JP2000040610A - Film coated rare earth magnet - Google Patents

Film coated rare earth magnet

Info

Publication number
JP2000040610A
JP2000040610A JP10208744A JP20874498A JP2000040610A JP 2000040610 A JP2000040610 A JP 2000040610A JP 10208744 A JP10208744 A JP 10208744A JP 20874498 A JP20874498 A JP 20874498A JP 2000040610 A JP2000040610 A JP 2000040610A
Authority
JP
Japan
Prior art keywords
layer
film
rare earth
base material
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10208744A
Other languages
Japanese (ja)
Inventor
Shinichi Okabe
信一 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10208744A priority Critical patent/JP2000040610A/en
Publication of JP2000040610A publication Critical patent/JP2000040610A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the anti-corrosion of rare earth magnet, by a method wherein an Si film is formed by ion plating process on the surface of a rare earth magnet as a base metal so as to form the second layer made of an Si oxide material on this Si film. SOLUTION: The first layer made of an Si layer as for a base material is formed by ion plating process on the surface so as to form the second layer made of an Si oxide film on the first layer. The base material is either an Nd-Fe-B base sintered magnet or a bond magnet, etc., coupled with nylon. At this time, it is recommended that the surface pollution of a rare earth magnet as a base material is removed using alcohol, etc., before forming a film while in the case of the sintered magnet as the base material, and it is preferable that the vacuum degasification is performed since there is a possibility of either producing gas from inside or the decline in adherence. Furthermore, it is recommended that film thickness of the Si film formed as the first layer is 0.5-2.0 μm and that as the second layer is 1-5 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被膜付き希土類磁
石に関し、より詳しくは、希土類磁石の表面にイオンプ
レーティング法によりSi膜とSi酸化物被膜を形成
し、耐食性を向上させた被膜付き希土類磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated rare earth magnet, and more particularly, to a coated rare earth magnet having an improved corrosion resistance by forming a Si film and a Si oxide film on the surface of the rare earth magnet by an ion plating method. About magnets.

【0002】[0002]

【従来の技術】ネオジウム(Nd)−鉄(Fe)−ホウ
素(B)系磁石は、優れた磁気特性をもち、あらゆる分
野で使用されている。しかし、この磁石は鉄が主成分で
あり、また、結晶組織的に腐食しやすいネオジウムに富
む相を含んでいるので耐食性に劣る欠点がある。すなわ
ち、わずかな酸、アルカリ、水分の存在によって表面か
ら電気化学的に腐食が進行し、磁石が腐食されて錆が発
生し、磁石性能の劣化が生じる。
2. Description of the Related Art Neodymium (Nd) -iron (Fe) -boron (B) magnets have excellent magnetic properties and are used in various fields. However, this magnet is disadvantageous in that it is inferior in corrosion resistance because it is mainly composed of iron and contains a neodymium-rich phase which is easily corroded in crystal structure. That is, due to the presence of a slight amount of acid, alkali, and moisture, corrosion progresses electrochemically from the surface, the magnet is corroded, rust is generated, and magnet performance is deteriorated.

【0003】ネオジウム−鉄−ホウ素系磁石の耐食性を
向上させるために、磁石の表面に、ニッケルメッキ、ア
ルミクロメート、エポキシ樹脂塗装、電着塗装などの各
種表面処理を施していた。しかし、これらの表面処理で
形成した被膜によって磁石の耐食性を維持しようとする
と、該被膜の厚みは大気中の使用環境でも20μm以上
が必要である。このため、上記表面処理で被膜を形成し
た磁石は、磁気特性が低下する上に、厳しい寸法精度が
求められる精密部品や複雑な形状の部品には適用できな
いなどの問題があった。磁気特性が低下せずに上記部品
にも適用できるためには、被膜の厚みを10μm以下に
抑える必要がある。上記表面処理では、後加工も必要で
時間とコストがかかっていた。
In order to improve the corrosion resistance of a neodymium-iron-boron magnet, various surface treatments such as nickel plating, aluminum chromate, epoxy resin coating, and electrodeposition coating have been applied to the surface of the magnet. However, in order to maintain the corrosion resistance of the magnet by the coating formed by these surface treatments, the thickness of the coating needs to be 20 μm or more even in the use environment in the atmosphere. For this reason, the magnet formed with the film by the above-mentioned surface treatment has problems that the magnetic properties are deteriorated and that it cannot be applied to precision parts requiring strict dimensional accuracy or parts having complicated shapes. In order to be applicable to the above components without deteriorating the magnetic properties, it is necessary to suppress the thickness of the coating to 10 μm or less. In the above-mentioned surface treatment, post-processing is also required, which takes time and costs.

