JPH0341703A - Sintered magnet of rare-earth-iron based alloy having p-xylylene polymer film and manufacture thereof - Google Patents

Sintered magnet of rare-earth-iron based alloy having p-xylylene polymer film and manufacture thereof

Info

Publication number
JPH0341703A
JPH0341703A JP1175645A JP17564589A JPH0341703A JP H0341703 A JPH0341703 A JP H0341703A JP 1175645 A JP1175645 A JP 1175645A JP 17564589 A JP17564589 A JP 17564589A JP H0341703 A JPH0341703 A JP H0341703A
Authority
JP
Japan
Prior art keywords
xylylene
polymer film
layer
film
rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1175645A
Other languages
Japanese (ja)
Other versions
JP2753588B2 (en
Inventor
Michihiro Nemoto
根本 通裕
Masatoshi Nakayama
正俊 中山
Koichi Yajima
弘一 矢島
Kunihiro Ueda
国博 上田
Masanori Shibahara
正典 柴原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP1175645A priority Critical patent/JP2753588B2/en
Priority to US07/497,549 priority patent/US5154978A/en
Publication of JPH0341703A publication Critical patent/JPH0341703A/en
Application granted granted Critical
Publication of JP2753588B2 publication Critical patent/JP2753588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To improve corrosion resistance by forming a protective film comprising a vapor-phase plated layer and the polymer film of vapor-phase p-xylylene or p-xylylene chloride which is continued from the plated film on the surface of the sintered body of rare-earth-element (including Y)-boron-iron based alloy having the porous surface. CONSTITUTION:Them main components of rare-earth-iron based alloy to be protected are 8-30 atomic% rare earth element, 2-28 atomic% boron and 42-90 atomic% iron in general. The alloy is obtained by sintering. A protective film has a double-layer structure. The first layer comprises a vapor-phase plated layer. The second layer comprises the polymer film of vapor-phase p-xylylene or p-xylylene chloride. The first layer of the protective film is the vapor-phase plated layer which is directly formed on the surface of the rare-earth-iron based sintered alloy that is a porous material. The second layer of the protecting film is formed on the surface of the first layer of the protective film. The second layer is the polymer film of the p-xylylene and the polymer film of the p-xylylene chlorided.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は腐食し易い稀土類鉄系磁石の耐食性を改善する
技術に関し、特に稀土類−硼素−鉄系磁石に気相法p−
キシリレン重合膜又は塩素化p−キシリレン重合膜を形
成してなる耐食性磁石とその製造法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a technique for improving the corrosion resistance of rare earth iron-based magnets that are prone to corrosion, and in particular to a technique for improving the corrosion resistance of rare earth-boron-iron magnets.
The present invention relates to a corrosion-resistant magnet formed with a xylylene polymer film or a chlorinated p-xylylene polymer film, and a method for manufacturing the same.

本発明によると、保護被覆と磁石との結合力が大きい。According to the present invention, the bonding force between the protective coating and the magnet is large.

(従来技術とその問題点) 従来高エネルギー積磁石としては、Sm−C。(Prior art and its problems) Conventional high energy product magnets include Sm-C.

系磁石が用いられてきたが、コスト、機械加工性、より
高いエネルギー積といった点で有利な稀土類鉄系磁石が
最近注目され、特に原子比で8〜30原子%の稀土類元
素(Yを含む)、2〜28%原子のB、および残部Fe
 (42〜90原子%)および不可避不純物からなる組
成が効果的であることが見出されている。
However, rare earth iron magnets have recently attracted attention due to their advantages in terms of cost, machinability, and higher energy product. ), 2-28% atomic B, and the balance Fe
(42 to 90 atom %) and unavoidable impurities have been found to be effective.

ところが、稀土類鉄系磁石はSm−Co系に比べ、耐食
性という面では劣り、種々の表面保護処理が検討されて
いる状況にある。
However, rare earth iron magnets are inferior to Sm--Co magnets in terms of corrosion resistance, and various surface protection treatments are being considered.

稀土類鉄系磁石は焼結法および急冷法で作製されている
。この系の磁石は酸化し易いNd%Feを多く含むので
、耐薬品性、特に酸、アルカリに弱く、湿式めっき等の
表面処理では、酸、アルカリ等による前処理或いはめっ
き工程中に表面が侵されたり、たとえめっきが出来ても
、内部に侵入した薬品の影響により、内部腐食が発生し
たり、結晶粒間が侵食されることで磁気特性が低下する
Rare earth iron magnets are manufactured using sintering and rapid cooling methods. Since this type of magnet contains a large amount of Nd%Fe, which is easily oxidized, it has poor chemical resistance, especially against acids and alkalis.In surface treatments such as wet plating, the surface may be attacked during pre-treatment with acids, alkalis, etc. or during the plating process. Even if plating is possible, internal corrosion may occur due to the influence of chemicals that have entered the interior, and magnetic properties may deteriorate due to erosion between crystal grains.

この問題を解決する方法として各種の方法が提案されて
いる。
Various methods have been proposed to solve this problem.

基本的な方法は稀土類鉄系焼結磁石の表面に。The basic method is to apply it to the surface of a rare earth iron-based sintered magnet.

耐食性のNi、Ti、酸化又は炭化Ti、その他の金属
又は化合物をイオンブレーティング、イオンスパッタリ
ング等の気相めっき法によりめっきして保護層を形成す
ることである。場合により更にクロメート処理をして耐
食性を向上するなどの方法や(特開昭61−15020
1号、特開昭61−166116号、特開昭63−99
08号。
The protective layer is formed by plating corrosion-resistant Ni, Ti, oxidized or carbide Ti, or other metals or compounds by a vapor phase plating method such as ion blasting or ion sputtering. Depending on the case, methods such as further chromate treatment to improve corrosion resistance or
No. 1, JP-A-61-166116, JP-A-63-99
No. 08.

