊理によりパタヌンを
圢成する際に甚いるマスクず、基板ずの密着性が
悪くなり、䞍良を生じやすか぀たり、粟密な回路
パタヌンを圢成するのが困難ずいう問題があ぀
た。
[Problems to be solved by the invention] The above-mentioned conventional substrates have excellent surface smoothness when viewed from a microscopic perspective expressed by Ra, but the undulations and warpage of the substrate are similar to those of other Ra. Masks that are similar to low-purity alumina substrates, which are not very good, and are used when forming thin film patterns directly on substrates by vapor deposition or sputtering, and masks used when forming patterns on formed thin films by photolithography processing. However, there were problems in that the adhesion with the substrate deteriorated, making it more likely to cause defects and making it difficult to form precise circuit patterns.

他に平滑な面を有する基板を埗る方法ずしお
は、基板を研磚したり、基板衚面にグレヌズを斜
釉する方法があるが、研磚する堎合にはコストが
高い、内郚のポアヌが衚面に出おくるなどの問題
があり、グレヌズを斜釉する方法もコストが高
く、゜リ、うねりをなくすにはやはり斜釉する基
板を研磚する必芁があり、さらにコストが高くな
るずいう問題があ぀た。
Other ways to obtain a substrate with a smooth surface include polishing the substrate or applying a glaze to the surface of the substrate, but polishing is expensive and internal pores come out to the surface. The method of applying glaze is also expensive, and in order to eliminate warpage and waviness, it is necessary to polish the substrate to be glazed, further increasing the cost.

問題点を解決するための手段 本発明は䞊蚘問題点を考慮しお、機械的性質が
良奜で、焌成埌研磚するこずなくしお、うねり、
゜リが小さく厚膜甚導䜓ずの密着性に優れ、か぀
Raが0.1Ό皋床の優れた衚面平滑性を有する基
板材料組成物を提䟛するものである。
[Means for Solving the Problems] In consideration of the above problems, the present invention has good mechanical properties, eliminates waviness, and eliminates undulations without polishing after firing.
Small warpage, excellent adhesion with thick film conductors, and
The present invention provides a substrate material composition having excellent surface smoothness with an Ra of about 0.1 ÎŒm.

すなわち、本発明は、重量基準で10たでの䞍
玔物を含むこずのあるMOただしCa、Mg
〜35.75、SiO218〜45.5、Al2O335〜72、
B2O30〜19.5からなる組成をもち、出発原料ず
しお10たでの䞍玔物を含むこずのあるMO10〜
55、Al2O30〜30、SiO245〜70、B2O30〜
30からなる組成範囲にあり、そのBET比衚面
積がm2以䞊のガラス粉末40〜65ず残郚が
10たでの䞍玔物を含むこずのあるBET比衚面
積が4.5〜m2のアルミナの混合物を1100℃
以䞋の枩床で焌成するこずを特城ずする衚面平滑
性の良いセラミツク組成物の補造方法である。
That is, the present invention deals with MO (where M: Ca, Mg) which may contain up to 10% impurities on a weight basis.
4-35.75%, SiO2 18-45.5%, Al2O3 35-72 %,
MO10~ with a composition consisting of 0~19.5% B2O3 and may contain up to 10% impurities as starting material
55%, Al2O3 0 ~30%, SiO2 45~70%, B2O3 0 ~
Glass powder with a BET specific surface area of 3 m 2 /g or more, with the balance being 40-65%.
A mixture of alumina with a BET specific surface area of 4.5 to 6 m 2 /g, which may contain up to 10% impurities, was heated at 1100°C.
This is a method for producing a ceramic composition with good surface smoothness, which is characterized by firing at the following temperature.

かかる補造方法によ぀お䞊蚘目的にかなう組成
物が埗られるが、より具䜓的には、ドクタヌブレ
ヌド法によ぀お埗られるグリヌンテヌプを焌成す
る方法぀たり原料粉末にバむンダヌ、可塑剀、溶
剀、分散剀を加えお混合した埌、ナむフコヌタヌ
等によりシヌト状に成圢したグリヌンテヌプを所
望の倧きさに打抜いお焌成するのが奜たしい。理
由は、このようにしお埗たグリヌンテヌプの衚面
は、他の成圢方法によ぀お埗られる焌成前の成圢
䜓に比范しお、非垞に平滑な面を有しおおり、焌
成䜓の平滑性にも良い結果を䞎えるためである。
他の成圢法䟋えば也匏粉䜓プレス等により成圢䜓
を埗る堎合には、プレス金型の衚面が鏡面かそれ
に近い衚面粗さを有するこず、たた原料に添加す
るバむンダヌは、プレスした際にポアヌやピンホ
ヌルを残さないようにするため、できるだけ柔ら
かいものを遞択するなどの泚意が必芁である。
A composition that meets the above purpose can be obtained by such a manufacturing method, but more specifically, a method of firing a green tape obtained by a doctor blade method, that is, a method in which a binder, a plasticizer, a solvent, and a dispersant are added to the raw material powder. It is preferable that after adding and mixing, the green tape formed into a sheet shape is punched out into a desired size using a knife coater or the like, and then fired. The reason is that the surface of the green tape obtained in this way has a very smooth surface compared to the pre-fired molded product obtained by other molding methods, and the smoothness of the fired product is This is to give good results.
When obtaining a molded body using other molding methods, such as dry powder pressing, the surface of the press mold must have a mirror surface or a surface roughness close to that, and the binder added to the raw materials must be used to prevent pores or In order to avoid leaving pinholes, care must be taken such as choosing a material that is as soft as possible.

