JPH0344126B2 - - Google Patents
Info
- Publication number
- JPH0344126B2 JPH0344126B2 JP58027975A JP2797583A JPH0344126B2 JP H0344126 B2 JPH0344126 B2 JP H0344126B2 JP 58027975 A JP58027975 A JP 58027975A JP 2797583 A JP2797583 A JP 2797583A JP H0344126 B2 JPH0344126 B2 JP H0344126B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- polished
- golf club
- steel
- shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 41
- 239000010959 steel Substances 0.000 claims description 41
- 238000005496 tempering Methods 0.000 claims description 20
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 9
- 229910052720 vanadium Inorganic materials 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 238000010791 quenching Methods 0.000 claims 3
- 230000000171 quenching effect Effects 0.000 claims 3
- 229910052802 copper Inorganic materials 0.000 claims 2
- 239000000463 material Substances 0.000 description 16
- 230000000694 effects Effects 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 229910001566 austenite Inorganic materials 0.000 description 6
- 229910052758 niobium Inorganic materials 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Golf Clubs (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明は、材料面からゴルフクラブのシヤフト
に要求される諸性質とくに飛距離向上のための弾
性さらには軽量性の改善を図つたゴルフクラブ用
シヤフトの製造方法に関する。
ゴルフクラブは、ボールの飛距離やボール処理
性の向上のために、その形状構造面からの改善が
種々なされているが、そのシヤフトに対しては飛
距離向上のために材料の弾性が重要視される。ま
た軽量化を目的としたパイプの薄肉化のため、材
料の強度と靭性も重要となる。このようなことか
ら高強度で高い靭性を示すと共に高弾性の性質を
兼ね備えたゴルフクラブ用シヤフトの開発が強く
望まれていた。
本発明の目的はこのような要求を満たすゴルフ
クラブ用シヤフトを提供することであり、高弾性
については、0.03%耐力で130Kg/mm2以上の弾性
を示すことを目的とする。またパイプシヤフトに
造管する場合の溶接性さらにはゴルフクラブ用シ
ヤフトに要求される一般的な諸性質例えば良好な
表面性状を兼ね備えることも勿論必要であり、こ
のような諸性質を兼備したゴルフクラブ用シヤフ
トの提供を目的としたものである。
この目的において本発明者らは鋼の化学成分並
びに熱処理条件について種々の試験検討を重ねた
結果、前記のような諸要求を満たすゴルフクラブ
用シヤフトの製造方法として、C;0.45〜0.80
%,Si;0.80%以下,Mn;0.50〜1.50%,P;
0.030%以下,S;0.020%以下,Al;0.050%以
下,Cr;0.30〜1.20%を含有し、さらに0.05〜
0.40%のVまたは0.03〜0.15%のNbのいずれか1
種または2種を含有し、残部がFeおよび不可避
的不純物からなるみがき帯鋼を製造し、このみが
き帯鋼を溶接造管したうえゴルフクラブ用シヤフ
トの形状に成形加工し、次いで焼入れ処理したあ
と200〜400℃の温度で焼戻処理することを特徴と
するゴルフクラブ用シヤフトの製造方法を開発し
たものであり、本発明により0.03%耐力で130
Kg/mm2以上の高弾性を有した軽量のゴルフクラブ
用シヤフトを得ることができる。
また、前記の化学成分に加えて0.30〜0.80%の
Niまたは0.10〜0.50%のMoのいずれか1種また
は2種を添加することにより、強度と靭性を一層
確保することができ、さらに0.30%以下のCuを追
添すれば表面性状の優れたゴルフクラブ用シヤフ
トを得ることができる。なお、Niを添加しなく
ても不純物として鋼中に含有されてくることがあ
るが、通常許容される0.25%以下のNiは本願発明
において不純物量とする。
本発明のゴルフクラブ用シヤフトの製造方法は
主として高弾性、高強度並びに高靭性、更には造
管性を得るために鋼の成分組成を適切に選定し、
且つ熱処理条件を特定した点に特徴があるが、こ
のために、本発明で採用した鋼の化学成分値並び
に焼戻条件のそれぞれについて以下に個別に分説
する。
C;Cは熱処理後の鋼の強度並びに弾性限に影
響を与える。第1図はC以外の要件は本発明範囲
とした場合のC含有量と0.03%耐力との関係を調
べたものであるが、この試験例からも明らかなよ
うに、Cが0.45%未満では焼戻後の0.03%耐力を
130Kg/mm2以上とすることが困難であり、一方
0.80%を越えて含有させたとしても0.03%耐力の
増加割合は大きくはならない。かえつて、0.80%
を越えて含有させると造管時の溶接性が悪くなり
(後記実施例の試料No.7)また靭性も低下するよ
うになる。このためC含有量は0.45%〜0.80%の
範囲とする。
Si;Siは本発明材の精錬時において、脱酸剤と
して添加するが、0.80%を越えて添加すると、み
がき帯鋼製造時におけるみがき工程で表面脱炭が