特開昭63−110706号)、基体磁石との間の結合
力を増すために気相めっき層を磁石に拡散させる方法も
ある(特開昭62−120002号)、ところが基体磁
石は粒子間に隙間のある多孔質であるため、気相めっき
層を形成しても磁石表面には細孔が存在しており、酸、
アルカリ、水分等が細孔に捕捉され、侵食を生じる。こ
の問題を避けるために気相めっきに続いて金属球で表面
を機械的に衝撃する封孔処理しくショットピーニング)
、その後でクロメート処理をすることが提案されている
(特開昭63−9919、特開昭63−120003号
)、シかし、この方法でも充分な封孔処理は出来ないの
で、更に合成樹脂の塗料を塗布して残った細孔を塞ぐこ
とが提案されている(特開昭62−120004号)、
シかし、この方法では封孔処理の他に乾燥工程、硬化処
理等、の工程を要し、工程がますます複雑になるだけで
なく、樹脂塗料中に含まれた水分がそのまま細孔内に捕
捉されたままになるため腐蝕による磁石の経時的な劣化
を回避することが出来ない、又塗料を塗布する場合塗布
膜厚を厚くしないと防錆効果は出ず、その結果寸法精度
が出しにくい欠点がある。
JP-A No. 63-110706), there is also a method of diffusing a vapor phase plating layer into the magnet to increase the bonding force with the base magnet (JP-A No. 62-120002). Because it is porous with gaps, even if a vapor phase plating layer is formed, pores still exist on the magnet surface, and acid,
Alkali, moisture, etc. are trapped in the pores, causing erosion. To avoid this problem, after vapor phase plating, the surface is mechanically bombarded with a metal ball (shot peening).
It has been proposed to perform chromate treatment after that (Japanese Patent Application Laid-Open No. 63-9919, JP-A No. 63-120003). However, even with this method, sufficient sealing treatment cannot be achieved, so further synthetic resin treatment is proposed. It has been proposed that the remaining pores be closed by applying a paint of
However, in addition to sealing, this method requires drying, curing, etc., which not only makes the process even more complicated, but also allows water contained in the resin paint to enter the pores. It is not possible to avoid deterioration of the magnet over time due to corrosion because the magnet remains trapped in the magnet.Also, when applying paint, the rust prevention effect will not be achieved unless the thickness of the coating is thick, resulting in poor dimensional accuracy. There are some serious drawbacks.

また、この系の磁石、特にこの系の焼結磁石にプラズマ
重合被膜を設けることは知られているが(特開昭63−
6811)、従来の多元素系被膜では充分な重合度が得
難かった。たとえばアクリル酸などではプラズマ重合中
に活性な酸素が存在し、プラズマ重合と同時にプラズマ
エツチングが起こる。このため保護重合膜の硬度、ち密
性が十分でなく又重合度も低い。そのため十分なガスバ
リヤ−性が得られないなど、耐食性保護膜とじて充分に
機能できない。
Furthermore, it is known that this type of magnet, especially this type of sintered magnet, is provided with a plasma polymerized coating (Japanese Patent Application Laid-Open No. 1983-1999-1).
6811), it was difficult to obtain a sufficient degree of polymerization with conventional multi-element coatings. For example, in the case of acrylic acid, active oxygen is present during plasma polymerization, and plasma etching occurs simultaneously with plasma polymerization. Therefore, the hardness and density of the protective polymer film are insufficient, and the degree of polymerization is also low. Therefore, it cannot function satisfactorily as a corrosion-resistant protective film, such as not being able to provide sufficient gas barrier properties.

また、保護被覆として稀土類焼結金属磁石の表面に高分
子樹脂膜を形成することも行なわれているが(特開昭6
1−198221号公報、同56−81908号公報、
同60−63901号等)、高分子樹脂膜は透湿性、酸
素透過性が大きく、稀土類焼結金属磁石との親和性が低
いので、充分な接着を確保することができない、また弗
素樹脂のように高温焼付けを要するために磁石の酸化を
招くもの、エポキシ樹脂などのように耐食性で劣るもの
など各種のものがあるが、接着性と耐食性の両者を兼ね
備えた膜は提供されていない。
Additionally, a polymer resin film has been formed on the surface of rare earth sintered metal magnets as a protective coating (Japanese Unexamined Patent Publication No. 6
No. 1-198221, No. 56-81908,
No. 60-63901, etc.), polymer resin films have high moisture permeability and oxygen permeability, and have low affinity with rare earth sintered metal magnets, so they cannot ensure sufficient adhesion. There are various types of materials, including those that require high-temperature baking, which leads to oxidation of the magnet, and those that have poor corrosion resistance, such as epoxy resin, but no film has been provided that has both adhesion and corrosion resistance.

更にキシレン樹脂を真空蒸着で成膜することも提案され
ているが、重合度は低く、耐食性に問題がある(特開昭
55−103714)。
Furthermore, it has been proposed to form a film of xylene resin by vacuum deposition, but the degree of polymerization is low and there are problems with corrosion resistance (Japanese Patent Laid-Open No. 55-103714).

(発明の目的) 従って本発明の目的は耐食性の良い稀土類焼結金属磁石
を提供すること、及びその製造方法を提供することにあ
る。
(Object of the Invention) Therefore, the object of the present invention is to provide a rare earth sintered metal magnet with good corrosion resistance, and to provide a manufacturing method thereof.

(発明の概要) 本発明は、稀土類元素(Yを含む〉−硼素−鉄系合金焼
結体の表面に気相めっき層と、それに続く気相法p−キ
シリレン重合膜又は塩素化p−キシリレン重合膜の保護
被覆を形成したことを特徴とする耐食性永久磁石を提供
する。
(Summary of the Invention) The present invention provides a vapor phase plating layer on the surface of a rare earth element (including Y)-boron-iron alloy sintered body, followed by a vapor phase p-xylylene polymer film or a chlorinated p- Provided is a corrosion-resistant permanent magnet characterized by forming a protective coating of xylylene polymer film.