【0004】また、樹脂塗装では150℃以上の使用環
境では使えないなどの問題があり、耐熱性が高いポリイ
ミド樹脂を用いても使用できるのは300℃以下であっ
た。
In addition, there is a problem that the resin coating cannot be used in a use environment of 150 ° C. or higher, and the use of a polyimide resin having high heat resistance can be used at 300 ° C. or lower.

【0005】上記処理の他、イオンプレーティング法な
どの湿式メッキ法によりTiN膜などのセラミックス膜
をコーティングする方法もあるが、いくら膜厚を厚くし
てもピンホールが存在するために耐食性に問題があっ
た。
In addition to the above treatment, there is a method of coating a ceramic film such as a TiN film by a wet plating method such as an ion plating method. However, no matter how thick the film is, there is a problem in corrosion resistance due to the presence of pinholes. was there.

【0006】[0006]

【発明が解決しようとする課題】そこで本発明は、上記
事情に鑑み、湿式メッキ法に比べ処理工程の簡単なイオ
ンプレーティング法で形成した10μm以下の被膜でも
耐食性に優れた希土類磁石を提供することを目的とす
る。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a rare earth magnet which is excellent in corrosion resistance even with a coating having a thickness of 10 .mu.m or less formed by an ion plating method whose processing step is simpler than a wet plating method. The purpose is to:

【0007】[0007]

【課題を解決するため手段】上記目的を達成するための
本発明の被膜付き希土類磁石は、母材の希土類磁石の表
面にイオンプレーティング法によるSi膜からなる第1
層が形成され、Si酸化物膜からなる第2層が該第1層
上に形成されてなり、厚みは、第1層が0.5〜2μ
m、第2層が1.0〜5μm、かつ第1層と第2層の和
が10μm以下である。
According to the present invention, there is provided a coated rare earth magnet according to the present invention, comprising:
A layer is formed, a second layer made of a Si oxide film is formed on the first layer, and the thickness of the first layer is 0.5 to 2 μm.
m, the second layer is 1.0 to 5 μm, and the sum of the first and second layers is 10 μm or less.

【0008】[0008]

【発明の実施の形態】本発明における母材は、Nd−F
e−B系の焼結磁石やナイロンで結合させたボンド磁石
等である。上記母材には、表面にイオンプレーティング
法によるSi膜からなる第1層が形成され、Si酸化物
膜からなる第2層が該第1層上に形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The base material in the present invention is Nd-F
eB sintered magnets, bonded magnets bonded with nylon, and the like. A first layer made of a Si film is formed on the surface of the base material by an ion plating method, and a second layer made of a Si oxide film is formed on the first layer.

【0009】母材の希土類磁石は、被膜を形成する前
に、アルコール等で表面の汚れを落とすことが望まし
い。また、母材が焼結磁石の場合は、被膜形成時に加熱
により内部からガスが発生して磁石表面を汚したり、密
着力が低下する恐れがあるので、真空脱ガス処理を行う
ことが望ましい。真空脱ガス工程は、真空槽内を10-4
Torr以下に排気した後、ヒータで母材を300〜7
00℃に加熱して行うことができる。また、熱衝撃によ
り母材に割れが入らないように、急激に温度を上げない
ようにすることが望ましい。
It is desirable that the surface of the base metal rare earth magnet be cleaned with alcohol or the like before the film is formed. Further, when the base material is a sintered magnet, it is desirable to perform vacuum degassing because there is a possibility that a gas will be generated from the inside by heating during the formation of the coating and the magnet surface may be soiled, or the adhesion may decrease. In the vacuum degassing process, the inside of the vacuum chamber is 10 −4.
After exhausting to Torr or lower, the base material is heated to 300 to 7 with a heater.
It can be carried out by heating to 00 ° C. It is also desirable not to raise the temperature rapidly so that the base material does not crack due to thermal shock.

