JPH037336A - Article having p-xylene polymer film improved for adhesive and hardness - Google Patents

Article having p-xylene polymer film improved for adhesive and hardness

Info

Publication number
JPH037336A
JPH037336A JP14123589A JP14123589A JPH037336A JP H037336 A JPH037336 A JP H037336A JP 14123589 A JP14123589 A JP 14123589A JP 14123589 A JP14123589 A JP 14123589A JP H037336 A JPH037336 A JP H037336A
Authority
JP
Japan
Prior art keywords
polymer film
film
chlorinated
resin
xylylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14123589A
Other languages
Japanese (ja)
Other versions
JP2856768B2 (en
Inventor
Takatoshi Oyama
大山 貴俊
Masatoshi Nakayama
正俊 中山
Kenji Nakatani
賢司 中谷
Kunihiro Ueda
国博 上田
Koichi Yajima
弘一 矢島
Masanori Shibahara
正典 柴原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP14123589A priority Critical patent/JP2856768B2/en
Priority to US07/497,549 priority patent/US5154978A/en
Publication of JPH037336A publication Critical patent/JPH037336A/en
Application granted granted Critical
Publication of JP2856768B2 publication Critical patent/JP2856768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve wettability for adhesive and to reduce scratch by sequentially providing a p-xylene polymer film or chlorinated p-xylene polymer film and a synthetic resin film having 4H or more of hardness in this order on a material to be protected. CONSTITUTION:In order to prevent wettability with adhesive of high corrosionproof article and scratch to be formed with a p-xylene polymer film or chlorinated p-xylene polymer film on a material to be protected such as rare earth iron alloy magnet, etc., the surface of the xylene polymer film or the chlorinated polymer film is coated with a synthetic resin film having 4H or more of hardness and satisfactory wettability. The resin includes, for example, epoxy resin, acrylic resin, and melamine resin. A synthetic resin paint coating method includes, for example, a dipping method, a spraying method, etc., as an arbitrarily coating method, and the thickness of the coating after drying is 2-30mum and more desirably 5-15mum.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は腐食し易い稀土類鉄磁石等の材料の表面にp−
キシリレン重合膜又は塩素化p−キシリレン重合膜を形
成してなる耐食性物品に関し、特に表面にp−キシリレ
ン重合膜又は塩素化p−キシリレン重合膜を有する高耐
食物品の接着剤に対する濡れを改善し、また擦傷等の発
生を抑制しただ高耐食性物品に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides p-
Regarding a corrosion-resistant article formed with a xylylene polymer film or a chlorinated p-xylylene polymer film, in particular, improving the wetting of a highly corrosion-resistant product with an adhesive having a p-xylylene polymer film or a chlorinated p-xylylene polymer film on the surface, The present invention also relates to highly corrosion-resistant articles that suppress the occurrence of scratches and the like.

(従来の技術) 従来高エネルギー積磁石としては、Sm−C○系磁石が
用いられてきたが、コスト、磯城加工i生、より高いエ
ネルギー積といった点で有利な稀土類鉄系磁石が最近注
目され、特に原子比で8〜30%の稀土類元素、2〜2
8%のB、および残部Feおよび不可避不純物からなる
組成が効果的であることが見出されている。
(Prior art) Conventionally, Sm-C○-based magnets have been used as high-energy product magnets, but rare earth iron-based magnets have recently attracted attention because of their advantages in terms of cost, Isoki processability, and higher energy product. rare earth elements, especially rare earth elements with an atomic ratio of 8 to 30%, 2 to 2
A composition consisting of 8% B and balance Fe and unavoidable impurities has been found to be effective.

ところが、稀土類鉄系磁石はSm−Co系に比へ、耐食
性という面では劣り、種々の表面保護処理か検討されて
いる状況にある。
However, rare earth iron magnets are inferior to Sm--Co magnets in terms of corrosion resistance, and various surface protection treatments are being considered.

稀土類鉄系磁石は焼結法および急冷法で作製されている
。この系の磁石は酸化し易いNd、「eを多く含むので
、耐薬品性、特に酸、アルカノに弱く、湿式めっき等の
表面処理では、酸、アルカリ等による前処理或いはめつ
き工程中に表面が侵されたり、たとえめっきが出来ても
、内部に侵入した薬品の影響により、内部腐食が発生し
たり、結晶粒間が侵食されることで磁気特性が低下する
Rare earth iron magnets are manufactured using sintering and rapid cooling methods. This type of magnet contains a large amount of Nd and E, which are easily oxidized, and therefore has poor chemical resistance, especially against acids and alkanolytes.In surface treatments such as wet plating, the surface may be damaged during pre-treatment with acids, alkalis, etc. or during the plating process. Even if plating is possible, internal corrosion may occur due to the influence of chemicals that have entered the interior, and magnetic properties may deteriorate due to erosion between crystal grains.

急冷法で製造された材料は、焼結法で製造された材料と
比較して、外力による歪や熱による磁気特性の低下が少
ない。しかし、急冷粉末はプラスチック等でボン+s 
Lで使われることが多く、磁石表面の磁石材料およびポ
ンド材料の両方に対し、高い密着強度を有する被膜材料
か要求されている。
Materials manufactured by the rapid cooling method have less distortion due to external forces and less deterioration of magnetic properties due to heat than materials manufactured by the sintering method. However, the rapidly cooled powder is made of plastic, etc.
It is often used in L, and requires a coating material that has high adhesion strength to both the magnet material and the pound material on the magnet surface.