本発明はまた稀土類元素−ホウ素−鉄系合金焼結体の表
面に金属上記を接触させてめっき相を形成し、次いでp
−キシリレン重合膜又は塩素化p−キシリレンニ量体を
熱分解してp−キシリレン又は塩素化p−キシリレンの
ラジカルを形成し、このラジカルを前記めっき層の表面
で重合させて保護被覆を形成することにより、上記の耐
食性永久磁石を製造する。
The present invention also includes forming a plating phase by bringing the metal above into contact with the surface of the rare earth element-boron-iron alloy sintered body, and then forming a plating phase.
- thermally decomposing a xylylene polymer film or a chlorinated p-xylylene dimer to form p-xylylene or chlorinated p-xylylene radicals, and polymerizing these radicals on the surface of the plating layer to form a protective coating. The above-mentioned corrosion-resistant permanent magnet is manufactured by the above method.

気相法p−キシリレン重合膜又は塩素化p−キシリレン
重合膜は耐食性に優れたものであるが、基体に対する接
着性が極めて悪いことが知られている。ところが本発明
によると、気相法p−キシリレン重合膜又は塩素化p−
キシリレン重合膜の保護被覆の固有の性質による極めて
高い耐食性を生かしながら接着性の悪さを補うことによ
り耐食性の高い稀土類鉄系焼結合金磁石が提供できる。
Although vapor-phase p-xylylene polymer films or chlorinated p-xylylene polymer films have excellent corrosion resistance, they are known to have extremely poor adhesion to substrates. However, according to the present invention, a vapor-phase p-xylylene polymerized film or a chlorinated p-
A rare earth iron-based sintered alloy magnet with high corrosion resistance can be provided by making use of the extremely high corrosion resistance due to the inherent properties of the protective coating of the xylylene polymer film while compensating for poor adhesion.

その上本発明によると保護被覆は気相重合であるためラ
ジカルは細孔の中まで入り込んで重合する結果基体焼結
合金に対して結合性が大きくなり剥離しにくくなる。こ
のため結果的に永久磁石の耐食性及び耐久性は更に向上
する。
Furthermore, according to the present invention, since the protective coating is polymerized in a gas phase, the radicals penetrate into the pores and polymerize, resulting in increased bonding properties to the base sintered alloy, making it difficult to peel off. As a result, the corrosion resistance and durability of the permanent magnet are further improved.

(発明の詳細な説明) 二 土A 本発明で保護される稀土類鉄系焼結合金は一般に稀土類
元素8〜30原子%、硼素2〜28原子%、及び鉄42
〜90原子%を主成分とし公知の方法により焼結処理し
て得られる。稀土類元素としては例えば特開昭62−1
23004号に示されている様な、Nd%Pr、Dy、
Ho、Tbの少なくとも一種と、La、Ce、Sm、C
d、Er、Eu、Tm、Yb、Lu、Yのうちの少なく
とも一種からなる。この組成の磁石は磁気特性は極めて
優れているが、結晶が柱状に発達し結晶粒の間に隙間が
出来ることが知れられている。本発明はこのような多孔
質表面を有する稀土類鉄系焼結合金なp−キシリレン重
合膜又は塩素化p−キシリレン重合膜で物理的に封孔す
るものであるから、焼結合金の組成には直接依存せず、
合金の表面状態に依存することに注意されたい。
(Detailed Description of the Invention) 2. Soil A The rare earth iron-based sintered alloy protected by the present invention generally contains 8 to 30 at.% of rare earth elements, 2 to 28 at.% of boron, and 42 at.% of iron.
It is obtained by sintering using a known method with a main component of ~90 atomic %. Examples of rare earth elements include JP-A-62-1
Nd%Pr, Dy, as shown in No. 23004
At least one of Ho, Tb and La, Ce, Sm, C
It consists of at least one of d, Er, Eu, Tm, Yb, Lu, and Y. Although magnets with this composition have extremely excellent magnetic properties, it is known that the crystals develop into columnar shapes and gaps are formed between the crystal grains. Since the present invention physically seals the pores with a p-xylylene polymer film or a chlorinated p-xylylene polymer film of a rare earth iron-based sintered alloy having a porous surface, the composition of the sintered alloy is is not directly dependent on
Note that it depends on the surface condition of the alloy.

区復鳳 本発明では保護膜が2層構造を成し、第1層が気相めっ
き層、第2層が気相p−キシリレン重合膜又は塩素化p
−キシリレン重合膜よりなる。
In the present invention, the protective film has a two-layer structure, the first layer is a vapor phase plating layer, and the second layer is a vapor phase p-xylylene polymer film or a chlorinated p-layer.
- Consists of xylylene polymer film.

気相重合p−キシリレン重合膜又は塩素化p−キシリレ
ン重合膜は水分及び酸素に対して極めて良好なバリヤー
性を有し、そのため極めて優れた耐食性を有する材料と
して知られているがこのものを稀土類鉄系磁石の保護に
使用することは従来試みられていない。そこで本発明者
はこれらの重合膜を直接稀土類鉄系焼結合金の表面に形
成することを試みたが接着性が極めて悪く剥離し易いこ
とが分かった。
Gas-phase polymerized p-xylylene polymer membranes or chlorinated p-xylylene polymer membranes have extremely good barrier properties against moisture and oxygen, and are therefore known as materials with extremely excellent corrosion resistance. No previous attempt has been made to use it to protect ferrous magnets. Therefore, the present inventor attempted to form these polymer films directly on the surface of rare earth iron-based sintered alloys, but found that the adhesive properties were extremely poor and they were easily peeled off.

