JPH11219809A - Rare-earth magnet with high resistance coating - Google Patents

Rare-earth magnet with high resistance coating

Info

Publication number
JPH11219809A
JPH11219809A JP10021620A JP2162098A JPH11219809A JP H11219809 A JPH11219809 A JP H11219809A JP 10021620 A JP10021620 A JP 10021620A JP 2162098 A JP2162098 A JP 2162098A JP H11219809 A JPH11219809 A JP H11219809A
Authority
JP
Japan
Prior art keywords
film
layer
resistance
earth magnet
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10021620A
Other languages
Japanese (ja)
Inventor
Naoaki Kitagawa
直明 北川
Shinichi Okabe
信一 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10021620A priority Critical patent/JPH11219809A/en
Publication of JPH11219809A publication Critical patent/JPH11219809A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Abstract

PROBLEM TO BE SOLVED: To provide a rear-earth magnet with high resistance coating, in which insulation performance can be made high, and corrosion resistance and abrasion resistance can be made satisfactory, even if a thin film which is 25 μm or less in which high dimensional precision can be obtained. SOLUTION: An abrasion resistance coating which is 1-5 μm is formed as a first layer, and high resistance coating the specific resistance value of which is 10<5> Ω.cm or more which is 2-20 μm is formed as a second layer on the surface of this rare-earth magnet with a high resistance coating. In this case, at least one kind of metallic nitride film selected from among Ti, Zr, Hf, V, Nb, Ta, and Cr, or one kind of metallic film selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Ni, and Cu, or two or more kinds of alloy film selected from among Ti, Zr, Hf, V, Nb, Ta, Cr, Ni, and Cu are used for the first layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面の一部または
全面にコーティングを施した高抵抗被膜付き希土類磁石
に関し、より詳しくは、表面に耐食性被膜を、その上に
高抵抗被膜を重ねて形成することで、高い絶縁性と、優
れた耐食性および耐摩耗性を併せもった高抵抗被膜付き
希土類磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth magnet with a high resistance coating having a coating on a part or the entire surface thereof, and more particularly, a corrosion resistance coating on the surface and a high resistance coating formed thereon. Accordingly, the present invention relates to a rare earth magnet with a high-resistance coating having both high insulation properties and excellent corrosion resistance and wear resistance.

【0002】[0002]

【従来の技術】例えばネオジウム(Nd)−鉄(Fe)
―ホウ素(B)系磁石、サマリウム(Sm)−コバルト
(Co)系磁石などのいわゆる希土類磁石は、優れた磁
気特性をもち、あらゆる分野で使用されている。しか
し、この磁石は、鉄などが主成分であり、また、結晶組
織的に腐食しやすい希土類元素に富む相を含んでいるの
で耐食性に劣る欠点がある。希土類磁石は、わずかな
酸、アルカリ、水分の存在によって表面から電気化学的
に腐食が進行し、磁石が腐食され錆が発生する。これに
伴って磁石性能は劣化する。
2. Description of the Related Art For example, neodymium (Nd) -iron (Fe)
So-called rare earth magnets such as boron (B) based magnets and samarium (Sm) -cobalt (Co) based magnets have excellent magnetic properties and are used in all fields. However, this magnet is inferior in corrosion resistance because it is mainly composed of iron or the like and contains a phase rich in rare earth elements which is easily corroded in crystal structure. Rare earth magnets are electrochemically corroded from the surface due to the presence of a slight amount of acid, alkali, and moisture, and the magnets are corroded to generate rust. Accompanying this, the magnet performance deteriorates.

【0003】このように耐食性の劣る希土類磁石の耐食
性を向上させるため、従来は磁石の表面に、ニッケルメ
ッキ、アルミクロメート、エポキシ樹脂塗装、電着塗装
などの各種表面処理を施していた。
In order to improve the corrosion resistance of rare earth magnets having poor corrosion resistance, various surface treatments such as nickel plating, aluminum chromate, epoxy resin coating, and electrodeposition coating have been conventionally applied to the surface of the magnet.

【0004】しかし、これらの表面処理法では、大気中
での使用環境でも膜厚が20μm以上も必要であり、厳
しい寸法精度が求められる精密部品には適用できない。
その上、前処理と後加工が必要で、処理時間とコストが
かかっていた。
However, these surface treatment methods require a film thickness of 20 μm or more even in an environment of use in the atmosphere, and cannot be applied to precision parts requiring strict dimensional accuracy.
In addition, pre-processing and post-processing are required, which requires processing time and cost.