【0010】成膜形成前の母材は磁化していない方が望
ましい。磁化していると、イオンプレーティング処理を
行う場合にプラズマや蒸発粒子に影響を与え、膜厚分布
や膜質が好ましくない状態になるからである。
It is desirable that the base material before film formation is not magnetized. This is because, when magnetized, the plasma and the evaporating particles are affected when the ion plating process is performed, and the film thickness distribution and film quality are unfavorable.

【0011】母材表面の清浄と、母材加熱、母材と被膜
との密着力を向上させるために、ボンバード処理を行
う。ボンバード処理は、真空チャンバーにArガスを導
入し、母材にバイアス電圧−500V以上を印加して、
1分以上処理すればよい。
In order to clean the surface of the base material, heat the base material, and improve the adhesion between the base material and the coating, a bombardment treatment is performed. In the bombardment process, an Ar gas is introduced into a vacuum chamber, and a bias voltage of -500 V or more is applied to the base material.
What is necessary is just to process for 1 minute or more.

【0012】より高い密着力を得るためには、ボンバー
ド処理に続いて、メタルボンバード処理を行うのが好ま
しい。メタルボンバード処理は、第1層に形成されるS
i膜の原料を溶融し、蒸発粒子をイオン化して、母材に
バイアス電圧−500V以上印加し、1〜5分処理すれ
ばよい。5分間を超える処理は、母材表面が荒れるので
好ましくない。
In order to obtain a higher adhesion, it is preferable to carry out a metal bombarding process after the bombarding process. The metal bombardment process is performed on the S layer formed on the first layer.
It is sufficient to melt the raw material of the i-film, ionize the evaporated particles, apply a bias voltage of −500 V or more to the base material, and perform the treatment for 1 to 5 minutes. A treatment longer than 5 minutes is not preferable because the surface of the base material becomes rough.

【0013】第1層及び第2層に形成される被膜の原料
には、Si−10at%Ta合金を用いるのが好まし
い。Si単独でも蒸発材として使用できるが、Taの添
加により突沸を抑制することができるからである。Ta
は、Siの蒸気圧よりも約8桁程度低いので、Siが優
先的に蒸発することになる。
It is preferable to use a Si-10 at% Ta alloy as a raw material of a film formed on the first layer and the second layer. Although Si alone can be used as an evaporating material, bumping can be suppressed by adding Ta. Ta
Is about 8 orders of magnitude lower than the vapor pressure of Si, so that Si will evaporate preferentially.

【0014】第2層に形成する被膜の原料には、SiO
2を用いてもよい。しかしこの場合、複数個のハースを
備えた装置を用いなければ、第1層と第2層を連続的に
処理できない。
The raw material of the film formed on the second layer is SiO 2
2 may be used. However, in this case, the first layer and the second layer cannot be continuously processed unless an apparatus having a plurality of hearths is used.

【0015】第1層目および第2層目はPVD(物理蒸
着)で形成できるが、第1層目および第2層目が連続的
に容易に被膜形成できる、反応性イオンプレーティング
法が望ましい。イオン化の方法は、公知のアーク放電、
グロー放電、ホロカソード放電、高周波放電などいずれ
の方法でも良い。
The first layer and the second layer can be formed by PVD (physical vapor deposition), but a reactive ion plating method is preferred, in which the first layer and the second layer can be formed continuously and easily. . The method of ionization is a known arc discharge,
Any method such as glow discharge, hollow cathode discharge, and high frequency discharge may be used.

【0016】第2層目のSi酸化物被膜を形成する場
合、反応ガスとして酸素ガスを用いることができる。希
土類磁石は酸化しやすいため、第1層としてSi膜を形
成して酸素との接触を避ける必要がある。
When forming the second Si oxide film, oxygen gas can be used as a reaction gas. Since rare earth magnets are easily oxidized, it is necessary to form a Si film as the first layer to avoid contact with oxygen.