発明者は気相法p−キシリレン重合膜及び塩素化p−キ
シリレン重合膜を施す前に、各種の前処理を試みた結果
、気相めっきによって予め金属化合物層又は金属層を形
成しておくことにより重合体の接着性が格段に向上する
ことを見出した。この結果は意外であった。気相めっき
層はある程度活性な表面を有するとしても気相重合p−
キシリレン重合膜及び塩素化p−キシリレン重合膜とは
通常なら充分な結合力を生じないからである。これはp
−キシリレンラジカルが第1層の表面に付着する際に、
基体焼結合金の細孔を大部分保存している細孔内に侵入
し、細孔内で重合して細孔を完全に充填してしまい、そ
のためアンカー効果を生じていることと、めっき層の表
面がある程度活性になっているとか共同しているのであ
ろう、この推定は磁石の断面をSEM写真で観察するこ
とにより確認出来た。このことにより磁石の耐食性が完
全であることと、保護膜第2層であるp−キシリレン又
は塩素かp−キシリレン重合膜の密着性が良いことが理
解出来る。保護膜第1層と第2層はお互いの欠点を補強
して完全な保護膜となっている。
The inventor tried various pre-treatments before applying a vapor phase p-xylylene polymer film and a chlorinated p-xylylene polymer film, and found that a metal compound layer or a metal layer was formed in advance by vapor phase plating. It has been found that the adhesiveness of the polymer is significantly improved. This result was surprising. Even if the vapor phase plating layer has a surface that is active to some extent, vapor phase polymerization p-
This is because the xylylene polymer film and the chlorinated p-xylylene polymer film do not normally have sufficient bonding strength. This is p
- When xylylene radicals attach to the surface of the first layer,
It penetrates into the pores of the base sintered alloy, where most of the pores are preserved, and polymerizes within the pores, completely filling the pores, resulting in an anchoring effect. This assumption was confirmed by observing the cross section of the magnet using an SEM photograph. From this, it can be understood that the corrosion resistance of the magnet is perfect and that the second layer of the protective film, p-xylylene or chlorine or p-xylylene polymer film, has good adhesion. The first and second layers of the protective film reinforce each other's defects to form a complete protective film.

区遺1動4L厘 保護膜のうち第1層は多孔質である稀土類鉄系焼結合金
の表面に直接形成される気相めっき層である。気相めっ
き層は例えば特開昭61−150201号に記載されて
いるような各種の公知の気相めっき法で形成出来る。こ
の方法としては、真空蒸着法、イオンスパッタリング法
、イオンブレーティング法、イオン蒸着法(IVD)、
プラズマ蒸着法(CVD)等があり、真空蒸着法は、原
料を抵抗加熱、電子ビーム加熱、RF誘導加熱などの方
法により加熱蒸発させて原子状又は分子状蒸気を作り、
これを焼結合金の表面に付着させる方法である。イオン
スパッタリング法は真空容器内にArなどの不活性ガス
を導入し、放電を作用させてイオン化し、これを電界に
より加速して原料ターゲットを衝撃し、原料のイオンを
形成し、それを焼結合金の表面に付着させる方法である
。イオンブレーティング法は原料を抵抗加熱、電子ビー
ム加熱、RF誘導加熱などの方法により加熱蒸発させて
蒸気を作り、これに熱電子を衝突させ原料の分子又は原
子のイオン流を作り、これを電界によって加速し磁石の
表面に付着製膜す方法である。イオン蒸着法は電子銃、
アーク放電等によって蒸発させた原料蒸発物と、原料イ
オン源からのイオンとを同時に且つある割合で磁石表面
に付着させる方法である。プラズマ蒸着法は真空室に減
量ガスを導入し、このガスを放電等によりプラズマ化し
、磁石表面に製膜する方法である。
The first layer of the protective film is a vapor phase plating layer formed directly on the surface of the porous rare earth iron-based sintered alloy. The vapor phase plating layer can be formed by various known vapor phase plating methods, such as those described in JP-A-61-150201. This method includes vacuum evaporation method, ion sputtering method, ion blating method, ion vapor deposition method (IVD),
There are plasma vapor deposition methods (CVD), etc., and vacuum vapor deposition methods heat and evaporate raw materials using methods such as resistance heating, electron beam heating, and RF induction heating to create atomic or molecular vapor.
This is a method of attaching this to the surface of a sintered alloy. In the ion sputtering method, an inert gas such as Ar is introduced into a vacuum container, ionized by a discharge, and accelerated by an electric field to impact the raw material target to form raw material ions, which are sintered and bonded. This is a method of attaching it to the surface of gold. In the ion blating method, the raw material is heated and evaporated using methods such as resistance heating, electron beam heating, and RF induction heating to create steam, which is bombarded with thermal electrons to create an ion flow of molecules or atoms of the raw material, which is then applied to an electric field. This is a method of accelerating and depositing a film on the surface of a magnet. The ion vapor deposition method uses an electron gun,
This is a method in which raw material evaporated by arc discharge or the like and ions from a raw material ion source are simultaneously deposited on the magnet surface in a certain proportion. The plasma deposition method is a method in which a reducing gas is introduced into a vacuum chamber, the gas is turned into plasma by electric discharge, etc., and a film is formed on the surface of a magnet.

本発明で使用出来る第1層用金属又は金属化合物には、
AI%Ni、Cr、Cu、Co等の金属、シリカ、アル
ミナ、クロミア、炭化チタン、窒化チタン、窒化アルミ
ニララム、等の金属化合物がある。上記金属化合物は直
接金属化合物を蒸発させる方法と金属を蒸発させ、窒素
、メタン、酸素等のガスを導入し反応させる方法がある
The metal or metal compound for the first layer that can be used in the present invention includes:
AI% Metals such as Ni, Cr, Cu, and Co, and metal compounds such as silica, alumina, chromia, titanium carbide, titanium nitride, and aluminum nitride are included. The above-mentioned metal compound can be prepared by directly evaporating the metal compound or by evaporating the metal and introducing a gas such as nitrogen, methane, oxygen, etc. to cause a reaction.