見られるようになり、表面性状を害することにな
るのでSi含有量は0.80%以下とする。
Mn;Mnは鋼の強度、靭性並びに焼入性の向
上に有効に作用するが、0.50%未満ではゴルフク
ラブ用シヤフトとしての焼入性が充分に得られず
また、1.50%を越えて含有させると、パーライト
バンド組織の増大や、偏析の増大などによりシヤ
フトの靭性がかえつて低下するので、Mn含有量
は0.50〜1.50%の範囲とする。
P;Pは鋼の低温焼戻脆性に対して、顕著に悪
影響を与え、P含有量が0.030%を越えるとシヤ
フトの本発明に従う焼戻温度範囲での靭性が低下
するので、Pは0.030%以下とする。
S;Sは本発明材に対して有害に作用し、とく
に造管溶接時において、0.020%を越えて含有す
ると、溶接部のメタルフローに沿う介在物による
割れが発生しやすくなり、溶接部の健全性を害す
るようになるのでSは0.020%以下とする必要が
ある。
Al;AlはSiと同様に本発明材の精錬時に脱酸
剤として添加するが、0.050%を越えて添加する
とアルミナ系介在物の増加により鋼の表面性状を
悪化させるので0.050%以下とする。
Cr;Crは鋼の焼入れおよび焼戻の熱処理性の
向上、とくに熱処理後の強度と靭性を確保する上
で有効に作用するが、0.30%以下では必要とする
焼入れ性ならびに熱処理後の強度が得られず、ま
た、1.20%を越えて含有させても熱処理後の強度
の増加割合が小さいうえ、造管時の溶接性に問題
が生じてくるので、Cr量は0.30〜1.20%の範囲で
含有させる。
VまたはNb;VまたはNbはいずれも本発明材
の熱処理時においてオーステナイト結晶粒を細粒
化して焼戻後の0.03%耐力並びに靭性を高める作
用を供する。このような作用はVについては0.05
%未満の量では効果があらわれず、またNbにつ
いては0.03%未満の量では効果があらわれない。
また、Vについては0.40%を越えて含有されても
Nbについては0.15%を越えて含有されても、そ
の効果が実質的に飽和するのでこれ以上多く含有
させる必要はない。したがつて、本発明において
V;0.05〜0.40%,Nb;0.03〜0.15%のいずれか
1種を含有させ、2種を含有させる場合はその合
計量は0.40%以下とするのがよい。
NiまたはMo;NiまたはMoを本発明材に適量
含有させるといずれの場合も熱処理後の強度と靭
性を向上させることができる。この効果を得るに
は、Niについては0.30〜0.80%、Moについては
0.10〜0.15%の範囲の含有量とするのがよい。
Moはまたこの範囲の含有により焼戻温度200〜
400℃の焼戻条件で0.03%耐力を高める作用も供
する。
Cu;Cuを適量含有させると、みがき帯鋼製品
の表面性状を改善することができる(圧延時のス
ケール疵などによる表面疵を減少させる)。この
表面性状改善効果は0.30%を越えて含有させても
差が現れないので、0.30%以下の含有量で充分で
ある。
本発明のゴルフクラブ用シヤフトは、以上のよ
うにしてその合金組成および成分量が定められた
ものであるが、目標の性質を備えたシヤフトにす
るには、この合金鋼のみがき帯鋼を製造し、この
板を例えばTIG溶接や電縫溶接等によつて溶接造
管し、この造管品を例えば引き抜き加工等によつ
てゴルフクラブ用シヤフトの形状に成形加工した
うえ、これを適切な条件下で焼入れ焼戻処理す
る。
第2図は後記実施例のNo.2の試料を焼入れした
あと、焼戻温度を種々変えて焼戻温度と0.03%耐
力との関係を調べた結果を示したものである。こ
の第2図から明らかなように焼戻温度が200℃未
満でも、また焼戻温度が400℃を越えても0.03%
耐力が130Kg/mm2に達しない。したがつて、高弾
性のゴルフクラブ用シヤフトを得るには200〜400
℃の温度範囲で焼戻す必要がある。なおこの第2
図は上記のように実施例のNo.2の試料、すなわち
C含有量が本発明で規定する下限値0.45%の試料
についての結果を示しているが、C量が多くなれ
ば、0.03%耐力の値は第1図のようにさらに高く
なる。この場合において焼戻温度200〜400℃では
0.03%耐力が130Kg/mm2以上となることは明らか
である。
以下に、実施例を挙げて本発明をさらに説明す
る。
実施例 1
第1表に示す化学成分値の鋼の熱延板を、酸洗
後、焼鈍と冷間圧延を繰り返して板厚0.5mmのみ
がき帯鋼を製造した。第1表において、試料No.2
およびNo.5ではNiを添加しなかつたが、分析で
は0.12%および0.07%のNiを含有していた。これ
は鋼の製造上不可避的に混入したものであり、不
純物量として許容される程度の微量でもある。従
つて試料No.2およびNo.5はNiを含まないみがき
帯鋼と見るべきものであり、これらは請求の範囲
第1項および第3項の方法に用いるみがき帯鋼に
対応している。各みがき帯鋼からJIS5号引張試験
片を作製し、各試験片を第2表に示した条件で焼
入れおよび焼戻処理した。得られた処理品の機械
的性質(0.03%耐力、引張強さ、伸び)を第2表
に示した。また、各みがき帯鋼を19mmφの電縫鋼
管に造管し、造管性を評価し、その結果を第2表
に併記した。
第2表において、比較材No.1ではC含有量が本
発明範囲より少ないために、0.03%耐力が本発明
の目標とする130Kg/mm2以上を満足できていない。
また比較材No.7では、C含有量が高過ぎるため、
強度的には良好なものの、造管時の溶接部の靭性
が低下して割れが発生し、正常な鋼管が得られな
いという問題がある。これらに対し、No.2〜6の
本発明に係る材料は、130Kg/mm2以上の0.03%耐
力が得られるとともに、造管性にも問題がない。
また、試料No.5とNo.6を比較して見るとNiやMo
を含有した試料No.6では、より高強度であるにも
かかわらず延性が高く、強靭化の効果があること
が分かる。
なお、Cuを含まないか、不可避的に混入した
不純物程度の量しかCuを含まない試料No.2,4,
6では、熱延板においてスケール疵が発生したの
に対してCuを0.05%以上含む試料No.1,3,5,
7ではスケール疵の発生がなく、表面性状に優れ
たみがき帯鋼が得られ、Cuの表面性状改善効果
が認められる。