【0005】また、ニッケルメッキなど導電性被膜を形
成した場合、ピンホールが1つでもあると部材との電位
差により局部電池が形成され、腐食が進行してしまう。
また、耐摩耗性が必要な使用環境では被膜硬度が低いた
めに使用できない。
In the case where a conductive film such as nickel plating is formed, if there is at least one pinhole, a local battery is formed due to a potential difference from a member, and corrosion proceeds.
Further, in a use environment where abrasion resistance is required, it cannot be used because the film hardness is low.

【0006】また、希土類磁石は抵抗値が低いために、
局部電池が形成されやすい。そこで、絶縁性が必要な場
所での使用には、材料表面に絶縁材料であるエポキシ樹
脂などを塗布していたが、塗料を吹き付けたり、塗料に
浸したりするので、複雑形状の場合は均一な膜厚が得ら
ず高い寸法精度が得られ難く、また、塗料に用いる溶剤
(例えばシンナーなど)の処理にも問題があった。
[0006] Also, since the rare earth magnet has a low resistance value,
A local battery is easily formed. Therefore, when used in places where insulation is required, an epoxy resin, which is an insulating material, is applied to the surface of the material.However, since the paint is sprayed or dipped in the paint, a uniform shape is required for complicated shapes. It is difficult to obtain high dimensional accuracy because the film thickness is not obtained, and there is also a problem in the treatment of a solvent (for example, a thinner) used for a paint.

【0007】また、樹脂は水分を透過させるので、周囲
の環境で絶縁抵抗値が変化し、さらに150℃以上の使
用環境では樹脂が軟化してしまって使えないなどの問題
があった。耐熱性が高いポリイミド樹脂でも耐熱温度は
300℃以下であり、摩耗特性も悪いという問題があっ
た。
Further, since the resin allows moisture to permeate, the insulation resistance value changes in the surrounding environment, and further, the resin is softened in an operating environment of 150 ° C. or more, and cannot be used. Even a polyimide resin having high heat resistance has a problem that the heat resistance temperature is 300 ° C. or lower and the abrasion characteristics are poor.

【0008】[0008]

【発明が解決しようとする課題】このように、従来の表
面処理であるニッケルメッキ、塗装法では、絶縁性や耐
食性、耐摩耗性が不十分であったり、それらを得るため
に、膜厚が20μm以上になってしまい寸法精度が厳し
い精密部品や複雑形状には適用できなかった。また耐摩
耗性が必要な個所にも被膜硬度が低いために使用できな
かった。
As described above, in the conventional nickel plating and painting methods, which are surface treatments, the insulation, corrosion resistance, and abrasion resistance are insufficient. It could not be applied to precision parts or complicated shapes having strict dimensional accuracy because the thickness was 20 μm or more. Further, it could not be used in places where abrasion resistance was required due to low film hardness.

【0009】そこで本発明は、高い寸法精度を得るため
に膜厚を25μm以下に抑え、しかもこのような薄膜で
も絶縁性が高く、耐食性と耐摩耗性にも優れた高抵抗被
膜付き希土類磁石を提供することを目的とする。
Accordingly, the present invention provides a rare earth magnet with a high resistance coating having a high film thickness of 25 μm or less in order to obtain high dimensional accuracy, and having a high insulation property and excellent corrosion resistance and wear resistance even with such a thin film. The purpose is to provide.

【0010】[0010]

【課題を解決するため手段】上記目的を達成するための
本発明の高抵抗被膜付き希土類磁石は、表面に、第1層
として耐摩耗性被膜が、第2層として高抵抗被膜が形成
されたことを特徴とする。
According to the present invention, there is provided a rare earth magnet provided with a high resistance coating having a high resistance coating as a first layer and a high resistance coating as a second layer. It is characterized by the following.