装汲星亙11 保護膜の第1層の表面には保護膜の第2層が形成される
。第2層はp−キシリレン重合膜及び塩素化p−キシリ
レン重合膜である。このような被覆には例えば米国ユニ
オン・カーバイド社よりパリレンN(ポリp−キシリレ
ン)、パリレンC(ポリモノクロクロロp−キシリレン
)、パリレンD(ポリジクロロp−キシリレン)等があ
るがガス透過性が低いので特にパリレンCが好ましい。
A second layer of the protective film is formed on the surface of the first layer of the protective film. The second layer is a p-xylylene polymer film and a chlorinated p-xylylene polymer film. Such coatings include, for example, Parylene N (poly p-xylylene), Parylene C (polymonochlorochloro p-xylylene), and Parylene D (polydichloro p-xylylene) manufactured by Union Carbide Corporation in the United States, but they have poor gas permeability. Parylene C is particularly preferred because it is low.

ポリp−キシリレン等の膜は2量体のガスを減圧下に熱
分解することにより得られる。膜厚としては0.5μm
以上、好ましくは1〜20umである。
Films such as polyp-xylylene are obtained by thermally decomposing dimer gas under reduced pressure. Film thickness is 0.5μm
Above, preferably 1 to 20 um.

なお、必要ならばp−キシリレン重合膜及び塩素化p−
キシリレン重合膜の被覆を有する高耐食性磁石をエポキ
シ樹脂その他の接着剤により電気又は電子装置の一部に
固定使用とするとこの重合膜の接触角が90度と高く撥
水性のため接着剤とのなじみが悪く充分な接着力が得ら
れず実用化の障害となる。従って他の部分への接着が必
要な場合には、重合膜の表面をプラズマ処理にかけるが
(特願平!−67521号)又は(或は更に)プラズマ
重合膜で被覆するか(特願昭63−109063号)に
より、p−キシリレン重合膜又は塩素化p−キシリレン
重合膜と合成樹脂接着剤との結合力を向上し得ることが
できる。
In addition, if necessary, a p-xylylene polymer film and a chlorinated p-
When a highly corrosion-resistant magnet coated with a xylylene polymer film is fixed to a part of an electrical or electronic device using an epoxy resin or other adhesive, the polymer film has a high contact angle of 90 degrees and is water repellent, making it compatible with the adhesive. The adhesive strength is poor and sufficient adhesion cannot be obtained, which is an obstacle to practical application. Therefore, if adhesion to other parts is required, the surface of the polymer film may be subjected to plasma treatment (Japanese Patent Application No. 67521) or (or additionally) coated with a plasma polymer film (Japanese Patent Application No. 67521). No. 63-109063), it is possible to improve the bonding strength between a p-xylylene polymer film or a chlorinated p-xylylene polymer film and a synthetic resin adhesive.

プラズマ処理はAr、He、Ne等の希ガスHz 、N
x 、Ox 、Co、Cot 、Hz OlNow 、
Now 、NHsのガス等を真空室に導入し、プラズマ
化しこれを重合膜に接触させることにより行なわれる。
Plasma treatment uses rare gases such as Ar, He, Ne, Hz, N
x, Ox, Co, Cot, Hz OlNow,
This is carried out by introducing gas such as Now, NHs, etc. into a vacuum chamber, turning it into plasma, and bringing it into contact with the polymer film.

プラズマ処理の条件としては通常次ぎのちのを使用する
。ガス圧力0.01〜10Torrにて電源は直流、交
流が使用でき、交流の周波数は50Hzから5GHzま
で使用できる。サンプルの形状及び量により処理条件は
異なるが使用電力10W−10KW処理時間0.5秒〜
10分に設定することができる。処理後の表面の接触角
は30°以下が望ましいプラズマ処理はp−キシリレン
重合膜及び塩素化p−キシリレン重合膜の表面を活性化
し、使用するガスの種類により各種の活性なラジカル、
OH基等の官能基が生じその後に形成されるプラズマ重
合膜又は合成樹脂膜に対する反応性、濡れ性が改善され
、接着剤が基体に充分入り込む結果(アンカー効果)接
着性を大幅に改善し、更に表面硬度を大幅に向上させる
The following conditions are usually used for plasma treatment. Direct current or alternating current can be used as a power source at a gas pressure of 0.01 to 10 Torr, and the frequency of alternating current can be used from 50 Hz to 5 GHz. Processing conditions vary depending on the shape and amount of sample, but power consumption is 10W-10KW and processing time is 0.5 seconds or more.
It can be set to 10 minutes. The contact angle of the surface after treatment is preferably 30° or less. Plasma treatment activates the surface of p-xylylene polymer film and chlorinated p-xylylene polymer film, and depending on the type of gas used, various active radicals,
Functional groups such as OH groups are generated, which improves the reactivity and wettability of the subsequently formed plasma polymerized film or synthetic resin film, allowing the adhesive to fully penetrate into the substrate (anchor effect), significantly improving adhesion. Furthermore, the surface hardness is significantly improved.

プラズマ重合膜は、従来知られている任意のモノマーガ
スを使用し得る。例えばメタン、エタン、プロパン、ブ
タン、ペンタン、エチレン、プロピレン、ブテン、ブタ
ジェン、アセチレン、メチルアセチレン等の炭化水素モ
ノマーの他、テトラメトキシシラン等のケイ素系モノマ
ー、テトラフルオロエチレン等のフッ化水素系モノマー
、メチルメタアクリレート等を挙げることができる。
The plasma polymerized membrane can use any conventionally known monomer gas. For example, in addition to hydrocarbon monomers such as methane, ethane, propane, butane, pentane, ethylene, propylene, butene, butadiene, acetylene, and methylacetylene, silicon monomers such as tetramethoxysilane, and hydrogen fluoride monomers such as tetrafluoroethylene. , methyl methacrylate and the like.