【0017】第1層目に形成されるSi膜の膜厚は、
0.5〜2.0μmが望ましい。0.5μm未満では密
着性向上、酸化防止が不十分であり、2.0μmを超え
ると、全体膜厚が厚くなり寸法精度が悪くなるからであ
る。
The thickness of the Si film formed as the first layer is
0.5 to 2.0 μm is desirable. When the thickness is less than 0.5 μm, the adhesion and oxidation prevention are insufficient, and when the thickness is more than 2.0 μm, the overall film thickness becomes large and the dimensional accuracy is deteriorated.

【0018】第2層目に形成されるSi酸化物膜の膜厚
は、1〜5μmが好ましい。1μm未満ではピンホール
が多数存在するので耐食性が十分得られず、逆に5μm
を超えると寸法精度が悪くなるし、また、生産性・経済
性の面でも不利である。
The thickness of the Si oxide film formed as the second layer is preferably 1 to 5 μm. If it is less than 1 μm, there are many pinholes, so that sufficient corrosion resistance cannot be obtained.
Exceeding the range results in poor dimensional accuracy and is disadvantageous in terms of productivity and economy.

【0019】第1層目のSi膜及び第2層目のSi酸化
物膜は、公知のイオンプレーティング法で形成するため
に通常ピンホールが存在する。しかし、Si酸化物膜は
撥水性に優れるためピンホール内に液体が浸入しずら
く、耐食性に優れる。
The first-layer Si film and the second-layer Si oxide film usually have pinholes because they are formed by a known ion plating method. However, since the Si oxide film is excellent in water repellency, the liquid hardly penetrates into the pinhole, and is excellent in corrosion resistance.

【0020】[0020]

【実施例】(実施例1) 大きさ10×10×5mmの
磁化していないNd−Fe−B系焼結磁石を母材とし、
これを超音波洗浄後、蒸発材と35cm離れた位置に対
面するようにセットした。蒸発材にはSi−10at%
Ta合金のインゴットをもちい、これをCu製のハース
内に充填した。蒸着装置は、神港精機製イオンプレーテ
ング装置、「AIF−850SB」を用いた。この装置
は、蒸発材の溶融には日本電子製270度偏向型電子銃
を用い、イオン化は蒸発材上に設けたイオン化電極と蒸
発材との間にプラズマを発生させて行うようになってい
る。
EXAMPLES Example 1 A non-magnetized Nd—Fe—B-based sintered magnet having a size of 10 × 10 × 5 mm was used as a base material.
After ultrasonic cleaning, this was set so as to face a position 35 cm away from the evaporating material. Si-10at% for evaporation material
A Ta alloy ingot was used and filled into a Cu hearth. As an evaporation apparatus, an ion plating apparatus manufactured by Shinko Seiki, "AIF-850SB" was used. In this apparatus, a 270 ° deflection electron gun manufactured by JEOL is used for melting the evaporating material, and ionization is performed by generating plasma between the ionizing electrode provided on the evaporating material and the evaporating material. .

【0021】母材および蒸発材をセッティング後、真空
チャンバー内を1×10-5Torrまで排気して、内部
ヒータで300℃まで加熱し、そのまま、2時間保持し
た。次に、Arガスを0.03Torr導入し、母材に
−800V印加して、イオンボンバードメントを30分
間行った。次に10kV−500mAの電子ビームをS
i−10at%Ta合金に照射し、溶解した。上記の方
法でSiを蒸発させ、母材に−800Vのバイアス電圧
を印加して、Siイオンによりメタルボンバードを2分
間行った。
After setting the base material and the evaporating material, the inside of the vacuum chamber was evacuated to 1 × 10 −5 Torr, heated to 300 ° C. by the internal heater, and kept for 2 hours. Next, 0.03 Torr of Ar gas was introduced, −800 V was applied to the base material, and ion bombardment was performed for 30 minutes. Next, an electron beam of 10 kV-500 mA is applied to S
The i-10at% Ta alloy was irradiated and melted. Si was evaporated by the above method, a bias voltage of -800 V was applied to the base material, and metal bombardment was performed for 2 minutes with Si ions.