【0011】第1層としては、Ti、Zr、Hf、V、
Nb、Ta、および、Crから選ばれる少なくとも1種
の金属の窒化物膜、もしくは、Ti、Zr、Hf、V、
Nb、Ta、Cr、Ni、および、Cuから選ばれる1
種の金属膜、もしくは、Ti、Zr、Hf、V、Nb、
Ta、Cr、Ni、および、Cuから選ばれる2種以上
の合金膜が好ましく、その膜厚は、1〜5μmであるこ
とが好ましい。
As the first layer, Ti, Zr, Hf, V,
A nitride film of at least one metal selected from Nb, Ta, and Cr, or Ti, Zr, Hf, V,
1 selected from Nb, Ta, Cr, Ni, and Cu
Seed metal film, or Ti, Zr, Hf, V, Nb,
Two or more alloy films selected from Ta, Cr, Ni, and Cu are preferable, and the film thickness is preferably 1 to 5 μm.

【0012】第1層目に形成される窒化物膜あるいは金
属膜や金属合金膜の膜厚は、1〜5μmが望ましい。1
μm未満ではピンホールが多く十分な環境遮断性が得ら
れないからである。また、5μmを超えると、膜の応力
が高くなるため剥離やクラックが発生し安くなり、ま
た、全体の膜厚が厚くなって寸法精度が悪くなるからで
ある。
The thickness of the nitride film, metal film or metal alloy film formed as the first layer is preferably 1 to 5 μm. 1
If the thickness is less than μm, there are many pinholes and sufficient environmental barrier properties cannot be obtained. On the other hand, if the thickness exceeds 5 μm, the stress of the film is increased, so that peeling and cracking occur and the cost is reduced, and the overall film thickness is increased and the dimensional accuracy is deteriorated.

【0013】例えば、第1層膜が、金属の窒化物膜であ
るCrN膜やTiN膜であれば、1μm厚の膜でもピン
ホール率が0.1〜0.2%、Cr金属膜であれば、
0.01〜0.02%になり、十分な環境遮断性があ
る。
For example, if the first layer film is a CrN film or a TiN film which is a metal nitride film, a 1 μm thick film may have a pinhole ratio of 0.1 to 0.2% and a Cr metal film. If
It becomes 0.01-0.02%, and there is a sufficient environmental barrier property.

【0014】第2層目に形成される高抵抗被膜は、比抵
抗値105Ω・cm以上であることが好ましく、その膜
厚は、2〜20μmであることが好ましい。比抵抗値1
5Ω・cm未満では、ピンホールがあった場合に局部
電池を形成しやすく、腐食の進行が速くなるからであ
る。また、膜厚が2μm未満では被膜のピンホールが多
く、下地の膜と通電する可能性があり、また、耐食性、
耐摩耗性も不十分だからである。一方、膜厚が20μm
を超えると、全体の膜厚が厚くなって寸法精度が悪くな
るからである。
The high-resistance film formed as the second layer preferably has a specific resistance value of 10 5 Ω · cm or more, and preferably has a thickness of 2 to 20 μm. Specific resistance value 1
If it is less than 0 5 Ω · cm, a local battery is easily formed in the case of a pinhole, and the progress of corrosion becomes faster. If the film thickness is less than 2 μm, there are many pinholes in the film, and there is a possibility of conducting electricity with the underlying film.
This is because the abrasion resistance is insufficient. On the other hand, the film thickness is 20 μm
This is because, if it exceeds, the overall film thickness becomes large and the dimensional accuracy deteriorates.

【0015】[0015]

【発明の実施の形態】本発明に用いられる部材として
は、Nd−Fe−B系磁石、Sm−Co系磁石、Sm−
Fe−N系磁石、これらの焼結磁石やナイロン樹脂、エ
ポキシ樹脂等で結合されたボンド磁石(樹脂磁石)等を
用いることができる。膜を形成する際は磁化していない
方が望ましい。磁化した部材では、イオンプレーティン
グを行う場合にプラズマや蒸発粒子に影響を与え、膜厚
分布や膜質に影響するからである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The members used in the present invention include Nd-Fe-B based magnets, Sm-Co based magnets, Sm-
Fe-N based magnets, sintered magnets thereof, bond magnets (resin magnets) bonded with nylon resin, epoxy resin or the like can be used. It is desirable that the film is not magnetized when forming the film. This is because a magnetized member affects plasma and evaporated particles when ion plating is performed, which affects the film thickness distribution and film quality.

【0016】膜の形成前に、部材表面の汚れをアルコー
ル等で落とすことが望ましい。特に焼結磁石に膜を形成
する場合、成膜時に加熱されて磁石内部からガスが発生
し、磁石表面を汚したり、密着力が低下する恐れがある
ので、好ましくは真空脱ガス工程を入れる。真空脱ガス
工程は、例えば真空槽内を10-4Torr以下に排気し
た後、ヒータで部材を300〜700℃に加熱すること
で行える。真空脱ガス工程では、熱衝撃により部材に割
れが入らないように、急激に温度を上げないようにする
ことが望ましい。
Before the formation of the film, it is desirable to remove stains on the member surface with alcohol or the like. Particularly, when a film is formed on a sintered magnet, a gas is generated from the inside of the magnet when heated during the film formation, and the magnet surface may be soiled or the adhesion may be reduced. The vacuum degassing step can be performed, for example, by evacuating the vacuum chamber to 10 -4 Torr or less, and then heating the member to 300 to 700 ° C. with a heater. In the vacuum degassing step, it is desirable not to raise the temperature abruptly so that the member is not cracked by thermal shock.

【0017】また、部材表面の清浄と、部材加熱、部材
と膜との密着力を向上させるために、ボンバード処理を
行うことが好ましい。ボンバード処理の方法として、例
えば、真空チャンバーにArガスを導入し、部材にバイ
アス電圧−500V以上印加して、1分以上処理するこ
とで行える。
In order to clean the surface of the member, heat the member, and improve the adhesion between the member and the film, it is preferable to perform a bombarding treatment. As a method of the bombardment treatment, for example, Ar gas is introduced into a vacuum chamber, a bias voltage of -500 V or more is applied to a member, and the treatment is performed for one minute or more.

【0018】より高い密着力を得るために、続いてメタ
ルボンバード処理を行うのが好ましい。メタルボンバー
ド処理は、例えば、第1層の原料となる金属を溶融し、
蒸発粒子をイオン化して、部材にバイアス電圧を−50
0V以上印加し、1〜5分処理する。5分以上行うと部
材表面が荒れるので好ましくない。
In order to obtain a higher adhesion, it is preferable to subsequently carry out a metal bombarding treatment. In the metal bombarding process, for example, a metal serving as a raw material of the first layer is melted,
The evaporated particles are ionized, and the bias voltage is applied to the member by -50.
Apply 0 V or more and process for 1 to 5 minutes. It is not preferable to perform the heating for 5 minutes or more because the surface of the member becomes rough.

【0019】第1層および第2層は、公知のPVD(物
理蒸着)で形成できるが、本発明においては、第1層と
第2層とが連続的に容易にコーティングできる反応性イ
オンプレーテインング法が望ましい。イオン化の方法
は、公知に知られているアーク放電、グロー放電、ホロ
カソード放電、高周波放電などいずれの方法でも良い。
The first layer and the second layer can be formed by known PVD (physical vapor deposition), but in the present invention, the reactive ion platen in which the first layer and the second layer can be easily coated continuously. Is preferred. The ionization method may be any of known methods such as arc discharge, glow discharge, hollow cathode discharge, and high frequency discharge.

【0020】第2層に形成される比抵抗105Ω・cm
以上の高抵抗被膜としては、Al23、SiO2、Mg
O、ZrO2などの酸化物被膜や、AlNやSi34
どの窒化物被膜が挙げられ、適用部所の要求抵抗値によ
って適宜選択できる。
The specific resistance formed on the second layer is 10 5 Ω · cm.
Al 2 O 3 , SiO 2 , Mg
Examples include oxide films such as O and ZrO 2 , and nitride films such as AlN and Si 3 N 4 , which can be appropriately selected according to the required resistance value of the application site.

【0021】第2層に上記の酸化物被膜を形成する場
合、反応ガスとして酸素ガスを用いることができる。反
応ガスとして酸素ガスを用いる場合は、部材の希土類磁
石が酸化されやすいため、第1層として窒化膜や金属膜
を選択し、酸素との接触を避けることが望ましい。
When the above-mentioned oxide film is formed on the second layer, oxygen gas can be used as a reaction gas. When oxygen gas is used as the reaction gas, the rare-earth magnet of the member is easily oxidized. Therefore, it is desirable to select a nitride film or a metal film as the first layer to avoid contact with oxygen.