特に実質的に炭素と水素のみからなるプラズマ重合膜は
被膜を形成したもので、表面にち密でピンホールの無い
硬質の膜を形成し、耐食性が良好で、長期安定性にすぐ
れた磁気特性を保つことができるという利点を有するの
で好ましく、中でも原子数の比(原子組成比)で表わし
て好ましくはH/C=1.5以下であると三次元的に充
分架橋した特性の良いプラズマ重合膜が形成できる。こ
の場合、膜厚が0.2μm以下で充分な耐食性が得られ
る。このようなプラズマ重合保護膜は炭化水素モノマー
ガスの量を少なくし、反応圧力を低くし、且つ印加電力
を大きくすることにより生威し得る。すなわち、反応圧
力を低く印加電力を大きくすることにより、モノマー単
位量あたりの分解エネルギーが大きく成って分解が進み
、架橋したプラズマ重合保護膜が形成できる。本発明の
実施に適当なエネルギー密度Wは10’J/kg以上で
ある。その他キャリアガスとして水素、不活性ガス等の
ガスが使用できる。ただし不可避不純物として入ってく
る微量以上の酸素は用いてはならない。このように不可
避的な不純物ガスを除いて実質的に炭素と水素のみから
成る時高い耐食性と良好な接着性を示すことになる。更
に、プラズマ重合膜を形成するとき、磁石の温度を上げ
ておくことにより更に効果を上げることができる。
In particular, plasma-polymerized films consisting essentially only of carbon and hydrogen form a film that is dense and hard without pinholes, has good corrosion resistance, and has magnetic properties with excellent long-term stability. Among these, H/C is preferably 1.5 or less in terms of the ratio of the number of atoms (atomic composition ratio), which is a plasma polymerized film with good three-dimensionally crosslinked properties. can be formed. In this case, sufficient corrosion resistance can be obtained with a film thickness of 0.2 μm or less. Such a plasma polymerized protective film can be produced by reducing the amount of hydrocarbon monomer gas, lowering the reaction pressure, and increasing the applied power. That is, by lowering the reaction pressure and increasing the applied power, the decomposition energy per unit amount of monomer increases, the decomposition progresses, and a crosslinked plasma polymerized protective film can be formed. The energy density W suitable for carrying out the present invention is 10'J/kg or more. Other gases such as hydrogen and inert gas can be used as carrier gases. However, more than a trace amount of oxygen, which comes as an unavoidable impurity, must not be used. In this way, when the material consists essentially only of carbon and hydrogen, excluding unavoidable impurity gases, it exhibits high corrosion resistance and good adhesion. Furthermore, when forming a plasma polymerized film, the effect can be further improved by raising the temperature of the magnet.

なお、必要であればこのp−キシリレン重合膜又は塩素
化p−キシリレン重合膜を有する高耐食性磁石の上に施
される合成樹脂はエポキシ樹脂、アクリル樹脂、および
メラミン樹脂等が施される(特願平1−103344号
)。
If necessary, the synthetic resin applied on the highly corrosion-resistant magnet having the p-xylylene polymer film or chlorinated p-xylylene polymer film may be epoxy resin, acrylic resin, melamine resin, etc. Ganpei No. 1-103344).

(実施例の説明) 匙五立里孟 原料粉末を合金の組成がN d +sF e tアB8
となる様に秤量し、高周波溶解し、冷却して、鋳塊を製
造した0次ぎのこれをスタンプミルにより粗粉砕し、更
にボールミルで微粉砕した。
(Explanation of Examples) The alloy composition of the raw material powder is N d +sF e tA B8
The ingot was weighed, melted under high frequency, and cooled to produce a zero-order ingot, which was coarsely pulverized with a stamp mill and further finely pulverized with a ball mill.

この粉末を金型で直方体形に圧縮成形した。得られた成
形体を1100℃、1時間、Ar雰囲気中で焼結した0
表面粗度を測定したところJISの表面粗さRa2.1
であった。真空度5X 10−’Torr以下にした後
、Arガスを導入し圧力をI X I O−’Torr
にし、500Vで15分間放電して表面の酸化物等の汚
れを除去した。以下の実施例ではこの焼結合金を使用し
た。
This powder was compression molded into a rectangular parallelepiped shape using a mold. The obtained molded body was sintered at 1100°C for 1 hour in an Ar atmosphere.
When the surface roughness was measured, it was found to be JIS surface roughness Ra2.1.
Met. After reducing the vacuum level to 5X 10-'Torr or less, Ar gas was introduced and the pressure was reduced to IXI O-'Torr.
It was then discharged at 500V for 15 minutes to remove dirt such as oxides on the surface. This sintered alloy was used in the following examples.

笈轟泗l 上記の清浄化した焼結合金の表面に直ちにイオンブレー
ティング法によりAIの薄膜を厚さ約5μmに付着した
(比較例1)。次いでパリレンCを厚さ5μmになるま
で気相重合した。特性を測定したところ表1の結果を得
た。
Immediately on the surface of the above-mentioned cleaned sintered alloy, a thin film of AI was deposited to a thickness of about 5 μm by an ion-blating method (Comparative Example 1). Next, Parylene C was polymerized in a gas phase until the thickness became 5 μm. When the characteristics were measured, the results shown in Table 1 were obtained.

なお、耐食性、磁性低下及び寸法安定性を次ぎの基準で
評価した。
In addition, corrosion resistance, magnetic deterioration, and dimensional stability were evaluated based on the following criteria.