The present invention relates to a method for manufacturing a shaft for a golf club, which improves various properties required of a shaft for a golf club from the viewpoint of materials, particularly elasticity for improving flight distance, and lightness. Various improvements have been made to the shape and structure of golf clubs in order to improve ball flight distance and ball handling properties, but for shafts, the elasticity of the material is important in order to improve flight distance. be done. Additionally, as pipes are made thinner to reduce weight, the strength and toughness of the material are also important. For these reasons, there has been a strong desire to develop a shaft for golf clubs that exhibits high strength and toughness, and also has high elastic properties. The purpose of the present invention is to provide a shaft for a golf club that satisfies such requirements, and the purpose of the present invention is to exhibit high elasticity of 130 kg/mm 2 or more at 0.03% proof stress. Of course, it is also necessary to have good weldability when forming a pipe shaft, as well as general properties required for a shaft for a golf club, such as good surface quality. The purpose is to provide shafts for For this purpose, the present inventors conducted various tests and studies on the chemical composition of steel and heat treatment conditions, and as a result, as a manufacturing method for a golf club shaft that satisfies the various requirements described above, C: 0.45 to 0.80.
%, Si; 0.80% or less, Mn; 0.50 to 1.50%, P;
Contains 0.030% or less, S: 0.020% or less, Al: 0.050% or less, Cr: 0.30 to 1.20%, and further contains 0.05 to 1.20%.
Either 0.40% V or 0.03-0.15% Nb
After manufacturing a polished steel strip containing one or two species and the remainder consisting of Fe and unavoidable impurities, this polished steel strip is welded into pipes, formed into the shape of a golf club shaft, and then quenched. We have developed a method for manufacturing golf club shafts that is characterized by tempering at a temperature of 200 to 400°C.
A lightweight golf club shaft having high elasticity of Kg/mm 2 or more can be obtained. In addition to the above chemical components, 0.30~0.80%
By adding one or both of Ni or 0.10 to 0.50% Mo, strength and toughness can be further ensured, and if 0.30% or less of Cu is added, golf balls with excellent surface quality can be obtained. You can get a club shaft. Note that even if Ni is not added, it may be contained in steel as an impurity, but the amount of Ni of 0.25% or less, which is normally allowed, is considered as an impurity amount in the present invention. The method for manufacturing a shaft for a golf club of the present invention mainly involves appropriately selecting the chemical composition of steel in order to obtain high elasticity, high strength, high toughness, and further pipe-forming properties.