【0022】[0022]

【実施例】(実施例1) 10×10×5mmの磁化し
ていないNd−Fe−B系焼結磁石を部材とし、これを
超音波洗浄後、蒸着装置内に蒸発材と35cm離れた位
置に対面するように装着した。第1層の蒸発材として
は、Cr−35at%Ti合金のインゴットを、第2層
の蒸発材としては、直径2〜3mmの粒状Al23(溶
解粉砕品)を用い、それぞれCu製のハース内に充填し
た。
(Example 1) A 10 × 10 × 5 mm non-magnetized Nd—Fe—B based sintered magnet was used as a member, and after ultrasonic cleaning, it was placed 35 cm away from the evaporating material in a vapor deposition apparatus. It was attached to face. As the evaporating material of the first layer, an ingot of a Cr-35 at% Ti alloy was used, and as the evaporating material of the second layer, granular Al 2 O 3 (dissolved and pulverized product) having a diameter of 2 to 3 mm was used. Filled in hearth.

【0023】蒸着装置は、神港精機製イオンプレーテン
グ装置、AIF−850SBを用いた。この装置は、蒸
発材の溶融に日本電子製270度偏向型電子銃が用いら
れ、イオン化は、蒸発材上に設けたイオン化電極と蒸発
材との間にプラズマを発生させるようになっている。
As an evaporation apparatus, an ion plating apparatus manufactured by Shinko Seiki, AIF-850SB was used. In this apparatus, a 270 degree deflection electron gun manufactured by JEOL Ltd. is used for melting the evaporating material, and ionization generates plasma between the evaporating material and an ionization electrode provided on the evaporating material.

【0024】部材および蒸発材をセッティングした後、
真空チャンバー内を1×10-5Torrまで排気して内
部ヒータで300℃まで加熱し、そのまま、2時間保持
した。次に、Arガスを0.03Torr導入し、部材
に−800Vを印加して、イオンボンバードメントを1
0分間行った。
After setting the members and the evaporating material,
The inside of the vacuum chamber was evacuated to 1 × 10 −5 Torr, heated to 300 ° C. by an internal heater, and kept for 2 hours. Next, 0.03 Torr of Ar gas was introduced, −800 V was applied to the members, and ion bombardment was reduced to 1%.
Performed for 0 minutes.

【0025】次に、10kV、−200mAの電子ビー
ムをCr−35at%Ti合金に照射し、溶解した。な
お、この合金を使用することにより、Cr金属を蒸発材
とした場合より熱電子が多く発生するのでイオン化率が
高くなり、また蒸気圧差によりCrのみを選択的に蒸発
することができる。
Next, a Cr-35 at% Ti alloy was irradiated with an electron beam of 10 kV and -200 mA to dissolve it. The use of this alloy increases the ionization rate because more thermoelectrons are generated than when Cr metal is used as the evaporating material, and allows only Cr to be selectively evaporated due to a difference in vapor pressure.

【0026】上記の方法でCrを蒸発させ、部材に−8
00Vのバイアス電圧を印加して、Crイオンによりメ
タルボンバードを2分間行った。続いて、バイアス電圧
を−200Vに下げてCrメタルを12分間成膜した。
次に、蒸発材をAl23に変えて、電子ビームを10k
V、−400mA照射し、酸素を5×10-4Torrに
なるまで導入し、25分間成膜した。
The Cr is evaporated by the above method, and -8 is added to the member.
A bias voltage of 00 V was applied, and metal bombardment was performed for 2 minutes with Cr ions. Subsequently, the bias voltage was lowered to -200 V, and a Cr metal film was formed for 12 minutes.
Next, the evaporating material was changed to Al 2 O 3 and the electron beam was changed to 10 k.
V, -400 mA irradiation, oxygen was introduced until the pressure reached 5 × 10 −4 Torr, and a film was formed for 25 minutes.

【0027】得られた膜厚は、第1層のCrメタル膜が
1.1μm、第2層のAl23膜が4.3μmであっ
た。膜厚分布は測定誤差範囲で均一であった。
The thickness of the obtained Cr metal film of the first layer was 1.1 μm, and the thickness of the Al 2 O 3 film of the second layer was 4.3 μm. The film thickness distribution was uniform within the measurement error range.

【0028】この希土類磁石に形成した2層膜にクロス
カットを入れて、テープ付着試験を行った結果、カッタ
ーナイフでは被膜に傷が付かず、また膜の剥離もなかっ
た。表面膜硬度はビッカース硬度でHV800であっ
た。LCRメータで体積抵抗を測定した結果、1×10
15Ω・cmの抵抗値であった。バルク材の常温での体積
抵抗値は1014Ω・cm以上であるので、薄膜でほぼバ
ルク材の抵抗率を達成することができた。
A cross-cut was made on the two-layer film formed on the rare earth magnet, and a tape adhesion test was carried out. As a result, the film was not damaged and the film was not peeled off with a cutter knife. The surface film hardness was HV800 in Vickers hardness. As a result of measuring the volume resistance with an LCR meter, 1 × 10
The resistance was 15 Ω · cm. Since the volume resistivity of the bulk material at room temperature is 10 14 Ω · cm or more, it was possible to substantially achieve the bulk material resistivity with the thin film.

【0029】この高抵抗被膜付き希土類磁石を、5%塩
水噴霧中に48Hさらしても錆の発生がなく、96H後
でも表面に点状の錆が発生している程度で高い耐食性を
有していた。
This rare earth magnet with a high resistance coating has no rust even when exposed to 48H during spraying with 5% salt water, and has high corrosion resistance to the extent that spot rust is generated on the surface even after 96H. Was.

【0030】(実施例2) 第1層成膜時に5×10-4
Torrまで窒素ガスを導入し、30分間成膜した以外
は実施例1と同様の処理を行った。得られた被膜はCr
N膜で、膜厚は均一に2.1μmであった。
Example 2 5 × 10 −4 at the time of forming the first layer
The same processing as in Example 1 was performed except that a nitrogen gas was introduced up to Torr and a film was formed for 30 minutes. The resulting coating is Cr
The N film had a uniform thickness of 2.1 μm.

【0031】次に実施例1と同様の方法でAl23膜を
120分間成膜した。膜厚は均一に17.5μmであっ
た。下地をCrN膜にしても部材、Al23膜との間で
剥離、クラック等は発生しなかった。体積抵抗も実施例
1と同様であった。
Next, an Al 2 O 3 film was formed in the same manner as in Example 1 for 120 minutes. The film thickness was uniformly 17.5 μm. Even when the underlayer was a CrN film, no peeling or cracking occurred between the member and the Al 2 O 3 film. The volume resistance was the same as in Example 1.

【0032】(実施例3) 第2層にMgO膜を8μm
成膜した以外は、実施例2と同様の処理を行った。蒸着
材のMgOは、単結晶を砕いて3×3×1mm大にした
物を使用した。
(Embodiment 3) An MgO film of 8 μm in the second layer
The same processing as in Example 2 was performed except that the film was formed. MgO used as a vapor deposition material was obtained by crushing a single crystal and increasing the size to 3 × 3 × 1 mm.

【0033】得られた被膜は、ビッカース硬度でHV5
31であった。Al23膜同様に剥離やクラックなど見
られず、テープ付着試験を行っても剥離は見られなかっ
た。体積抵抗値は5×106Ω・cmであった。また、
実施例1と同様に塩水噴霧試験を行ったところ、48時
間後でも錆は発生しなかった。
The coating obtained was HV5 in Vickers hardness.
It was 31. Like the Al 2 O 3 film, no peeling or cracking was observed, and no peeling was observed in the tape adhesion test. The volume resistance value was 5 × 10 6 Ω · cm. Also,
When a salt spray test was performed in the same manner as in Example 1, no rust was generated even after 48 hours.

【0034】(従来例1) 何の表面処理を施していな
いNd−Fe−B系焼結磁石を空気中に放置したとこ
ろ、24Hで鉄錆が発生した。
(Conventional Example 1) When an Nd-Fe-B based sintered magnet without any surface treatment was left in the air, iron rust was generated at 24H.

【0035】(従来例2) 従来例1と同じNd−Fe
−B系焼結磁石に、従来の表面処理であるニッケルメッ
キを20μm付けた磁石に5%塩水を噴霧する耐食性試
験では、48Hで錆が表面に発生した。
(Conventional Example 2) Nd-Fe same as Conventional Example 1
In a corrosion resistance test in which 5% salt water was sprayed on a magnet obtained by applying a conventional surface treatment of nickel plating to a 20-μm nickel-based sintered magnet, rust was generated on the surface at 48H.

【0036】(従来例3) 実施例1と同様な部材をエ
タノールで超音波洗浄後、水溶性防錆剤を添加したアル
カリ洗浄剤で洗浄し、更に水洗いした。続いて、10%
塩酸溶液で酸洗いを行い、更に水洗を行った。その後、
4A/cm2の電流密度を維持しながらNiメッキ浴に
10分間浸漬し、サンプルを持ち替えて、さらにNiメ
ッキ浴に10分間浸漬してNi膜を20μm形成した。
Niメッキ膜はビッカース硬度530、電気的には導電
体であった。
(Conventional Example 3) The same members as in Example 1 were subjected to ultrasonic cleaning with ethanol, then washed with an alkaline cleaning agent to which a water-soluble rust inhibitor was added, and further washed with water. Then, 10%
Pickling was performed with a hydrochloric acid solution, followed by washing with water. afterwards,
While maintaining a current density of 4 A / cm 2 , the sample was immersed in a Ni plating bath for 10 minutes, the sample was changed, and further immersed in a Ni plating bath for 10 minutes to form a Ni film of 20 μm.
The Ni plating film had a Vickers hardness of 530 and was electrically conductive.

【0037】(従来例4) エポキシ系樹脂主剤:硬化
剤:希釈シンナーを1:1:2の比率で混合し、スプレ
ーガンで塗布した。平均膜厚で23μmあり、膜厚の薄
い所と厚い所で5μmの膜厚分布が生じた。
(Conventional Example 4) An epoxy resin base material: a curing agent: a diluted thinner was mixed at a ratio of 1: 1: 2, and the mixture was applied by a spray gun. The average film thickness was 23 μm, and a film thickness distribution of 5 μm was generated at the thin and thick portions.

【0038】(従来例5) 従来例1と同じNd−Fe
−B系焼結磁石にイオンプレーテング法でCrN膜を5
μm成膜し、5%塩水噴霧試験を72H行った結果、全
面に錆が発生した。
(Conventional Example 5) Nd-Fe same as Conventional Example 1
5 CrN film on the -B sintered magnet by ion plating
As a result of performing a 5% salt spray test for 72 hours, rust was generated on the entire surface.

【0039】(比較例1) CrN膜を0.5μm、A
23膜を1μm成膜した他は実施例1と同様に成膜し
た。その結果、体積抵抗値は1×1012Ω・cmであっ
た。実施例1と同様の塩水噴霧試験を行ったところ、4
8時間後には発錆していた。
Comparative Example 1 A CrN film having a thickness of 0.5 μm
A film was formed in the same manner as in Example 1 except that an l 2 O 3 film was formed to a thickness of 1 μm. As a result, the volume resistance was 1 × 10 12 Ω · cm. When the same salt spray test as in Example 1 was performed,
After 8 hours, it was rusting.

【0040】(比較例2) CrN膜を7μm成膜した
他は実施例1と同様に成膜したところ、5%塩水噴霧試
験で磁石の角部に剥離が見られた。
Comparative Example 2 A film was formed in the same manner as in Example 1 except that a CrN film was formed to a thickness of 7 μm, and peeling was observed at the corners of the magnet in a 5% salt spray test.

【0041】[0041]

【発明の効果】本発明により、高い寸法精度が得られる
25μm以下の薄膜でも絶縁性が高く、しかも耐食性と
耐摩耗性に優れた高抵抗被膜付き希土類磁石が提供でき
た。
According to the present invention, it is possible to provide a rare-earth magnet with a high-resistance coating, which has high insulating properties even with a thin film of 25 μm or less, which can obtain high dimensional accuracy, and is excellent in corrosion resistance and wear resistance.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表面に、第1層として耐摩耗性被膜が、
第2層として高抵抗被膜が形成された高抵抗被膜付き希
土類磁石。
1. A wear-resistant coating as a first layer on the surface,
A rare earth magnet with a high resistance coating having a high resistance coating formed as a second layer.
【請求項2】 表面に、第1層としてTi、Zr、H
f、V、Nb、Ta、および、Crから選ばれる少なく
とも1種の金属の窒化物膜が1〜5μm形成され、第2
層として比抵抗値105Ω・cm以上の高抵抗被膜が2
〜20μm形成された、高抵抗被膜付き希土類磁石。
2. Ti, Zr, H as a first layer on the surface.
a nitride film of at least one metal selected from f, V, Nb, Ta, and Cr is formed in a thickness of 1 to 5 μm;
2 high-resistance films with a specific resistance of 10 5 Ω · cm or more
Rare earth magnet with high resistance coating formed to 20 μm.
【請求項3】 表面に、第1層としてTi、Zr、H
f、V、Nb、Ta、Cr、Ni、および、Cuから選
ばれる1種の金属膜が1〜5μm形成され、第2層とし
て比抵抗値105Ω・cm以上の高抵抗被膜が2〜20
μm形成された、高抵抗被膜付き希土類磁石。
3. On the surface, Ti, Zr, H as a first layer
One type of metal film selected from f, V, Nb, Ta, Cr, Ni, and Cu is formed in a thickness of 1 to 5 μm, and a high-resistance film having a specific resistance of 10 5 Ω · cm or more is formed as a second layer. 20
A rare earth magnet with a high resistance coating formed in μm.
【請求項4】 表面に、第1層としてTi、Zr、H
f、V、Nb、Ta、Cr、Ni、および、Cuから選
ばれる2種以上の合金膜が1〜5μm形成され、第2層
として比抵抗値105Ω・cm以上の高抵抗被膜が2〜
20μm形成された、高抵抗被膜付き希土類磁石。
4. Ti, Zr, H as a first layer on the surface
Two or more alloy films selected from f, V, Nb, Ta, Cr, Ni, and Cu are formed in a thickness of 1 to 5 μm, and a high-resistance film having a specific resistance of 10 5 Ω · cm or more is formed as a second layer. ~
Rare earth magnet with a high resistance coating, formed 20 μm.
JP10021620A 1998-02-03 1998-02-03 Rare-earth magnet with high resistance coating Pending JPH11219809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10021620A JPH11219809A (en) 1998-02-03 1998-02-03 Rare-earth magnet with high resistance coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10021620A JPH11219809A (en) 1998-02-03 1998-02-03 Rare-earth magnet with high resistance coating

Publications (1)

Publication Number Publication Date
JPH11219809A true JPH11219809A (en) 1999-08-10

Family

ID=12060113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10021620A Pending JPH11219809A (en) 1998-02-03 1998-02-03 Rare-earth magnet with high resistance coating

Country Status (1)

Country Link
JP (1) JPH11219809A (en)

Similar Documents

Publication Publication Date Title
EP0558061A1 (en) Improvements in physical vapour deposition processes
US20050136656A1 (en) Process for depositing composite coating on a surface
JPH11307328A (en) Corrosion resistant permanent magnet and its manufacture
KR100206525B1 (en) Process and device for coating substrates
US5154816A (en) Process for depositing an anti-wear coating on titanium based substrates
JPH0515043B2 (en)
JPH11219809A (en) Rare-earth magnet with high resistance coating
TWI490358B (en) Housing and method for making the same
CN108251810B (en) Preparation method of corrosion-resistant sintered neodymium-iron-boron magnet
CN109898051B (en) Wear-resistant and corrosion-resistant DLC/SiNxComposite film and preparation method thereof
KR20110117528A (en) Method for coating aluninum on steel
JP2001011603A (en) Member with laminated film, and the laminated film
JPH07130520A (en) High corrosion-proof permanent magnet and manufacture of the same
JPH06204066A (en) Manufacture of permanent magnet excellent in corrosion resistance
JPH10340823A (en) Manufacture of r-iron-boron permanent magnet having excellent salt water resistance
JP2000040610A (en) Film coated rare earth magnet
CN113151797B (en) Ion cleaning process based on ta-C film plated on surface of hard alloy
JP3515966B2 (en) Method for manufacturing magneto-optical recording element
JP2000160365A (en) High corrosion resistance member with coating film and the coating film
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP2882484B2 (en) High corrosion resistance rare earth iron-based magnet and method of manufacturing the same
JP2000256826A (en) Member with high corrosion resistant film and its production
JP2001279440A (en) Co CONTAINING OXIDE FILM DEPOSITION METHOD
JP2000030918A (en) Rare earth magnet with coating film
JPH10244543A (en) Mold fitted with abrasion-resistant durable hard coating film