耐食性・・・35℃の5%食塩水をサンプルに噴霧し、
錆が発生するまでの時間を測定した。
Corrosion resistance: Spray 5% saline solution at 35℃ onto the sample,
The time required for rust to occur was measured.

寸法安定性・・・サンプルの寸法の測定を20箇所で行
ない、そのばらつきを示す。
Dimensional stability: The dimensions of the sample are measured at 20 locations, and the variations are shown.

磁性低下・・・90℃、90%の高温高湿下に90日間
保った後の磁性低下率を示す。
Decrease in magnetism: shows the rate of decrease in magnetism after being kept at 90°C and 90% high temperature and high humidity for 90 days.

見五舅1 イオン化蒸着法により上記焼結合金の表面にCuの薄膜
をを厚さ約5μmに付着した(比較例2)、次いでパリ
レンCを厚さ10LLmになるまで気相重合した。
Migosho 1 A thin film of Cu was deposited on the surface of the sintered alloy to a thickness of about 5 μm by ionization vapor deposition (Comparative Example 2), and then parylene C was vapor-phase polymerized to a thickness of 10 LLm.

L校皿上ニス 比較例1.2は実施例1.2においてそれぞれパリレン
Cの膜を形成しないものである。
Comparative Examples 1.2 and 1.2 are the same as Example 1.2 in which the Parylene C film is not formed.

工較立3 比較例1の処理の後にショットピーニングによる封孔処
理を施し、次ぎにクロメート処理を施した。
Construction 3 After the treatment in Comparative Example 1, a sealing treatment by shot peening was performed, and then a chromate treatment was performed.

比校北4 比較例2の処理の後にエポキシ樹脂を塗布し加熱硬化し
た。
Hiyoshi Kita 4 After the treatment in Comparative Example 2, an epoxy resin was applied and cured by heating.

表 更に、実施例1及び比較例4の切片を作り、断面を観察
したところ、実施例1のものには気泡が全くなく細孔の
中は完全に充填されていた。比較例4のものは細孔の上
に薄層が形成されてはいたが樹脂と磁石が密着していな
い部分が点在していた。
Furthermore, when sections were prepared for Example 1 and Comparative Example 4 and the cross sections were observed, it was found that there were no air bubbles in Example 1 and the pores were completely filled. In Comparative Example 4, a thin layer was formed on the pores, but there were scattered areas where the resin and magnet were not in close contact.

(作用効果) 実施例及び比較例から、本発明のp−パラキシリレン等
の気相重合膜は蒸着膜を介在するとき、耐食性、及び寸
法安定性が極めて優れたものとなることが分かる。これ
に対し蒸着金属のみでは耐食性が悪い。封孔処理をした
場合でも耐食性は充分でない。一方樹脂被覆を有すると
きは恐らく内部水分が原因となる磁性の低下が見られ、
又寸法精度に問題があった。
(Effects) From the Examples and Comparative Examples, it can be seen that the gas-phase polymerized film of p-paraxylylene or the like of the present invention has extremely excellent corrosion resistance and dimensional stability when a vapor-deposited film is interposed therebetween. On the other hand, using vapor-deposited metal alone has poor corrosion resistance. Even when sealed, corrosion resistance is not sufficient. On the other hand, when it has a resin coating, a decrease in magnetism is observed, probably due to internal moisture.
There was also a problem with dimensional accuracy.

Claims (1)

【特許請求の範囲】 1)多孔質表面を有する稀土類元素(Yを含む)−硼素
−鉄系合金焼結体の表面に気相めっき層と、それに続く
気相重合p−キシリレン重合膜又は塩素化p−キシリレ
ン重合膜の保護被覆を形成したことを特徴とする耐食性
永久磁石。 2)合金は稀士類元素8〜30原子%、硼素2〜28原
子%、及び鉄42〜90原子%を主成分とする前記第1
項記載の耐食性永久磁石。 3)多孔質表面を有する稀土類元素−ホウ素−鉄系合金
焼結体の表面に金属上記を接触させてめっき相を形成し
、次いでp−キシリレン二量体又は塩素化p−キシリレ
ン二量体を熱分解してp−キシリレン又は塩素化p−キ
シリレンのラジカルを形成し、このラジカルを前記めっ
き層の表面で重合させて保護被覆を形成することを特徴
とする耐食性永久磁石の製造方法。 4)合金は稀土類元素8〜30原子%、硼素2〜28原
子%、及び鉄42〜90原子%を主成分とする前記第3
項記載の耐食性永久磁石の製造方法。
[Claims] 1) A vapor phase plating layer on the surface of a rare earth element (including Y)-boron-iron alloy sintered body having a porous surface, followed by a vapor phase polymerized p-xylylene polymer film or A corrosion-resistant permanent magnet characterized by forming a protective coating of a chlorinated p-xylylene polymer film. 2) The alloy is the first alloy whose main components are 8 to 30 at% of rare elements, 2 to 28 at% of boron, and 42 to 90 at% of iron.
Corrosion-resistant permanent magnet as described in section. 3) A plating phase is formed by bringing the metal above into contact with the surface of a rare earth element-boron-iron alloy sintered body having a porous surface, and then a p-xylylene dimer or a chlorinated p-xylylene dimer is formed. A method for producing a corrosion-resistant permanent magnet, which comprises thermally decomposing p-xylylene or chlorinated p-xylylene radicals, and polymerizing the radicals on the surface of the plating layer to form a protective coating. 4) The alloy is the third alloy whose main components are 8 to 30 at% of rare earth elements, 2 to 28 at% of boron, and 42 to 90 at% of iron.
A method for producing a corrosion-resistant permanent magnet as described in .
JP1175645A 1989-03-22 1989-07-10 Rare earth iron-based alloy sintered magnet having p-xylylene polymer film and its manufacturing method Expired - Fee Related JP2753588B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1175645A JP2753588B2 (en) 1989-07-10 1989-07-10 Rare earth iron-based alloy sintered magnet having p-xylylene polymer film and its manufacturing method
US07/497,549 US5154978A (en) 1989-03-22 1990-03-22 Highly corrosion-resistant rare-earth-iron magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1175645A JP2753588B2 (en) 1989-07-10 1989-07-10 Rare earth iron-based alloy sintered magnet having p-xylylene polymer film and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH0341703A true JPH0341703A (en) 1991-02-22
JP2753588B2 JP2753588B2 (en) 1998-05-20