【0022】続いて、バイアス電圧を−200Vに下
げ、Siメタルを2分間コーティングした。次に、酸素
を50SCCM導入し、12分間コーティングを行っ
た。
Subsequently, the bias voltage was lowered to -200 V, and Si metal was coated for 2 minutes. Next, oxygen was introduced at 50 SCCM, and coating was performed for 12 minutes.

【0023】得られた膜厚は、第1層目のSiメタル膜
が1.1μm、第2層目のSi酸化物膜が3.5μmで
あった。このコーティング磁石を5%塩水噴霧中に96
Hさらしても錆の発生がなく、高い耐食性を有してい
た。
The obtained film thickness was 1.1 μm for the first-layer Si metal film and 3.5 μm for the second-layer Si oxide film. The coated magnet was placed in a 5% salt spray for 96 hours.
Even when exposed to H, there was no rust and high corrosion resistance.

【0024】(実施例2) 第2層目のSi酸化物膜の
蒸発材としてSiO2を用い、コーティング時に5×1
-4Torrまで酸素ガスを導入し、30分間コーティ
ングした以外は実施例1と同様の処理を行った。
Example 2 SiO 2 was used as an evaporator for the second Si oxide film, and 5 × 1 was used during coating.
The same processing as in Example 1 was performed except that oxygen gas was introduced to 0 -4 Torr and coating was performed for 30 minutes.

【0025】得られた膜厚は、第1層目のSiメタル膜
が1.0μm、第2層目のSi酸化物膜が2.3μmで
あった。実施例1同様の耐食試験をした結果、同等の結
果が得られた。
The obtained film thickness was 1.0 μm for the first Si metal film and 2.3 μm for the second Si oxide film. As a result of the same corrosion resistance test as in Example 1, equivalent results were obtained.

【0026】(従来例1) 何の表面処理を施していな
いNd−Fe−B焼結磁石を空気中に放置しておいたと
ころ、24Hで鉄錆が発生してきた。この上に従来の表
面処理であるニッケルメッキを20μm付けた磁石を5
%塩水噴霧する耐食性試験では、48H錆が表面に発生
した。
(Conventional Example 1) When a Nd-Fe-B sintered magnet without any surface treatment was left in the air, iron rust was generated at 24H. A magnet with nickel plating of 20 μm, which is a conventional surface treatment, was
In the corrosion resistance test by spraying with salt water, 48H rust was generated on the surface.

【0027】(従来例2) エポキシ系樹脂主剤:硬化
剤:希釈シンナーを1:1:2の比率で混合し、スプレ
ーガンで塗布すると、平均膜厚で23μmあり、膜厚の
薄い所と厚い所で5μmの膜厚分布が生じた。
(Conventional Example 2) When an epoxy resin base material: a curing agent and a diluted thinner are mixed in a ratio of 1: 1: 2 and applied by a spray gun, the average thickness is 23 μm, and the thin and thick portions are thick. At this point, a film thickness distribution of 5 μm was generated.

【0028】(比較例1) Ni−Fe−B焼結磁石に
イオンプレーティング法でTiN膜を5μmコーティン
グし、5%塩水噴霧中に96Hさらした結果、全面に錆
が発生した。
Comparative Example 1 A Ni—Fe—B sintered magnet was coated with a TiN film having a thickness of 5 μm by an ion plating method, and exposed to 96H in a 5% salt water spray. As a result, rust was generated on the entire surface.

【0029】[0029]