In addition, the present invention is characterized by specifying the heat treatment conditions, and for this reason, the chemical composition values and tempering conditions of the steel employed in the present invention will be individually explained below. C; C affects the strength and elastic limit of the steel after heat treatment. Figure 1 examines the relationship between C content and 0.03% proof stress when requirements other than C are within the range of the present invention, but as is clear from this test example, if C is less than 0.45%, 0.03% proof stress after tempering
It is difficult to set it to 130Kg/mm 2 or more;
Even if the content exceeds 0.80%, the rate of increase in 0.03% yield strength will not be large. In return, 0.80%
If the content exceeds the above, the weldability during pipe making will deteriorate (sample No. 7 in Examples described later), and the toughness will also decrease. Therefore, the C content is set in the range of 0.45% to 0.80%. Si: Si is added as a deoxidizing agent during the refining of the present invention material, but if it is added in excess of 0.80%, surface decarburization will occur during the polishing process during the production of polished strip steel, and the surface properties will deteriorate. The Si content should be kept at 0.80% or less. Mn: Mn effectively works to improve the strength, toughness, and hardenability of steel, but if it is less than 0.50%, sufficient hardenability for golf club shafts cannot be obtained, and if it is contained in excess of 1.50%, In this case, the toughness of the shaft is reduced due to an increase in pearlite band structure and segregation, so the Mn content is set in the range of 0.50 to 1.50%. P: P has a significant negative effect on the low temperature tempering brittleness of steel, and if the P content exceeds 0.030%, the toughness of the shaft in the tempering temperature range according to the present invention will decrease, so P is 0.030%. The following shall apply. S: S has a harmful effect on the materials of the present invention, and if it is contained in excess of 0.020%, especially when welding pipes, cracks are likely to occur due to inclusions along the metal flow of the weld, and the weld will be damaged. S should be kept at 0.020% or less since it will harm the soundness. Al: Like Si, Al is added as a deoxidizing agent during the refining of the materials of the present invention, but if added in an amount exceeding 0.050%, the surface quality of the steel will deteriorate due to an increase in alumina-based inclusions, so it should be kept at 0.050% or less. Cr: Cr is effective in improving the heat treatability of steel during hardening and tempering, especially in ensuring strength and toughness after heat treatment, but if it is less than 0.30%, the required hardenability and strength after heat treatment cannot be achieved. Furthermore, even if the content exceeds 1.20%, the increase in strength after heat treatment will be small and problems will arise in weldability during pipe making, so the content should be within the range of 0.30 to 1.20%. let V or Nb; Both V and Nb serve to refine the austenite crystal grains during heat treatment of the material of the present invention, thereby increasing the 0.03% yield strength and toughness after tempering. Such an effect is 0.05 for V
If the amount is less than 0.03%, no effect will be obtained, and for Nb, if the amount is less than 0.03%, no effect will be obtained.
In addition, even if the content of V exceeds 0.40%,
Even if Nb is contained in an amount exceeding 0.15%, its effect is substantially saturated, so there is no need to contain more than this. Therefore, in the present invention, any one of V: 0.05 to 0.40% and Nb: 0.03 to 0.15% is contained, and when two types are contained, the total amount is preferably 0.40% or less. Ni or Mo: When Ni or Mo is contained in an appropriate amount in the material of the present invention, the strength and toughness after heat treatment can be improved in either case. To obtain this effect, 0.30-0.80% for Ni and 0.30% to 0.80% for Mo must be
The content is preferably in the range of 0.10 to 0.15%.
Mo content within this range also results in a tempering temperature of 200~
It also provides the effect of increasing yield strength by 0.03% under 400℃ tempering conditions. Cu: Including an appropriate amount of Cu can improve the surface properties of polished steel strip products (reducing surface flaws due to scale flaws during rolling, etc.). This surface quality improving effect does not show any difference even if the content exceeds 0.30%, so a content of 0.30% or less is sufficient. The golf club shaft of the present invention has its alloy composition and component content determined as described above, but in order to obtain a shaft with the target properties, it is necessary to manufacture a polished strip of this alloy steel. Then, this plate is welded into a tube by, for example, TIG welding or electric resistance welding, and this tube is formed into the shape of a shaft for a golf club by, for example, drawing processing, and then subjected to suitable conditions. Hardening and tempering treatment is performed below. FIG. 2 shows the results of investigating the relationship between tempering temperature and 0.03% yield strength by varying the tempering temperature after hardening sample No. 2 of the example described later. As is clear from this figure 2, even if the tempering temperature is less than 200℃, and even if the tempering temperature exceeds 400℃, the
Proof strength does not reach 130Kg/ mm2 . Therefore, to obtain a golf club shaft with high modulus, 200 to 400
It is necessary to temper in the temperature range of ℃. Note that this second
As mentioned above, the figure shows the results for sample No. 2 of Example, that is, the sample with a C content of 0.45%, the lower limit specified by the present invention. The value of becomes even higher as shown in FIG. In this case, at a tempering temperature of 200 to 400℃
It is clear that the 0.03% yield strength is 130Kg/mm 2 or more. The present invention will be further explained below with reference to Examples. Example 1 A hot-rolled steel plate having the chemical composition values shown in Table 1 was pickled, then annealed and cold rolled repeatedly to produce a 0.5 mm thick steel strip. In Table 1, sample No. 2
No. 5 and No. 5 had no Ni added, but the analysis showed that they contained 0.12% and 0.07% Ni. This is unavoidably mixed in during the manufacturing of steel, and the amount is still within an acceptable level as an impurity. Therefore, samples No. 2 and No. 5 should be regarded as polished steel strips that do not contain Ni, and these correspond to the polished steel strips used in the methods of claims 1 and 3. JIS No. 5 tensile test pieces were prepared from each polished strip steel, and each test piece was quenched and tempered under the conditions shown in Table 2. The mechanical properties (0.03% proof stress, tensile strength, elongation) of the obtained treated products are shown in Table 2. In addition, each polished strip steel was formed into a 19 mmφ electric resistance welded steel pipe, and the pipe formability was evaluated, and the results are also listed in Table 2. In Table 2, Comparative Material No. 1 has a C content lower than the range of the present invention, so the 0.03% proof stress cannot satisfy the target of the present invention of 130 Kg/mm 2 or more.