Family

ID=15999713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1175645A Expired - Fee Related JP2753588B2 (en) 1989-03-22 1989-07-10 Rare earth iron-based alloy sintered magnet having p-xylylene polymer film and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2753588B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3567619A1 (en) * 2018-05-08 2019-11-13 Abiomed Europe GmbH Corrosion-resistant permanent magnet and intravascular blood pump comprising the magnet
EP3425204B1 (en) * 2017-07-04 2021-04-14 Levitronix GmbH Magnetic rotor and machine with such a rotor
EP3822996A1 (en) * 2019-11-12 2021-05-19 Abiomed Europe GmbH Corrosion-resistant permanent magnet for an intravascular blood pump
US11967454B2 (en) 2016-11-02 2024-04-23 Abiomed Europe Gmbh Intravascular blood pump comprising corrosion resistant permanent magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103714A (en) * 1979-02-01 1980-08-08 Takagi Kogyo Kk Total periphery coating for permanent magnet
JPS6434156A (en) * 1987-07-28 1989-02-03 Matsushita Electric Works Ltd Permanent magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103714A (en) * 1979-02-01 1980-08-08 Takagi Kogyo Kk Total periphery coating for permanent magnet
JPS6434156A (en) * 1987-07-28 1989-02-03 Matsushita Electric Works Ltd Permanent magnet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11967454B2 (en) 2016-11-02 2024-04-23 Abiomed Europe Gmbh Intravascular blood pump comprising corrosion resistant permanent magnet
EP3425204B1 (en) * 2017-07-04 2021-04-14 Levitronix GmbH Magnetic rotor and machine with such a rotor
EP3567619A1 (en) * 2018-05-08 2019-11-13 Abiomed Europe GmbH Corrosion-resistant permanent magnet and intravascular blood pump comprising the magnet
WO2019214920A1 (en) * 2018-05-08 2019-11-14 Abiomed Europe Gmbh Corrosion-resistant permanent magnet and intravascular blood pump comprising the magnet
CN112106155A (en) * 2018-05-08 2020-12-18 阿比奥梅德欧洲股份有限公司 Corrosion-resistant permanent magnet and intravascular blood pump comprising same
US11569015B2 (en) 2018-05-08 2023-01-31 Abiomed Europe Gmbh Corrosion-resistant permanent magnet and intravascular blood pump comprising the magnet
AU2019264734B2 (en) * 2018-05-08 2023-02-23 Abiomed Europe Gmbh Corrosion-resistant permanent magnet and intravascular blood pump comprising the magnet
CN112106155B (en) * 2018-05-08 2023-03-07 阿比奥梅德欧洲股份有限公司 Corrosion-resistant permanent magnet and intravascular blood pump comprising same
EP3822996A1 (en) * 2019-11-12 2021-05-19 Abiomed Europe GmbH Corrosion-resistant permanent magnet for an intravascular blood pump
WO2021094297A1 (en) * 2019-11-12 2021-05-20 Abiomed Europe Gmbh Corrosion-resistant permanent magnet for an intravascular blood pump
EP4095872A1 (en) * 2019-11-12 2022-11-30 Abiomed Europe GmbH Corrosion-resistant permanent magnet for an intravascular blood pump

Also Published As

Publication number Publication date
JP2753588B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
EP0190461B1 (en) Process for producing permanent magnets and permanent magnet
JP3330143B2 (en) Metal coating method using low temperature plasma and electrodeposition
CN111441017A (en) Method for preparing anticorrosive coating on surface of neodymium iron boron magnet
JP2000256878A (en) Member with high corrosion resistant film and its production
US6106894A (en) Method for improving the protection against corrosion of a surface coated with aluminum
Yasuda et al. Interface-engineered parylene C coating for corrosion protection of cold-rolled steel
US5407548A (en) Method for coating a substrate of low resistance to corrosion
JP2753588B2 (en) Rare earth iron-based alloy sintered magnet having p-xylylene polymer film and its manufacturing method
JPH01129958A (en) Formation of titanium nitride film having high adhesive strength
CN111304596A (en) Preparation method of anticorrosive coating on surface of neodymium-iron-boron magnet
US11920234B2 (en) Yttrium oxide based coating composition
Wolf et al. Ion beam assisted deposition for metal finishing
JP2761942B2 (en) High corrosion resistant magnet
CN108251810B (en) Preparation method of corrosion-resistant sintered neodymium-iron-boron magnet
JP2882484B2 (en) High corrosion resistance rare earth iron-based magnet and method of manufacturing the same
JP2893455B2 (en) Rare earth iron-boron based magnet article having P-paraxylylene polymer film subjected to adhesion improving treatment
JPH07130520A (en) High corrosion-proof permanent magnet and manufacture of the same
JPS636811A (en) Magnet
JPH037336A (en) Article having p-xylene polymer film improved for adhesive and hardness
CN107299332A (en) A kind of sintered NdFeB magnet surface high-corrosion-resistance composite coating and preparation method thereof
JPH03153859A (en) Surface-modified plastic
JP2753586B2 (en) High corrosion resistant magnet
JPS63110706A (en) Permanent magnet and manufacture thereof
JP2000040610A (en) Film coated rare earth magnet
RU2214476C2 (en) Method of forming coat from precious metals and their alloys

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees