JPS62171942A - Sintered glass powder - Google Patents

Sintered glass powder

Info

Publication number
JPS62171942A
JPS62171942A JP1335986A JP1335986A JPS62171942A JP S62171942 A JPS62171942 A JP S62171942A JP 1335986 A JP1335986 A JP 1335986A JP 1335986 A JP1335986 A JP 1335986A JP S62171942 A JPS62171942 A JP S62171942A
Authority
JP
Japan
Prior art keywords
glass
powder
mgo
glass powder
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1335986A
Other languages
Japanese (ja)
Inventor
Keizou Makio
槙尾 圭造
Masayuki Ishihara
政行 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1335986A priority Critical patent/JPS62171942A/en
Publication of JPS62171942A publication Critical patent/JPS62171942A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain sintered glass powder having high density and low dielectric constant and useful as a multi-layer printed circuit board, low-resistance metallic material, etc., by crushing a glass having a specific composition, forming the powder and sintering the formed glass powder. CONSTITUTION:Glass raw materials are compounded to form a principal composition consisting of 40(wt)%<=SiO2<=60%, 10%<=Al2O3<=30% and 20%<=MgO<=40% and 10-30% of the MgO is made to be substituted with one or more kinds of metal oxides selected from SrO, CaO and BaO. The obtained raw material mixture is melted in a crucible at about 1,500 deg.C. The molten mixture is thrown into water to obtain frit, which is crushed to powder having an average particle diameter of 1-10mum. The powder is kneaded in the presence of toluene, etc., formed to a sheet, etc., heated at 875-1,000 deg.C spending about 5hr and sintered by keeping the above state for about 3hr.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、ガラスを粉砕した粉末の成形体を焼成して
得られるガラス粉末焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a glass powder sintered body obtained by firing a molded body of powder obtained by pulverizing glass.

〔背景技術〕[Background technology]

近年、電子材料の分野ではセラミックスの利用が盛んで
ある。
In recent years, ceramics have been widely used in the field of electronic materials.

高集積化したLSIや各種素子を多数搭載する多層配線
基板では、小型化や高信頼性の要求が高まるにつれて、
セラミックス材の多層配線基板の利用が拡がってきてい
る。セラミックス多層配線基板は、通常、アルミナ(A
lzOs)を主材にしてグリーンシートを形成し、この
グリーンシート上に高融点金属(Mo、W等)の導体配
線を厚膜技術により印刷形成する。そのあと、このグリ
ーンシートを貼り合わせて積層した多層グリーンシート
を約1500〜1600℃の高温非酸化雰囲気下で焼成
する。しかし、上述のようなアルミナを主材料とする多
層配線基板では、アルミナの高い比誘電率と、高い抵抗
値を有する極細高融点金属配線によって、基板配線中を
伝播する信号の伝達時間が長くなり、高速化の要望に応
え難かった。
As the demand for miniaturization and high reliability increases for multilayer wiring boards that are equipped with highly integrated LSIs and a large number of various elements,
The use of multilayer wiring boards made of ceramic materials is expanding. Ceramic multilayer wiring boards are usually made of alumina (A
A green sheet is formed using 1zOs as the main material, and conductor wiring made of a high melting point metal (Mo, W, etc.) is printed on the green sheet by thick film technology. Thereafter, a multilayer green sheet obtained by laminating these green sheets together is fired at a high temperature of about 1500 to 1600° C. in a non-oxidizing atmosphere. However, in the multilayer wiring board mainly made of alumina as mentioned above, the transmission time of the signal propagating through the board wiring becomes longer due to the high dielectric constant of alumina and the ultra-fine refractory metal wiring with high resistance value. , it was difficult to meet the demand for faster speeds.

この問題を解決するために、高抵抗の高融点金属材料の
代りに、低抵抗金属材料(Au、Ag、Ag−Pd5C
uなど)を使って配線を形成することも考えられはする
けれども、上記の各低抵抗金属材料は融点が1000℃
付近であって、アルミナを主材料とした場合には、基板
の焼成温度よりもはるかに低いので、実際に用いること
はできない。つまり、基板の焼成温度が約1000℃以
下で十分な焼結をおこなうことができる材料が要求され
ることになる。
To solve this problem, low resistance metal materials (Au, Ag, Ag-Pd5C) are used instead of high resistance and high melting point metal materials.
Although it is conceivable to form interconnections using materials such as
If the main material is alumina, the temperature is much lower than the firing temperature of the substrate, so it cannot be used in practice. In other words, a material is required that can perform sufficient sintering at a substrate firing temperature of about 1000° C. or lower.

この要求を満たすために、ガラス材料が使われており、
特にS i Ox  A l z Os  M g O
を主成分とするガラス粉末を焼成して得られるガラス粉
末焼結体が利用されることが多い。
To meet this requirement, glass materials are used.
Especially S i Ox A l z O s M g O
A glass powder sintered body obtained by firing a glass powder mainly composed of is often used.

しかしながら、S i Ch   A 12 O3Mg
O系のガラスは原料を溶融するときの温度が1500℃
を越えるため、製造時に特殊な溶融炉を必要としたり、
ルツボの損傷が著しいという問題がある。SiO□、A
l2O3およびMgOに、溶融温度を下げるために、N
aやLi等のアルカリ金属を添加した組成のものもある
けれども、焼結体中にNaやLiが入ると、マイグレー
ション現象を生じ、基板として重要な特性のひとつであ
る絶縁性が劣化するという問題がある。
However, S i Ch A 12 O3Mg
The temperature for melting the raw materials for O-based glass is 1500°C.
In order to exceed the
There is a problem that the crucible is severely damaged. SiO□, A
N to l2O3 and MgO to lower the melting temperature.
Although there are compositions with additions of alkali metals such as a and lithium, the problem is that if Na or Li enters the sintered body, a migration phenomenon occurs and the insulation, which is one of the important characteristics of a substrate, deteriorates. There is.

また、組成中にZnOやTiO□などを含むものも多い
が、微量でもZn○やTiO□を含んでいると、緻密な
焼結体なり難く、比誘導率も上昇する傾向にあるので好
ましくない。
In addition, many materials contain ZnO, TiO□, etc. in their composition, but if even a trace amount of Zn○ or TiO□ is included, it is difficult to form a dense sintered body and the specific inductivity tends to increase, which is not preferable. .

〔発明の目的〕[Purpose of the invention]

この発明は、上記の事情に鑑み、1000℃以下の低い
温度での焼成で十分緻密化されていて、誘電率も低(、
しかも多層配線基板材料として用いても、マイグレーシ
ョン現象による絶縁劣化の心配がないばかりか、低抵抗
金属材料による配線形成にも適しており、さらに溶融温
度も低い5tOx  Al103  MgO系のガラス
粉末焼結体を提供することを目的とする。
In view of the above circumstances, this invention has been developed to achieve sufficient densification by firing at a low temperature of 1000°C or less, and to have a low dielectric constant (
Furthermore, even when used as a multilayer wiring board material, there is no concern about insulation deterioration due to migration phenomena, and it is also suitable for forming wiring using low-resistance metal materials, and has a low melting temperature of 5tOx Al103 MgO-based glass powder sintered body. The purpose is to provide

〔発明の開示〕[Disclosure of the invention]

前記目的を達成するため、この発明は、ガラスを粉砕し
た粉末の成形体を焼成して得られるガラス粉末焼結体に
おいて、 前記ガラスにおける重量%表示組成は、40 ≦S i
 Ot ≦60 10≦Al2O3≦30 20≦MgO≦40 を基本組成として、そのうちMgOについて、その10
〜30重量%がSrO,CaO、および、B a” O
からなる群から選ばれた少なくともひとつの金属酸化物
で置換されていることを特徴とするガラス粉末焼結体を
要旨とする。
In order to achieve the above object, the present invention provides a glass powder sintered body obtained by firing a molded body of powder obtained by pulverizing glass, wherein the composition expressed in weight percent of the glass is 40≦S i
The basic composition is Ot≦60 10≦Al2O3≦30 20≦MgO≦40, of which 10 for MgO
~30% by weight SrO, CaO, and B a''O
The gist of the present invention is a glass powder sintered body characterized by being substituted with at least one metal oxide selected from the group consisting of:

以下、この発明にかかるガラス粉末焼結体(以下、単に
「焼結体」と記す)を詳しく説明する。
Hereinafter, the glass powder sintered body (hereinafter simply referred to as "sintered body") according to the present invention will be explained in detail.

ガラス粉末の作成に使われるガラスの組成が上記あよう
に限定されるのはつぎのような理由からである。
The reason why the composition of the glass used to create the glass powder is limited as described above is as follows.

S i O*の組成割合が60重量%を越えると、溶呻
温度が上昇するとともに緻密な焼結体が得難(なる。4
0重量%を下まわると、焼成温度および結晶孔温度が上
昇するため、1000℃付近の焼成温度では十分に結晶
化ができなかったり、緻密な焼結体となり難くなる。
When the composition ratio of S i O* exceeds 60% by weight, the melting temperature increases and it becomes difficult to obtain a dense sintered body.
When it is less than 0% by weight, the firing temperature and the crystal pore temperature rise, so that sufficient crystallization cannot be achieved at a firing temperature of around 1000°C, and it becomes difficult to form a dense sintered body.

AlzOsの組成割合が30重量%を越えると、100
0℃以下の焼成温度では十分な焼結がおこなえない。1
0重量%を下まわると、SiO□−MgO系の結晶相と
なり易く、比誘電率が高くなり実用性に乏しい。
When the composition ratio of AlzOs exceeds 30% by weight, 100%
Sufficient sintering cannot be achieved at a firing temperature of 0° C. or lower. 1
When it is less than 0% by weight, it tends to form a SiO□-MgO-based crystal phase, resulting in a high dielectric constant and poor practicality.

MgOの組成割合が40重量%を越えると、1000℃
以下の温度では十分な焼結がおこなえない。10重量%
を下まわると、結晶化が激しすぎて緻密な焼結体とはな
り難い。
When the composition ratio of MgO exceeds 40% by weight, the temperature
Sufficient sintering cannot be achieved at temperatures below. 10% by weight
If the temperature is less than 1, crystallization will be too intense and it will be difficult to form a dense sintered body.

SrO,BaOおよびCaOの置換量が30重量%を越
えると、焼結度あるいは溶融性のいずれかが劣化してく
る。10重量%を下まわると、溶融性が格段に悪くなり
、焼結度や比誘電率も劣化してきて実用性に乏しくなる
When the amount of SrO, BaO and CaO substituted exceeds 30% by weight, either the degree of sintering or the meltability deteriorates. When it is less than 10% by weight, the melting properties become significantly worse, the degree of sintering and the relative dielectric constant deteriorate, and the practicality becomes poor.

続いて、この発明を具体的な実施例および比較例に基づ
いて詳述する。
Next, the present invention will be described in detail based on specific examples and comparative examples.

第1表の実施例1〜21と第2表の比較例1〜4に示す
ような割合で各金属酸化物を配合する。
Each metal oxide is blended in the proportions shown in Examples 1 to 21 in Table 1 and Comparative Examples 1 to 4 in Table 2.

SiC2、A 1. t OsおよびMgOの3つの粉
末は、配合に先だって、1000〜1200℃で仮焼し
て水分な除去しておく。配合が済んだガラスの原料粉末
を十分に混合し、ルツボの中に入れ、1500℃の加熱
温度下で溶融する。このようにして得られた溶融液を水
中に投下してガラスフリットを得る。得られたフリット
を適当な粒径(平均粒径1〜10n程度)の粉末に粉砕
する。
SiC2, A 1. The three powders of t Os and MgO are calcined at 1000 to 1200° C. to remove moisture prior to blending. The blended glass raw material powders are thoroughly mixed, placed in a crucible, and melted at a heating temperature of 1500°C. The molten liquid thus obtained is dropped into water to obtain a glass frit. The obtained frit is pulverized into powder with a suitable particle size (average particle size of about 1 to 10 nm).

つぎに、ガラス粉末に、例えば、ポリブチルメタクリレ
ート樹脂、フタル酸ジブチル、トルエン等を加えて混練
し、減圧下で脱泡処理してスラリー化する。そのあと、
このスラリーを用いてドクタブレード法によりフィルム
シート上に0.2fl厚の連続した乾燥シートを形成し
た。この乾燥シートをフィルムシートからはがし、適当
な大きさのグリーンシートを作成した。そして、このグ
リーンシート複数枚を重ねて金型ブレスで成形体にした
後、焼成をおこなった。焼成においては、5時間かけて
875〜1000℃まで昇温し、この状態を3時間保持
し、その後放冷して焼結体を得た。
Next, for example, polybutyl methacrylate resin, dibutyl phthalate, toluene, etc. are added to the glass powder and kneaded, followed by defoaming treatment under reduced pressure to form a slurry. after that,
Using this slurry, a continuous dry sheet with a thickness of 0.2 fl was formed on a film sheet by a doctor blade method. This dry sheet was peeled off from the film sheet to create a green sheet of an appropriate size. Then, a plurality of these green sheets were stacked and formed into a molded body using a mold press, and then fired. In firing, the temperature was raised to 875 to 1000°C over 5 hours, this state was maintained for 3 hours, and then allowed to cool to obtain a sintered body.

実施例および比較例の焼結体について比誘電率および吸
水率を測定し、その結果を第1表および第2表に示した
The relative permittivity and water absorption of the sintered bodies of Examples and Comparative Examples were measured, and the results are shown in Tables 1 and 2.

ガラスの溶融性についても表中に示した。溶融性は配合
の済んだガラスの原料粉末を1500℃で3時間保持後
取り出した時のルツボ内の融液の流れやすさから判定し
た。表中の記号はつぎのような意味で使われている。
The meltability of the glass is also shown in the table. Meltability was determined from the ease of flow of the melt in the crucible when the blended glass raw material powder was held at 1500° C. for 3 hours and then taken out. The symbols in the table are used with the following meanings.

◎ ルツボ内の融液をほとんど流し出すことができ、ル
ツボ中には融液がほとんど残らない(溶融性;非常に良
好)。
◎ Most of the melt in the crucible can be poured out, and almost no melt remains in the crucible (meltability: very good).

○ ルツボ内の融液を相当量流し出すことができ、ルツ
ボ中には融液全量の1/3〜1/4程度残る(溶融性:
良好)。
○ A considerable amount of the melt in the crucible can be poured out, and about 1/3 to 1/4 of the total amount of melt remains in the crucible (meltability:
good).

△ ルツボ内の融液は、融液全量の半分程度の量を流し
出すことができる(溶融性普通)。
△ Approximately half of the total amount of melt in the crucible can be flowed out (normal meltability).

× ルツボ内の融液はわずかに流動するけれども、ルツ
ボから外へ流し出すことはできない(溶融性:不良)。
× Although the melt inside the crucible flows slightly, it cannot flow out of the crucible (meltability: poor).

×× ルツボ内の融液は、流動すらしない。あるいは全
くガラス化しない(溶融性:全く不良)なお、焼結性を
判定する吸水率の測定は、JIS C〜2141に従っ
ておこなった。また、比誘電率の測定周波数はIMI(
zである。
×× The melt in the crucible does not even flow. Alternatively, no vitrification occurred at all (meltability: completely poor). The water absorption rate for determining sinterability was measured in accordance with JIS C-2141. In addition, the measurement frequency of the relative permittivity is IMI (
It is z.

第1表にみるように、実施例1〜2]の焼結体は、溶融
性、焼結性、および、比誘電率を同時に満足している。
As shown in Table 1, the sintered bodies of Examples 1 and 2 satisfy meltability, sinterability, and dielectric constant at the same time.

しかも、それが950 ”Cという1000℃以丁の焼
成温度で達成されている。第2表にみるように、比較例
の焼結体は、−h記の3つの特性を同時に満足すること
はできない。
Moreover, this was achieved at a firing temperature of 950''C, which is less than 1000℃.As shown in Table 2, the sintered body of the comparative example does not simultaneously satisfy the three properties listed in -h. Can not.

〔発明の効果〕〔Effect of the invention〕

この発明にかかる焼結体は、コーディエライトを主結晶
相とする緻密で、低い比誘電率となっているだけでなく
、それが1000°C以下の焼成温度で達成することが
でき、しかも、組成中にマイグレーション現象の原因と
なるアルカリ金属の添加物が含まれていない。したがっ
て、緻密で、しかも、低比誘電率であることから、ごの
焼結体は多層配線基板材料に適するものとなり、100
0℃以下の焼成温度であるため、低抵抗金属材料を印刷
しておいて、同時に焼成をおこない配線を形成すること
もできるので、信号伝搬速度が速くなる。また、マイグ
レーション現象の心配がないため、高い絶縁性を維持で
きるし、ガラス溶融温度が低い組成であるため、製造し
易くなっていることから、製造段階でのコスト低減をは
かることもできる。
The sintered body according to the present invention is not only dense with cordierite as the main crystal phase and has a low dielectric constant, but also can be achieved at a firing temperature of 1000°C or less. , the composition does not contain alkali metal additives that cause migration phenomena. Therefore, since it is dense and has a low dielectric constant, the sintered body is suitable for multilayer wiring board materials, and
Since the firing temperature is 0° C. or lower, a low-resistance metal material can be printed and fired at the same time to form wiring, thereby increasing the signal propagation speed. Furthermore, since there is no concern about migration phenomena, high insulation properties can be maintained, and since the composition has a low glass melting temperature, it is easy to manufacture, so it is possible to reduce costs at the manufacturing stage.

Claims (2)

【特許請求の範囲】[Claims] (1)ガラスを粉砕した粉末の成形体を焼成して得られ
るガラス粉末焼結体において、 前記ガラスにおける重量%表示組成は、 40≦SiO_2≦60 10≦Al_2O_3≦30 20≦MgO≦40 を基本組成として、そのうちMgOについて、その10
〜30重量%がSrO、CaO、および、BaOからな
る群から選ばれた少なくともひとつの金属酸化物で置換
されていることを特徴とするガラス粉末焼結体。
(1) In a glass powder sintered body obtained by firing a molded body of powder obtained by crushing glass, the weight percent composition of the glass is basically 40≦SiO_2≦60 10≦Al_2O_3≦30 20≦MgO≦40 Regarding the composition, 10 of them are MgO.
A glass powder sintered body characterized in that ~30% by weight is substituted with at least one metal oxide selected from the group consisting of SrO, CaO, and BaO.
(2)ガラスを粉砕した粉末が平均粒径1〜10μmの
ものである特許請求の範囲第1項記載のガラス粉末焼結
体。
(2) The glass powder sintered body according to claim 1, wherein the powder obtained by crushing glass has an average particle size of 1 to 10 μm.
JP1335986A 1986-01-23 1986-01-23 Sintered glass powder Pending JPS62171942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1335986A JPS62171942A (en) 1986-01-23 1986-01-23 Sintered glass powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1335986A JPS62171942A (en) 1986-01-23 1986-01-23 Sintered glass powder

Publications (1)

Publication Number Publication Date
JPS62171942A true JPS62171942A (en) 1987-07-28

Family

ID=11830901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1335986A Pending JPS62171942A (en) 1986-01-23 1986-01-23 Sintered glass powder

Country Status (1)

Country Link
JP (1) JPS62171942A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10100521B2 (en) 2012-09-11 2018-10-16 3M Innovative Properties Company Porous glass roofing granules
US11371244B2 (en) 2012-04-30 2022-06-28 3M Innovative Properties Company High solar-reflectivity roofing granules utilizing low absorption components

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11371244B2 (en) 2012-04-30 2022-06-28 3M Innovative Properties Company High solar-reflectivity roofing granules utilizing low absorption components
US10100521B2 (en) 2012-09-11 2018-10-16 3M Innovative Properties Company Porous glass roofing granules

Similar Documents

Publication Publication Date Title
US4749665A (en) Low temperature fired ceramics
JPS63107838A (en) Glass-ceramic sintered body
JPS62278145A (en) Sintered material of glass ceramic
JP3419291B2 (en) Low-temperature sintered ceramic composition and multilayer ceramic substrate using the same
JP7348587B2 (en) glass ceramic dielectric
JP3678260B2 (en) Glass ceramic composition
JPH0643258B2 (en) Dielectric material for circuit boards
JPS6350345A (en) Glass ceramic sintered body
JPH10120436A (en) Glass ceramic dielectric material
JPS62171942A (en) Sintered glass powder
JPS6379739A (en) Sintered glass ceramic body
JPH0532455A (en) Inorganic composition having low dielectric constant and sinterable at low temperature
JPH0457627B2 (en)
JPH0483737A (en) Dielectric porcelain composition, production thereof and basal plate for distributing board using said composition
JP2712031B2 (en) Composition for circuit board and electronic component using the same
TW202112692A (en) Glass powder, dielectric material, sintered body, and high frequency circuit member
JPS62252340A (en) Sintered glass and sintered glass ceramic
JPH03141153A (en) Inorganic composition having low-temperature sintering property and low dielectric constant
JPH0345027B2 (en)
JPS6049149B2 (en) Manufacturing method of white alumina/ceramic for electronic parts
JPH01132194A (en) Wiring board
JP3336176B2 (en) Glass ceramic sintered body
JP3315233B2 (en) Composition for ceramic substrate
JP3074194B2 (en) Dielectric porcelain composition
JPH01141838A (en) Material for dielectric body for circuit substrate