In addition, in comparison material No. 7, the C content was too high, so
Although it has good strength, there is a problem in that the toughness of the welded part during pipe making decreases and cracks occur, making it impossible to obtain a normal steel pipe. On the other hand, materials Nos. 2 to 6 according to the present invention can obtain a 0.03% yield strength of 130 Kg/mm 2 or more, and have no problems in pipe formability.
Also, when comparing samples No. 5 and No. 6, Ni and Mo
It can be seen that sample No. 6, which contained Ni, had high ductility despite having higher strength, and had the effect of toughening. In addition, sample No. 2, 4, which either does not contain Cu or contains Cu only in an amount equivalent to the amount of unavoidably mixed impurities.
In No. 6, scale flaws occurred in the hot-rolled sheet, whereas samples No. 1, 3, 5, and
In No. 7, a polished strip steel with no scale defects and excellent surface quality was obtained, and the surface quality improving effect of Cu was recognized.
【表】【table】
【表】
実施例 2
第3表に示す化学成分値の鋼の熱延板を、酸洗
後、焼鈍と冷間圧延を繰り返して板厚0.5mmのみ
がき帯鋼を製造した。各みがき帯鋼からJIS5号引
張試験片を作製し、各試験片を第4表に示した条
件で焼入れおよび焼戻処理した。得られた熱処理
品のオーステナイト結晶粒大きさ(オーステナイ
ト粒度番号)と0.03%耐力を第4表に併記した。
第4表において、試料No.8と9の比較材はオー
ステナイト結晶粒微細化効果を有するVまたは
Nbを含まないか、含んでも少量であるため、オ
ーステナイト結晶粒が大きく、目標とする0.03%
耐力が得られていない。これに対し、本発明法に
係る試料No.10とNo.12ではオーステナイト結晶粒が
微細で目標の高弾性を示す。なお、No.10とNo.12を
比較すると、NiおよびMoを含むNo.12の方が高い
弾性を示し、これらの合金元素の添加が一層の弾
性向上に効果があることが分かる。なお、比較材
である試料No.11とNo.13では、本発明で規定する範
囲以上のVまたはNbを含有させたものであるが、
試料No.10やNo.12と比較すると明らかなように、そ
の含有量の割りには弾性の大きな向上は認められ
ず、高価な添加元素であるVやNbを本発明範囲
以上に添加することは経済的でないことが分か
る。[Table] Example 2 A hot-rolled steel plate having the chemical composition values shown in Table 3 was pickled, then annealed and cold rolled repeatedly to produce a polished steel strip with a thickness of 0.5 mm. JIS No. 5 tensile test pieces were prepared from each polished strip steel, and each test piece was quenched and tempered under the conditions shown in Table 4. The austenite grain size (austenite grain size number) and 0.03% proof stress of the obtained heat-treated product are also listed in Table 4. In Table 4, comparative materials of Samples No. 8 and 9 are V or V which has austenite grain refining effect.
Because it does not contain Nb or contains only a small amount of Nb, the austenite crystal grains are large and the target 0.03%
Durability has not been achieved. On the other hand, samples No. 10 and No. 12 according to the method of the present invention have fine austenite crystal grains and exhibit the target high elasticity. Note that when comparing No. 10 and No. 12, No. 12 containing Ni and Mo exhibits higher elasticity, indicating that the addition of these alloying elements is effective in further improving elasticity. In addition, samples No. 11 and No. 13, which are comparative materials, contained V or Nb in an amount exceeding the range specified in the present invention.
As is clear from the comparison with Samples No. 10 and No. 12, no significant improvement in elasticity was observed considering the content, and it was found that V and Nb, which are expensive additive elements, were added beyond the scope of the present invention. It turns out that it is not economical.
【表】【table】
【表】
実施例 3
第5表に示す化学成分を有する鋼を、転炉にて
溶製後約7トンの鋼塊に鋳造した。その後、通常
の熱延とみがき帯鋼製造工程(酸洗、焼鈍および
冷延)で板厚0.52mmのみがき帯鋼を製造した。こ
のみがき帯鋼を用いて、TIG溶接で造管し、19φ
×0.52tmmの素管を得た。この素管を引き抜き加
工することにより、小径側が10φ×0.43tmmで、
大径側が15φ×0.30tmmのテーパ状に段付き加工
された長さ970mmのゴルフクラブ用シヤフトの形
状に成形加工した。
これらのパイプについて、第6表に示す熱処理
条件で熱処理を施して曲げ試験および衝撃試験を
行ない、ゴルフクラブ用シヤフトとしての弾性お
よび靭性を評価した。ここで実施した曲げ試験
は、パイプの小径側50mmの位置を冶具にて水平に
固定し、冶具より500mmの位置に荷重を負荷する
いわゆる片持ちはりとし、塑性的に変形し始める
荷重を降伏荷重として測定した。また衝撃試験
は、パイプ小径側の部分よりパイプ形状の試験片
を切り出し、そのパイプ形状のままアイゾツト衝
撃試験機を用いて室温で実施した。降伏荷重と衝
撃値の測定結果を第6表中に示した。なお、みが
き帯鋼状態での表面性状も第6表に併記した。
比較材である試験No.14に比べ、本発明法に従う
No.15およびNo.16のものは降伏荷重は明らかに大き
い。そして靭性も十分である。比較材の試料No.17
(Vが低い)はNo.14とNo.15よりも高C含有量のた
め降伏荷重は同等であるが、衝撃値が低く靭性に
乏しい。なお、No.15のCu含有量は0.03%でありと
くにCuを添加して溶製したものでない。このた
めCuを添加したNo.16と比べると、熱延板(ホツ
トコイル)におけるスケール疵の影響がみがき帯
鋼に残り、一部でスケール噛み込みやスケールパ
ターンが現れたため、これらの部分を除去する必
要が生じ、歩留りの低下を招いた。[Table] Example 3 Steel having the chemical composition shown in Table 5 was melted in a converter and then cast into a steel ingot weighing approximately 7 tons. Thereafter, a polished steel strip with a thickness of 0.52 mm was produced using the usual hot rolling and polished strip steel manufacturing process (pickling, annealing, and cold rolling). Using this polished strip steel, we made a pipe by TIG welding and made a 19φ
A raw tube of ×0.52tmm was obtained. By drawing this raw tube, the small diameter side is 10φ x 0.43tmm,
It was molded into the shape of a golf club shaft with a length of 970 mm and a tapered step of 15φ x 0.30 tmm on the large diameter side. These pipes were heat treated under the heat treatment conditions shown in Table 6 and subjected to bending tests and impact tests to evaluate their elasticity and toughness as shafts for golf clubs. The bending test conducted here was performed using a so-called cantilever beam, in which the small diameter side of the pipe was fixed horizontally at 50 mm using a jig, and a load was applied at a position 500 mm from the jig. It was measured as For the impact test, a pipe-shaped test piece was cut out from the small diameter side of the pipe, and the pipe-shaped test piece was conducted at room temperature using an Izot impact tester. The measurement results of yield load and impact value are shown in Table 6. Note that the surface properties of the polished strip steel are also listed in Table 6. Compared to test No. 14, which is a comparative material, according to the method of the present invention
The yield loads of No. 15 and No. 16 are clearly large. It also has sufficient toughness. Comparative material sample No. 17
(low V) has a higher C content than No. 14 and No. 15, so the yield load is the same, but the impact value is low and the toughness is poor. Note that the Cu content of No. 15 is 0.03%, and it is not produced by adding Cu. Therefore, compared to No. 16 with Cu added, the influence of scale flaws in the hot rolled sheet (hot coil) remained on the polished strip steel, and scale encroachment and scale patterns appeared in some parts, so these parts were removed. This resulted in a decrease in yield.
【表】【table】
第1図は弾性指標としての0.03%耐力とシヤフ
ト材中のC含有量との関係図、第2図は実施例の
試料No.2についての焼戻温度と0.03%耐力との関
係図である。
Figure 1 is a diagram showing the relationship between 0.03% proof stress as an elastic index and C content in the shaft material, and Figure 2 is a diagram showing the relationship between tempering temperature and 0.03% proof stress for sample No. 2 of the example. .
Claims (1)
0.50〜1.50%,P;0.030%以下,S;0.020%以
下,Al;0.050%以下,Cr;0.30〜1.20%を含有
し、さらに0.05〜0.40%のVまたは0.03〜0.15%
のNbのいずれか1種または2種を含有し、残部
がFeおよび不可避的不純物からなるみがき帯鋼
を製造し、このみがき帯鋼を溶接造管したうえゴ
ルフクラブ用シヤフトの形状に成形加工し、次い
で焼入れ処理したあと200〜400℃の温度で焼戻処
理することからなる0.03%耐力で130Kg/mm2以上
の高弾性を有するゴルフクラブ用シヤフトの製造
方法。 2 C;0.45〜0.80%,Si;0.80%以下,Mn;
0.50〜1.50%,P;0.030%以下,S;0.020%以
下,Al;0.050%以下,Cr;0.30〜1.20%を含有
し、さらに0.05〜0.40%のVまたは0.03〜0.15%
のNbのいずれか1種または2種、および0.30〜
0.80%のNiまたは0.10〜0.50%のMoのいずれか
1種または2種を含有し、残部がFeおよび不可
避的不純物からなるみがき帯鋼を製造し、このみ
がき帯鋼を溶接造管したうえゴルフクラブ用シヤ
フトの形状に成形加工し、次いで焼入れ処理した
あと200〜400℃の温度で焼戻処理することからな
る0.03%耐力で130Kg/mm2以上の高弾性を有する
ゴルフクラブ用シヤフトの製造方法。 3 C;0.45〜0.80%,Si;0.80%以下,Mn;
0.50〜1.50%,P;0.030%以下,S;0.020%以
下,Al;0.050%以下,Cr;0.30〜1.20%,Cu;
0.30%以下を含有し、さらに0.05〜0.40%のVま
たは0.03〜0.15%のNbのいずれか1種または2種
を含有し、残部がFeおよび不可避的不純物から
なるみがき帯鋼を製造し、このみがき帯鋼を溶接
造管したうえゴルフクラブ用シヤフトの形状に成
形加工し、次いで焼入れ処理したあと200〜400℃
の温度で焼戻処理することからなる0.03%耐力で
130Kg/mm2以上の高弾性を有するゴルフクラブ用
シヤフトの製造方法。 4 C;0.45〜0.80%,Si;0.80%以下,Mn;
0.50〜1.50%,P;0.030%以下,S;0.020%以
下,Al;0.050%以下,Cr;0.30〜1.20%,Cu;
0.30%以下を含有し、さらに0.05〜0.40%のVま
たは0.03〜0.15%のNbのいずれか1種または2
種、および0.30〜0.80%のNiまたは0.10〜0.50%
のMoのいずれか1種または2種を含有し、残部
がFeおよび不可避的不純物からなるみがき帯鋼
を製造し、このみがき帯鋼を溶接造管したうえゴ
ルフクラブ用シヤフトの形状に成形加工し、次い
で焼入れ処理したあと200〜400℃の温度で焼戻処
理することからなる0.03%耐力で130Kg/mm2以上
の高弾性を有するゴルフクラブ用シヤフトの製造
方法。[Claims] 1 C; 0.45 to 0.80%, Si; 0.80% or less, Mn;
Contains 0.50 to 1.50%, P; 0.030% or less, S; 0.020% or less, Al; 0.050% or less, Cr; 0.30 to 1.20%, and further contains 0.05 to 0.40% V or 0.03 to 0.15%.
A polished steel strip containing one or two types of Nb with the remainder consisting of Fe and unavoidable impurities is produced, and this polished steel strip is welded into pipes and then formed into the shape of a golf club shaft. A method for manufacturing a shaft for a golf club having high elasticity of 130 Kg/mm 2 or more with a 0.03% yield strength, which comprises quenching and then tempering at a temperature of 200 to 400°C. 2 C; 0.45-0.80%, Si; 0.80% or less, Mn;
Contains 0.50 to 1.50%, P; 0.030% or less, S; 0.020% or less, Al; 0.050% or less, Cr; 0.30 to 1.20%, and further contains 0.05 to 0.40% V or 0.03 to 0.15%.
any one or two types of Nb, and 0.30~
A polished steel strip containing one or two of 0.80% Ni or 0.10 to 0.50% Mo, with the balance consisting of Fe and unavoidable impurities is produced, and this polished steel strip is welded into pipes and used for golf purposes. A method for manufacturing a golf club shaft having high elasticity of 130 Kg/mm 2 or more with a 0.03% proof stress, which comprises forming into the shape of a club shaft, then quenching, and then tempering at a temperature of 200 to 400°C. . 3C; 0.45-0.80%, Si; 0.80% or less, Mn;
0.50-1.50%, P; 0.030% or less, S; 0.020% or less, Al; 0.050% or less, Cr; 0.30-1.20%, Cu;
A polished steel strip containing 0.30% or less and further containing one or both of 0.05 to 0.40% of V or 0.03 to 0.15% of Nb, with the balance consisting of Fe and unavoidable impurities is manufactured. Polished band steel is welded into pipes, formed into the shape of a golf club shaft, and then quenched at 200 to 400℃.
with 0.03% yield strength consisting of tempering treatment at a temperature of
A method for manufacturing a golf club shaft having high elasticity of 130Kg/mm 2 or more. 4 C; 0.45-0.80%, Si; 0.80% or less, Mn;
0.50-1.50%, P; 0.030% or less, S; 0.020% or less, Al; 0.050% or less, Cr; 0.30-1.20%, Cu;
Contains 0.30% or less, and further contains either 0.05 to 0.40% of V or 0.03 to 0.15% of Nb or two.
seeds, and 0.30-0.80% Ni or 0.10-0.50%
A polished strip steel containing one or two types of Mo with the remainder consisting of Fe and unavoidable impurities is produced, and this polished strip steel is welded into pipes and then formed into the shape of a golf club shaft. A method for manufacturing a shaft for a golf club having high elasticity of 130 Kg/mm 2 or more with a 0.03% yield strength, which comprises quenching and then tempering at a temperature of 200 to 400°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58027975A JPS59153868A (en) | 1983-02-22 | 1983-02-22 | Shaft for golf club |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58027975A JPS59153868A (en) | 1983-02-22 | 1983-02-22 | Shaft for golf club |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59153868A JPS59153868A (en) | 1984-09-01 |
JPH0344126B2 true JPH0344126B2 (en) | 1991-07-05 |
Family
ID=12235868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58027975A Granted JPS59153868A (en) | 1983-02-22 | 1983-02-22 | Shaft for golf club |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59153868A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018158908A1 (en) * | 2017-03-02 | 2018-09-07 | 日新製鋼株式会社 | Shaft for golf clubs and method for producing same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0613745B2 (en) * | 1984-12-01 | 1994-02-23 | 愛知製鋼株式会社 | Manufacturing method of high toughness low alloy steel |
TWI557231B (en) * | 2015-06-26 | 2016-11-11 | 復盛應用科技股份有限公司 | A method for manufacturing a golf club head |
JP2018121912A (en) * | 2017-02-01 | 2018-08-09 | 日新製鋼株式会社 | Steel sheet for golf club face, golf club face and manufacturing method thereof, and golf club head |
WO2019171624A1 (en) * | 2018-03-09 | 2019-09-12 | 日新製鋼株式会社 | Steel pipe and production method for steel pipe |
CN110306119B (en) * | 2018-03-23 | 2020-09-11 | 复盛应用科技股份有限公司 | Method for manufacturing golf club head |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54116321A (en) * | 1978-03-03 | 1979-09-10 | Kawasaki Steel Co | Production of silicon containing steel material with excellent surface appearance |
-
1983
- 1983-02-22 JP JP58027975A patent/JPS59153868A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54116321A (en) * | 1978-03-03 | 1979-09-10 | Kawasaki Steel Co | Production of silicon containing steel material with excellent surface appearance |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018158908A1 (en) * | 2017-03-02 | 2018-09-07 | 日新製鋼株式会社 | Shaft for golf clubs and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JPS59153868A (en) | 1984-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100205141B1 (en) | Austenitic stainless steel | |
US20170058376A1 (en) | Rolled material for high strength spring, and wire for high strength spring | |
EP3719148B1 (en) | High-hardness steel product and method of manufacturing the same | |
KR20040075981A (en) | Cr-CONTAINING HEAT-RESISTANT STEEL SHEET EXCELLENT IN WORKABILITY AND METHOD FOR PRODUCTION THEREOF | |
US20120000567A1 (en) | Electric resistance welded steel pipe excellent in deformability and fatigue properties after quenching | |
JPS60215719A (en) | Manufacture of electric welded steel pipe for front fork of bicycle | |
JP3255296B2 (en) | High-strength steel for spring and method of manufacturing the same | |
JPH06116635A (en) | Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance | |
CA1308998C (en) | Hot rolled steel sheet having high resistances against secondary-work embrittlement and brazing embrittlement and adapted for ultra-deep drawing and a method for producing the same | |
JPH07188834A (en) | High strength steel sheet having high ductility and its production | |
JP3578435B2 (en) | Hot-rolled steel sheet for structural use excellent in press formability and surface properties and method for producing the same | |
JPH0344126B2 (en) | ||
JP7155644B2 (en) | bolt | |
JP3858647B2 (en) | High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same | |
JP3999457B2 (en) | Wire rod and steel bar excellent in cold workability and manufacturing method thereof | |
JPH07188858A (en) | Steel for cold forging | |
JP5151510B2 (en) | Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties | |
JPH08260106A (en) | Chromium steel sheet excellent in formability | |
JP3536001B2 (en) | Cast steel for welded structures | |
JP2005350736A (en) | High-strength steel having superior corrosion resistance and fatigue characteristics for spring, and manufacturing method therefor | |
JPH0625745A (en) | Manufacture of steel for machine structural use excellent in delayed fracture resistance | |
JPH05255738A (en) | Production of steel for machine structural use excellent in delayed fracture resistance | |
JP3877028B2 (en) | Manufacturing method of thick steel plate with excellent strength, toughness and weldability | |
JPS5852460A (en) | High strength chromium steel with superior weathering resistance and weldability | |
JPH0569884B2 (en) |