【発明の効果】本発明により、20μm以下の膜厚で十
分な耐食性が得られ、しかも寸法精度良く、製造可能な
希土類磁石が提供できた。
According to the present invention, it is possible to provide a rare earth magnet which can provide sufficient corrosion resistance with a film thickness of 20 μm or less, has high dimensional accuracy, and can be manufactured.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 母材の希土類磁石の表面にイオンプレー
ティング法によるSi膜からなる第1層が形成され、S
i酸化物膜からなる第2層が該第1層上に形成されてな
る被膜付き希土類磁石。
1. A first layer made of a Si film is formed on a surface of a rare earth magnet as a base material by an ion plating method.
A coated rare earth magnet in which a second layer made of an i-oxide film is formed on the first layer.
【請求項2】 母材の希土類磁石の表面にイオンプレー
ティング法によるSi膜からなる第1層が形成され、S
i酸化物膜からなる第2層が該第1層上に形成されてな
り、厚みは、該第1層が0.5〜2μm、該第2層が
1.0〜5μmである被膜付き希土類磁石。
2. A first layer made of a Si film is formed on the surface of a base metal rare earth magnet by an ion plating method.
a second layer comprising an i-oxide film is formed on the first layer, and the thickness is 0.5 to 2 μm for the first layer and 1.0 to 5 μm for the second layer. magnet.
【請求項3】 母材の希土類磁石の表面にイオンプレー
ティング法によるSi膜からなる第1層が形成され、S
i酸化物膜からなる第2層が該第1層上に形成されてな
り、厚みは、該第1層が0.5〜2μm、該第2層が
1.0〜5μm、かつ該第1層と該第2層の和が10μ
m以下である被膜付き希土類磁石。
3. A first layer made of a Si film is formed on a surface of a base material rare earth magnet by an ion plating method.
a second layer made of an i-oxide film is formed on the first layer, and the thickness is 0.5 to 2 μm for the first layer, 1.0 to 5 μm for the second layer, and The sum of the layer and the second layer is 10μ
m.
JP10208744A 1998-07-24 1998-07-24 Film coated rare earth magnet Pending JP2000040610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10208744A JP2000040610A (en) 1998-07-24 1998-07-24 Film coated rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10208744A JP2000040610A (en) 1998-07-24 1998-07-24 Film coated rare earth magnet

Publications (1)

Publication Number Publication Date
JP2000040610A true JP2000040610A (en) 2000-02-08

Family

ID=16561372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10208744A Pending JP2000040610A (en) 1998-07-24 1998-07-24 Film coated rare earth magnet

Country Status (1)

Country Link
JP (1) JP2000040610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438768B2 (en) * 2001-12-28 2008-10-21 Shin-Etsu Chemical Co., Ltd. Rare earth element sintered magnet and method for producing rare earth element sintered magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438768B2 (en) * 2001-12-28 2008-10-21 Shin-Etsu Chemical Co., Ltd. Rare earth element sintered magnet and method for producing rare earth element sintered magnet

Similar Documents

Publication Publication Date Title
JPH11307328A (en) Corrosion resistant permanent magnet and its manufacture
JP2000256878A (en) Member with high corrosion resistant film and its production
JPH0515043B2 (en)
US5154816A (en) Process for depositing an anti-wear coating on titanium based substrates
JP3176597B2 (en) Corrosion resistant permanent magnet and method for producing the same
JPH01129958A (en) Formation of titanium nitride film having high adhesive strength
JP2000040610A (en) Film coated rare earth magnet
US4966668A (en) Method for the treatment of metal objects
JP3305786B2 (en) Manufacturing method of permanent magnet with excellent corrosion resistance
CN108251810B (en) Preparation method of corrosion-resistant sintered neodymium-iron-boron magnet
JP2753588B2 (en) Rare earth iron-based alloy sintered magnet having p-xylylene polymer film and its manufacturing method
JP2001011603A (en) Member with laminated film, and the laminated film
JP2006013399A (en) Corrosion-resistant rare earth-based permanent magnet and manufacturing method thereof
JPH04276062A (en) Arc deposition device
JPH11219809A (en) Rare-earth magnet with high resistance coating
JP2882484B2 (en) High corrosion resistance rare earth iron-based magnet and method of manufacturing the same
JP2000256826A (en) Member with high corrosion resistant film and its production
JPH1136063A (en) Arc type evaporating source
JP2000160365A (en) High corrosion resistance member with coating film and the coating film
JPH0821511B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JP2000030918A (en) Rare earth magnet with coating film
JPH11176619A (en) Oxidation and abrasion-resistant, coated rare earth magnet
JPS636811A (en) Magnet
RU2134732C1 (en) Method of formation of protective layer of magnesium oxide
JPS639919A (en) Manufacture of magnet