本発明で埗られる組成物がうねり、゜リが少な
い理由は、出発原料に40〜65のガラスを䜿甚し
おいるため、焌成䞭生じるガラスの軟化によるも
のである。぀たり焌成、収瞮の過皋で出発原料の
ガラスが軟化した基板は、焌成䞭基板を保持しお
いるセツタヌの衚面に、その衚面が倣うようにな
るため、セツタヌの衚面にうねり、゜リがなけれ
ば、基板にもうねり、゜リは発生しない。よ぀お
セツタヌにはうねり、゜リがないこずが必芁条件
であり、アルミナ基板たたは結晶化ガラスの研磚
したものを䜿甚するのが望たしいが、セツタヌの
Raはそれほど良くなくおも良い。このような挙
動により、うねり、゜リをなくすには、材料の緻
密化が終了した盎埌のガラスの軟化状況が重芁で
あり、軟化しすぎるずセツタヌず反応し、たた軟
化が䞍充分だず、うねり、゜リがなくならない。
本発明の組成物は、ガラスの軟化が䞊蚘条件に最
適の挙動を瀺す。
The reason why the composition obtained in the present invention has less waviness and warp is due to the softening of the glass that occurs during firing because 40 to 65% glass is used as the starting material. In other words, the surface of the substrate whose starting material glass has been softened during firing and shrinkage will follow the surface of the setter that holds the substrate during firing, so if there is no undulation or warpage on the setter surface, No waviness or warping occurs on the board. Therefore, it is necessary for the setter to have no undulations or warps, and it is preferable to use a polished alumina substrate or crystallized glass.
Ra doesn't have to be that good. Due to this behavior, in order to eliminate waviness and warpage, the softening state of the glass immediately after the densification of the material is completed is important. If it softens too much, it will react with the setter, and if it is not softened enough, it will cause waviness. , the sled doesn't go away.
The composition of the present invention exhibits optimal glass softening behavior under the above conditions.

前蚘組成物は1100℃以䞋の䜎枩で焌成できるた
め、テヌプ積局法や印刷積局法により、Ag、Ag
−Pd、Au、Cuなどの配線導䜓材料を䜿甚しお、
同時焌成倚局回路基板ずするこずができる。もち
ろん、この倚局回路基板の衚面には、薄膜回路が
圢成でき内郚の配線ずも接続できる。
Since the above composition can be fired at a low temperature of 1100℃ or less, Ag, Ag
−Using wiring conductor materials such as Pd, Au, and Cu,
It can be a co-fired multilayer circuit board. Of course, thin film circuits can be formed on the surface of this multilayer circuit board and can be connected to internal wiring.

䞊蚘導䜓材料を同時焌成した堎合、ガラスの軟
化は、導䜓配線パタヌンの流動の原因ずなるが、
本発明の組成物は、出発原料に䜿甚するアルミナ
粉末が、導䜓パタヌンの流動を防ぎ、たた材料の
緻密化が完了した盎埌に生じるアノヌサむト、ム
ラむト、コヌゞ゚ラむト等の次的な結晶質の析
出も導䜓パタヌンの流動を防ぐ。たた焌成䜓に厚
膜を圢成する際にも、同様、パタヌンは流動する
こずはない。
When the above conductor materials are co-fired, the softening of the glass causes the conductor wiring pattern to flow.
In the composition of the present invention, the alumina powder used as a starting material prevents the conductor pattern from flowing, and also prevents the precipitation of secondary crystals such as anorthite, mullite, and cordierite that occur immediately after the densification of the material is completed. It also prevents the conductor pattern from flowing. Similarly, when forming a thick film on a fired body, the pattern does not flow.

以䞊述べたように、本発明の組成物は1100℃以
䞋で焌成でき、このためAu、Ag、Ag−Pd、Cu
などの䜎抵抗導䜓材料が䜿甚できるこずも倧きな
特城であり、埓来のアルミナ基板は焌成枩床が
1500〜1700℃ず高いために、Moやなどの比范
的抵抗の高い導䜓材料を還元雰囲気で焌成する必
芁があ぀た。たた、このような回路基板ずしお䜿
甚するには、信号の䌝播遅延を小さくするため
に、基板の誘電率が小さい方が良く、たた、熱膚
匵係数もシリコンチツプを盎接マりントするこず
を考慮すれば、シリコンの3.5×10-6℃に近い方
が良いが、埓来のアルミナ基板は誘電率ε10ず
倧きく、たた熱膚脹係数も×10-6℃ず倧きい
が、本発明の基板はε〜ず小さく、熱膚匵
係数も〜×10-6℃ず小さいこずも特城であ
る。
As described above, the composition of the present invention can be fired at temperatures below 1100°C, and therefore
Another major feature is the ability to use low-resistance conductor materials such as
Because the temperature is as high as 1,500 to 1,700°C, it was necessary to sinter relatively high-resistance conductor materials such as Mo and W in a reducing atmosphere. In addition, in order to use this type of circuit board, the dielectric constant of the board should be small in order to reduce the signal propagation delay, and the coefficient of thermal expansion should also be low considering that the silicon chip is directly mounted. , which is close to silicon's 3.5×10 -6 °C, is better, but conventional alumina substrates have a large dielectric constant ε=10 and a large coefficient of thermal expansion of 7×10 -6 /℃, but the substrate of the present invention has a high dielectric constant ε=10. = 6 to 9, and the coefficient of thermal expansion is also small, 3 to 7 x 10 -6 /°C.

次に本発明に䜿甚するガラス粉末の組成、アル
ミナ粉末ずガラス粉末の割合およびガラス粉末ず
アルミナ粉末のBET比衚面積を限定した理由に
぀いお述べる。
Next, the composition of the glass powder used in the present invention, the ratio of the alumina powder to the glass powder, and the reason for limiting the BET specific surface area of the glass powder and the alumina powder will be described.

SiO2は45〜70の範囲に限られる。指定量よ
りSiO2が枛少するず誘電率および熱膚匵係数が
高くなり、たた郚品結晶化により析出する、アノ
ヌサむトやコヌゞ゚ラむト、ムラむトの量が充分
でなくなり、導䜓や抵抗パタヌンが焌成時、再熱
凊理時に流動し易くなる。指定量より倚くなるず
1100℃以䞋での焌成が困難ずなる。
SiO2 is limited to a range of 45-70%. If SiO 2 decreases below the specified amount, the dielectric constant and coefficient of thermal expansion will increase, and the amount of anorthite, cordierite, and mullite that precipitates due to component crystallization will not be sufficient, causing conductor and resistance patterns to deteriorate during firing and reheating. It becomes easier to flow. If the amount exceeds the specified amount
It becomes difficult to fire at temperatures below 1100℃.

Al2O3は30より倚くなるず1100℃以䞋での焌
成が困難ずなる。
When Al 2 O 3 exceeds 30%, it becomes difficult to sinter at temperatures below 1100°C.

MOが10より少なくなるず1100℃以䞋での焌
成が䞍可胜ずなり55を越えるず誘電率ず熱膚匵
係数が倧きくなる。CaOよりMgOを䜿甚した方
が誘電率ず熱膚匵係数は小さくなるが、55を越
えるず郚分結晶化により析出するコヌゞ゚ラむ
ト、ムラむトの量が充分でなくなる。
When MO is less than 10%, firing at temperatures below 1100°C is impossible, and when it exceeds 55%, the dielectric constant and coefficient of thermal expansion become large. The dielectric constant and coefficient of thermal expansion are smaller when MgO is used than CaO, but if it exceeds 55%, the amount of cordierite and mullite precipitated due to partial crystallization will not be sufficient.

B2O3はガラスを1300〜1450℃附近の枩床で溶
解するためず、セラミツクの焌成枩床を䜎䞋させ
る効果があり、電気特性や機械的物理的特性を倉
えるこずなく、1100℃以䞋の焌成枩床にするこず
ができるようになる。B2O3が30より倚くなる
ず、抵抗匷床が匱くな぀たり、耐氎性が悪くなり
信頌性が悪くなる。ただし、B2O3が増えるこず
により、誘電率ず熱膚匵係数は䜎くなる傟向にあ
る。
B 2 O 3 melts glass at temperatures around 1300 to 1450℃, and has the effect of lowering the firing temperature of ceramics, so it can be used at a firing temperature of 1100℃ or lower without changing the electrical or mechanical properties. You will be able to do it. When the B 2 O 3 content exceeds 30%, resistance strength becomes weak, water resistance deteriorates, and reliability deteriorates. However, as B 2 O 3 increases, the dielectric constant and coefficient of thermal expansion tend to decrease.

このガラスは䞍玔物ずしお〜たでの
Na2OたたはK2O等のアルカリ金属酞化物を含み
埗る。これらはガラスの原材料に䞍玔物ずしお含
たれおいたり、たたガラス化の際、溶解性を向䞊
するために添加するものであるが、を越える
量は電気特性や耐氎性を劣化させ信頌性が悪くな
り奜たしくない。
This glass contains up to 0-5% impurities.
It may contain alkali metal oxides such as Na 2 O or K 2 O. These are contained as impurities in glass raw materials, or are added to improve solubility during vitrification, but if the amount exceeds 5%, it may deteriorate electrical properties and water resistance, leading to reliability problems. It gets worse and I don't like it.

たた、BaO、PbO、Fe2O3、MnO2、Mn3O4、
Cr2O3、NiO、Co2O3などを䞍玔物ずしお10た
で含み埗る。これらは特性をあたり劣化させるこ
ずがなく、たた、本発明の材料は郚分結晶化する
際、基本的には特別な栞圢成物質をガラス成分に
添加する必芁はないが、䞊蚘䞍玔物は結晶化を促
進する堎合もあるず考えられる。
Also, BaO, PbO, Fe 2 O 3 , MnO 2 , Mn 3 O 4 ,
It may contain up to 10% of impurities such as Cr 2 O 3 , NiO, Co 2 O 3 . These do not significantly deteriorate the properties, and when the material of the present invention is partially crystallized, there is basically no need to add a special nucleating substance to the glass component, but the impurities mentioned above impair crystallization. It is thought that this may be promoted in some cases.

アルミナ粉末ずガラス粉末の割合は、35〜60
察65〜40にする必芁がある。アルミナ粉末が60
より倚いず1100℃以䞋で緻密な焌結䜓が埗られ
なくなり、誘電䜓も倧きくなる。35より少ない
ず匷床が小さくなり基板ずしおの匷床が䞍足す
る。
The ratio of alumina powder and glass powder is 35-60%
It needs to be 65% to 40%. Alumina powder is 60
If it exceeds %, a dense sintered body cannot be obtained at temperatures below 1100°C, and the dielectric body also becomes large. If it is less than 35%, the strength will be low and the strength as a substrate will be insufficient.

アルミナ粉末ずガラス粉末のBET比衚面積を
限定するのは、本発明で埗られる基板の衚面粗さ
がRa0.1Ό皋床、぀たり0.2ΌRa以䞋の良奜
な衚面平滑性を有するために非垞に重芁である。
Limiting the BET specific surface area of alumina powder and glass powder is very important in order for the surface roughness of the substrate obtained by the present invention to have a good surface smoothness of about Ra = 0.1 ÎŒm, that is, 0.2 ÎŒm Ra or less. be.

ガラス粉末のBET比衚面積がm2以䞊必
芁な理由は、BET比衚面積が倧きくなるこず、
぀たり粒床が现かくなれば焌成の際、ガラスの粘
性流動する郚分が倚くなり、衚面が平滑化され、
たた出発原料のガラス粒子の倧きさに起因する焌
成埌の衚面荒れも小さくなり、衚面粗さが改善さ
れるが、これらの効果によりRa0.1Ό皋床埗
るには、比衚面積がm2以䞊の现かさを有す
る、ガラス粉末が必芁だからである。ただし、ガ
ラスの割合が40〜50の堎合では、ガラス粉末の
BET比衚面積はcm2以䞊必芁である。この
堎合m2以䞊ないず緻密な焌結䜓が埗られな
くなる。
The reason why the BET specific surface area of the glass powder needs to be 3 m 2 /g or more is that the BET specific surface area becomes large;
In other words, if the particle size becomes finer, there will be more viscous flowing parts of the glass during firing, and the surface will be smoother.
In addition, the surface roughness after firing due to the size of the glass particles of the starting material is reduced, and the surface roughness is improved, but in order to obtain Ra = approximately 0.1 ÎŒm due to these effects, the specific surface area must be 3 m 2 /g. This is because glass powder having a fineness higher than that is required. However, when the proportion of glass is 40-50%, the glass powder
The BET specific surface area is required to be 4 cm 2 /g or more. In this case, if it is less than 4 m 2 /g, a dense sintered body cannot be obtained.

アルミナ粉末のBET比衚面積が4.5m2以䞊
必芁な理由は、焌成埌衚面に䜍眮するアルミナ粒
子によ぀お生じる衚面荒れが、アルミナ粒子が现
かければ小さくなり、衚面粗さが改善されるため
であり、Ra0.1Ό皋床を埗るには、比衚面が
4.5cm2以䞊の现かなアルミナ粉末が必芁だか
らである。ただし、m2以䞊のアルミナ粉末
は、材料の焌結性がなくなり、緻密な焌結䜓が埗
られなくなる。
The reason why the BET specific surface area of alumina powder is required to be 4.5 m 2 /g or more is that the surface roughness caused by the alumina particles located on the surface after firing becomes smaller if the alumina particles are finer, and the surface roughness is improved. Therefore, in order to obtain Ra=0.1ÎŒm, the specific surface must be
This is because fine alumina powder of 4.5 cm 2 /g or more is required. However, if the alumina powder is 6 m 2 /g or more, the material loses its sinterability, making it impossible to obtain a dense sintered body.

アルミナ粉末のBET比衚面積の限定範囲は、
粒埄の限定範囲によ぀おも瀺すこずができる。぀
たりRa0.1Ό皋床を埗るためには、平均粒埄
1Ό以䞋必芁であり、たた0.5Ό以䞋では材料が
充分に緻密化しなくなる。
The limited range of BET specific surface area of alumina powder is
It can also be indicated by a limited range of particle sizes. In other words, in order to obtain Ra=0.1ÎŒm, the average particle size is
The thickness is required to be 1 ÎŒm or less, and if it is 0.5 ÎŒm or less, the material will not be sufficiently densified.

本発明セラミツク組成物の補造方法の態様の䞀
䟋ずしおは、原料ずしおCaO、MgO、SiO2、
Al2O3、B2O3を所定の配合組成になるように混合
し、1300〜1450℃で溶解急冷し、ガラス化する。
原料の圢態は炭酞塩、酞化物、氎酞化物などで良
い。この枩床範囲は炉材料等の関係から望たしい
範囲である。
As an example of the embodiment of the method for producing the ceramic composition of the present invention, raw materials include CaO, MgO, SiO 2 ,
Al 2 O 3 and B 2 O 3 are mixed to a predetermined composition, melted and rapidly cooled at 1300 to 1450°C, and vitrified.
The raw material may be in the form of carbonate, oxide, hydroxide, etc. This temperature range is a desirable range considering the furnace materials and the like.

次にガラス粉末ずアルミナ粉末ずを所定の割合
で混合し、成圢粉末ずし、これを冷間プレスある
いはテヌプキダスチング等通垞のセラミツクの成
圢法にしたが぀お成圢し、800〜1000℃で焌成す
る。
Next, glass powder and alumina powder are mixed in a predetermined ratio to form a molded powder, which is then molded using normal ceramic molding methods such as cold pressing or tape casting, and fired at 800 to 1000°C. .

本発明を倚局基板に利甚するずきは、成圢した
グリヌンシヌト䞊に䟋えばAg系の導䜓を印刷し、
必芁な枚数重ね合せお、同時に焌成し、必芁な堎
合にはスルヌホヌルを圢成しお、䞀䜓化した基板
ずするこずができる。
When applying the present invention to a multilayer board, for example, an Ag-based conductor is printed on a formed green sheet,
A necessary number of substrates can be stacked and fired at the same time, and through holes can be formed if necessary to form an integrated substrate.

たた、RuO2系あるいはSiC系等の抵抗を印刷
し、さらにはBaTiO3系やSrTiO3系、PbFe2/3
W1/3O3−PbFe1/2Nb1/2O3系等のコンデンサ
ペヌストをグリヌンシヌト䞊に印刷し、これを重
ね合せ、たたはコンデンサ組成を䞻䜓にしたグリ
ヌンシヌトを䜜り、これを重ね合せ同時に焌成
し、抵抗コンデンサを内蔵し、䞀䜓化した基板ず
するこずもできる。
In addition, we can print resistors such as RuO 2 or SiC, as well as BaTiO 3 , SrTiO 3 , Pb (Fe 2/3
Print a capacitor paste such as W 1/3 ) O 3 −Pb (Fe 1/2 Nb 1/2 ) O 3 on a green sheet, and stack these or create a green sheet based on the capacitor composition. , these can be stacked and fired at the same time to form an integrated substrate with built-in resistance capacitors.

さらに、グリヌンシヌト䞊に導䜓ずしお粒床調
敎をし、か぀耐酞化凊理を斜したCu粉末ペヌス
トを印刷し倚局化し、N2を䞻䜓ずした雰囲気䞭
で同時焌成を行ない、Cu導䜓を内蔵した䜎枩同
時焌成倚局基板を぀くるこずもできる。たた、こ
の堎合、N2䞍掻性雰囲気であるため、Ni−Crモ
リブデンシリサむド、−Ni等の金属たたは金
属間化合物を䜿甚した抵抗ペヌストを甚い、Cu
導䜓䞊びに抵抗を内蔵した倚局基板の䜜成も可胜
である。
Furthermore, we printed a Cu powder paste with particle size adjustment and oxidation-resistant treatment as a conductor on a green sheet to create a multilayered structure, and then simultaneously fired it in an atmosphere mainly composed of N2 . It is also possible to create fired multilayer substrates. In this case, since the atmosphere is N2 inert, a resistance paste using a metal or intermetallic compound such as Ni-Cr molybdenum silicide or W-Ni is used to remove Cu.
It is also possible to create multilayer substrates with built-in conductors and resistors.

実斜䟋 CaCO3、MgOH2、SiO2、Al2O3、H3BO3を
ガラスの出発原料に䜿甚し、所定の組成割合にし
たがい秀量した。ラむカむ機で充分混合した埌、
1400℃で溶融し氎䞭投䞋しおガラスを埗た。埗ら
れたガラスをアルミナポツトに氎、アルミナボヌ
ルずずもに入れ混匏粉砕し、也燥した埌、比衚面
積〜4.5m2のガラス粉末を埗た。このガラ
ス粉末45〜60ずBET比衚面積5.7m2、平均
粒埄0.8Όのアルミナ粉末55〜40をアルミナポ
ツトに、氎、アルミナボヌルずずもに入れ、時
間混合した埌也燥した。この也粉1000にメタア
クリル系バむンダ100、可塑剀DOP50、
溶剀トル゚ン、キシレン450を加えおスリ
ツプずした埌、ドクタヌブレヌドを甚いおmm厚
のグリヌンシヌトを䜜成した。このグリヌンシヌ
トを900〜1000℃で焌成し、物理特性を枬定した。
[Example] CaCO 3 , Mg(OH) 2 , SiO 2 , Al 2 O 3 and H 3 BO 3 were used as starting materials for glass and were weighed according to predetermined composition ratios. After mixing thoroughly with the Raikai machine,
Glass was obtained by melting it at 1400℃ and dropping it into water. The obtained glass was put into an alumina pot together with water and alumina balls, mixed and pulverized, and after drying, a glass powder having a specific surface area of 3 to 4.5 m 2 /g was obtained. 45 to 60% of this glass powder and 55 to 40% of alumina powder having a BET specific surface area of 5.7 m 2 /g and an average particle size of 0.8 ÎŒm were placed in an alumina pot together with water and alumina balls, mixed for 3 hours, and then dried. 1000g of this dry powder, 100g of methacrylic binder, 50g of plasticizer (DOP),
After adding 450 g of solvent (toluene, xylene) to form a slip, a 1 mm thick green sheet was prepared using a doctor blade. This green sheet was fired at 900-1000°C and its physical properties were measured.

衚に実斜䟋〜ずしお、組成ず物理特性ず
の関係を瀺した。埗られた基板のRaは0.08〜
0.12Όで、うねり、そりも非垞に小さか぀た。
Table 1 shows the relationship between composition and physical properties as Examples 1 to 4. The Ra of the obtained substrate is 0.08 ~
At 0.12 ÎŒm, waviness and warpage were also very small.

第図は実斜䟋の衚面粗さRaを枬定した際
の枬定チダヌトである。
FIG. 1 is a measurement chart when the surface roughness Ra of Example 1 was measured.

第図はガラス粉末2.5m2、アルミナ
m2の比衚面積をもち、ガラス組成ずしおは、
実斜䟋ず同組成のものを䜿甚した材料で、実斜
䟋ず同様の方法で䜜成した基板の衚面粗さRaを
枬定した際の枬定チダヌトである。Ra0.25Ό
ず倧きく、枬定チダヌトからも実斜䟋ずの違いが
わかる。
Figure 3 shows glass powder 2.5m 2 /g, alumina 4
It has a specific surface area of m 2 /g, and the glass composition is:
This is a measurement chart for measuring the surface roughness Ra of a substrate made using a material having the same composition as in Example 1 and using the same method as in Example. Ra=0.25ÎŒm
The difference from the example can also be seen from the measurement chart.

第図は実斜䟋の基板の断面曲線である。基
板の倧きさは60×50mmで長蟺方向の真䞭玄40mmを
枬定した。
FIG. 2 is a cross-sectional curve of the substrate of Example 1. The size of the board was 60 x 50 mm, and we measured about 40 mm in the middle of the long side.

第図は高玔床アルミナ基板の断面曲線を瀺し
おいる。基板の倧きさは60×50mm、厚さは0.82mm
で長蟺方向の真䞭玄40mmを枬定した。䞡方を比范
しおわかるように、本発明で埗られる基板は、う
ねり、そりがアルミナ粉末に比范しお非垞に小さ
いこずがわかる。
FIG. 4 shows a cross-sectional curve of a high-purity alumina substrate. The size of the board is 60 x 50mm, the thickness is 0.82mm
Measured about 40mm in the middle of the long side. As can be seen by comparing both, the substrate obtained by the present invention has much smaller waviness and warp than alumina powder.

応甚䟋 䞊蚘実斜䟋ず同様の方法で実斜䟋ず同じ材料
を䜿甚しお、0.3mm厚のグリヌンシヌトを䜜成し
た。Ag粉末15ずPd粉末の混合物に゚チル
セルロヌスずテルピネオヌル12を加え、
本ロヌラヌにより充分混緎しお䜜成したペヌスト
を䜿甚しお、導䜓パタヌンをグリヌンシヌトに印
刷した。同様の手順で導䜓パタヌンの異なる枚
の導䜓パタヌン印刷グリヌンシヌトを埗た。この
枚のグリヌンシヌトを120℃、100Kgcm2、60秒
間の条件で加圧ラミネヌトしお䞀䜓構造ずした。
局の導䜓局間の接続は、0.4mmφのスルヌホヌ
ルに䞊蚘Ag−Pdペヌストを充填しお行な぀た。
このグリヌンボデむを900℃に20分ホヌルドの条
件で焌成した。埗られた倚局基板の衚面粗さは
0.1ΌRaであ぀た。この基板衚面にTa2Nの薄膜
をスパツタ法により圢成しお、リ゜グラフむヌ凊
理により抵抗䜓パタヌンを圢成した。さらにTi、
Pdの順にスパツタ法により薄膜を圢成し、リ゜
グラフむヌ凊理により導䜓パタヌンを圢成した
埌、導䜓パタヌンにAuメツキをしお薄膜混成回
路を構成した。内郚導䜓ず衚面薄膜回路はスルヌ
ホヌルにより接続した。以䞊の方法により倚局配
線基板䞊に薄膜混成回路を圢成した。
Application Example A green sheet with a thickness of 0.3 mm was produced using the same material as in Example 2 in the same manner as in the above example. Add 1 g of ethyl cellulose and 12 g of terpineol to a mixture of 15 g of Ag powder and 5 g of Pd powder,
A conductor pattern was printed on a green sheet using a paste prepared by thoroughly kneading it with this roller. Four conductor pattern printed green sheets having different conductor patterns were obtained using the same procedure. These four green sheets were laminated under pressure at 120° C., 100 Kg/cm 2 for 60 seconds to form an integral structure.
Connections between the four conductor layers were made by filling 0.4 mm diameter through holes with the Ag--Pd paste.
This green body was fired at 900°C and held for 20 minutes. The surface roughness of the obtained multilayer substrate is
It was 0.1ÎŒmRa. A thin film of Ta 2 N was formed on the surface of this substrate by sputtering, and a resistor pattern was formed by lithography. Furthermore, Ti,
After forming a thin film of Pd by sputtering and forming a conductor pattern by lithography, the conductor pattern was plated with Au to construct a thin film hybrid circuit. The inner conductor and surface thin film circuit were connected by through holes. A thin film hybrid circuit was formed on a multilayer wiring board by the method described above.

発明の効果 本発明で埗られる組成物は衚面平滑性の良い基
板を圢成するこずができる。このものは0.1Ό
Ra皋床の衚面粗さを有し、たた高玔床アルミナ
基板に比范し、うねり、そりが非垞に少ないの
で、薄膜パタヌンを圢成する際に䜿甚するマスク
ず基板の密着性が良奜で、粟密な回路パタヌンを
圢成するのが容易である。たた1100℃以䞋で焌成
できるので、Au、Ag、Ag−Pd、Cuなどの導䜓
を䜿甚しお同時焌成倚局基板を䜜成するこずが可
胜で、その衚面に薄膜回路を圢成すれば、薄膜回
路を含む高密床な䞉次元回路を圢成できる。
[Effects of the Invention] The composition obtained by the present invention can form a substrate with good surface smoothness. This one is 0.1ÎŒm
It has a surface roughness on the order of Ra, and has very little waviness or warping compared to high-purity alumina substrates, so the adhesion between the mask used to form thin film patterns and the substrate is good, allowing precision circuits to be formed. Easy to form patterns. Additionally, since it can be fired at temperatures below 1100℃, it is possible to create co-fired multilayer substrates using conductors such as Au, Ag, Ag-Pd, and Cu. High-density three-dimensional circuits can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第図は実斜䟋の衚面粗さの枬定グラフ、第
図は同基板の断面曲線、第図は埓来のアルミ
ナ基板の衚面粗さの枬定グラフ、第図は同基板
の断面曲線を瀺す。
Fig. 1 is a measurement graph of the surface roughness of Example 1, Fig. 2 is a cross-sectional curve of the same substrate, Fig. 3 is a measurement graph of the surface roughness of a conventional alumina substrate, and Fig. 4 is a cross-sectional curve of the same substrate. shows.

Claims (1)

【特蚱請求の範囲】[Claims]  重量基準で10たでの䞍玔物を含むこずのあ
るMOただしCa、Mg〜35.75、
SiO218〜45.5、Al2O335〜72、B2O30〜19.5
からなる組成をもち、出発原料ずしお10たで
の䞍玔物を含むこずのあるMO10〜55、Al2O30
〜30、SiO245〜70、B2O30〜30からなる組
成範囲にあり、そのBET比衚面積がm2以
䞊のガラス粉末40〜65ず残郚が10たでの䞍玔
物を含むこずのあるBET比衚面積が4.5〜m2
のアルミナの混合物を1100℃以䞋の枩床で焌成
するこずを特城ずする衚面平滑性の良いセラミツ
ク組成物の補造方法。
1 MO (M: Ca, Mg) 4 to 35.75%, which may contain impurities up to 10% by weight,
SiO2 18~45.5%, Al2O3 35~72%, B2O3 0 ~ 19.5
% and may contain up to 10% impurities as starting material MO10-55%, Al 2 O 3 0
-30%, SiO 2 45-70%, B 2 O 3 0-30%, with a BET specific surface area of 3 m 2 /g or more, 40-65% glass powder and the balance up to 10%. BET specific surface area that may contain impurities is 4.5 to 6 m 2 /
A method for producing a ceramic composition with good surface smoothness, characterized by firing a mixture of g of alumina at a temperature of 1100°C or less.
JP60262688A 1985-11-25 1985-11-25 Ceramic composition with surface smoothness Granted JPS62123059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60262688A JPS62123059A (en) 1985-11-25 1985-11-25 Ceramic composition with surface smoothness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262688A JPS62123059A (en) 1985-11-25 1985-11-25 Ceramic composition with surface smoothness

Publications (2)

Publication Number Publication Date
JPS62123059A JPS62123059A (en) 1987-06-04
JPH0345027B2 true JPH0345027B2 (en) 1991-07-09

Family

ID=17379212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262688A Granted JPS62123059A (en) 1985-11-25 1985-11-25 Ceramic composition with surface smoothness

Country Status (1)

Country Link
JP (1) JPS62123059A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694386B2 (en) * 1988-01-29 1994-11-24 束䞋電噚産業株匏䌚瀟 Green sheet material for ceramic multilayer substrates
US7045223B2 (en) 2003-09-23 2006-05-16 Saint-Gobain Ceramics & Plastics, Inc. Spinel articles and methods for forming same
US7326477B2 (en) 2003-09-23 2008-02-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel boules, wafers, and methods for fabricating same
US7919815B1 (en) 2005-02-24 2011-04-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel wafers and methods of preparation
CN106316370A (en) * 2016-08-18 2017-01-11 景執镇瓷玉研究所 Novel jade ceramic material and preparation method and application of novel jade ceramic

Also Published As

Publication number Publication date
JPS62123059A (en) 1987-06-04

Similar Documents

Publication Publication Date Title
US4621066A (en) Low temperature fired ceramics
US4749665A (en) Low temperature fired ceramics
JPH0343786B2 (en)
US5206190A (en) Dielectric composition containing cordierite and glass
JPH04243963A (en) Lowly dielectric ceramic composition and method for preparation thereof
US5145540A (en) Ceramic composition of matter and its use
JPH05211005A (en) Dielectric composition
EP1612194B1 (en) Low-temperature co-fired ceramic material and multilayer wiring board using the same
JPH0345027B2 (en)
JPS62278145A (en) Sintered material of glass ceramic
JPH0676227B2 (en) Glass ceramic sintered body
JP3863996B2 (en) Crystallized glass-ceramic composite, wiring board using the same, and package including the wiring board
JPH0617250B2 (en) Glass ceramic sintered body
JPH01167259A (en) Glass ceramics board for packaging of electronic parts, method for its manufacture and glass for use therein
JPH0617249B2 (en) Glass ceramic sintered body
JPS63295473A (en) Dielectric material for circuit board
US6534161B1 (en) Crystallized glass composition, sintered crystallized glass compact, and circuit substrate using the same
JPH10194846A (en) Production of substrate fired at low temperature
JPS62252340A (en) Sintered glass and sintered glass ceramic
JP3315233B2 (en) Composition for ceramic substrate
JPH0260236B2 (en)
JP3101966B2 (en) High thermal expansion Al2O3-SiO2-based sintered body and method for producing the same
JP3336176B2 (en) Glass ceramic sintered body
JPS62171942A (en) Sintered glass powder
JPH0444613B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term