また、この系の磁石、特にこの系の焼結磁石にプラズマ
重合被膜を設けることは知られているか(特開昭63−
6811) 、従来の多元素系被膜では充分な重−今度
が得難かった。
Also, is it known to provide a plasma polymerized coating on this type of magnet, especially on this type of sintered magnet?
6811), it was difficult to obtain sufficient strength with conventional multi-element coatings.

たとえばアクリル酸などではプラズマ重合中に活性な酸
素が存在し、プラズマ重合と同時にプラズマエツチング
が起こる。このため保護重合膜の硬度、ち密i生が十分
てなく又重合度も低い。そのため十分なガスバリヤ−性
が得られないなど、耐食性保護膜として充分に機能でき
ない。
For example, in the case of acrylic acid, active oxygen is present during plasma polymerization, and plasma etching occurs simultaneously with plasma polymerization. Therefore, the hardness and density of the protective polymer film are not sufficient, and the degree of polymerization is also low. Therefore, it cannot function satisfactorily as a corrosion-resistant protective film, such as not having sufficient gas barrier properties.

また、保護°被覆として稀土類焼結金属磁石の表面に高
分子樹脂膜を形成することも行なわれているが(特開昭
61−198221号公報、同56−81908号公報
、同60−63901号等)、高分子樹脂膜は透湿性、
酸素透過性が太きく、また稀土類焼結金属磁石との親和
性が低いので、充分な接着を確保することができない。
Additionally, a polymer resin film has been formed on the surface of rare earth sintered metal magnets as a protective coating (Japanese Patent Application Laid-open Nos. 1982-1982, 1982-1982, 1985-81908, and 60-63901). etc.), the polymer resin membrane is moisture permeable,
Since the oxygen permeability is high and the affinity with rare earth sintered metal magnets is low, sufficient adhesion cannot be ensured.

また弗素樹脂のように高温焼付けを要するために磁石の
酸化を招くもの、エポキシ樹脂などのように耐食性で劣
るものなど、接着性と耐食性の両者を兼ね備えた膜は提
供されていない。更にキシリレン樹脂を真空蒸着で成膜
することも提案されているが、重合度は低く、耐食性に
問題がある(特開昭55−103714)。
Furthermore, there are no films that have both adhesion and corrosion resistance, such as fluorocarbon resins that require high-temperature baking and which lead to oxidation of the magnet, and epoxy resins that have poor corrosion resistance. Furthermore, it has been proposed to form a film of xylylene resin by vacuum evaporation, but the degree of polymerization is low and there are problems with corrosion resistance (Japanese Patent Laid-Open No. 103714/1983).

こうした高分子樹脂膜のうち、水分及び酸素に対して極
めと良好なバリヤー性を有し、そのため極めて優れた耐
食性を有する材料としてp−キシリレン重合膜及び塩素
化p−キシリレン重合膜が知られている(気相重合法に
よるものは米国ユニオン・カーバイド社より商品名パリ
レンとして市販されている)。
Among these polymer resin films, p-xylylene polymer films and chlorinated p-xylylene polymer films are known as materials that have extremely good barrier properties against moisture and oxygen, and therefore have extremely excellent corrosion resistance. (The product made by the gas phase polymerization method is commercially available from Union Carbide Company in the United States under the trade name Parylene).

(解決すべき問題点) しかしながらp−キシリレン重合膜及び塩素化p−キシ
リレン重合膜の被覆を有する高耐食性磁石をエポキシ樹
脂その他の接着剤により電気又は電子装置の一部に固定
使用とするとこの重合膜の接触角が90度と高く撥水性
のため接着剤とのなじみが悪く充分な接着力が得られず
実用化の障害となった。そのため強いて使用するには例
えば止めバンド、螺子、鋲等の機械的な手段を必要とし
、作業性やスペース等に問題があった。またP−キシリ
レン重合膜及び塩素化p−キシリレン重合膜の被覆は耐
食性が非常に優れてはいても擦傷を受は易く他の物に機
械的に接触したり摩擦したりする部分には好適に使用で
きない問題がある。
(Problems to be solved) However, when a highly corrosion-resistant magnet coated with a p-xylylene polymer film or a chlorinated p-xylylene polymer film is fixed to a part of electrical or electronic equipment using an epoxy resin or other adhesive, this polymerization occurs. Because the membrane has a high contact angle of 90 degrees and is water repellent, it has poor compatibility with adhesives, making it difficult to obtain sufficient adhesive strength, which has hindered its practical use. Therefore, for forced use, mechanical means such as locking bands, screws, and rivets are required, which poses problems in terms of workability and space. In addition, although P-xylylene polymer film and chlorinated p-xylylene polymer film coating have excellent corrosion resistance, they are easily scratched and are not suitable for areas that come into mechanical contact or friction with other objects. There is a problem that makes it unusable.

(発明の目的) 従って本発明の目的は接着剤に対する濡れが良くしかも
外力による擦傷の発生の少ないp−キシリレン重合膜又
は塩素化p−キシリレン重合膜被覆物品、特に稀土類鉄
系磁石を提供することにある。
(Object of the Invention) Therefore, the object of the present invention is to provide an article coated with a p-xylylene polymer film or a chlorinated p-xylylene polymer film, particularly a rare earth iron-based magnet, which has good wettability with adhesives and less scratches caused by external forces. There is a particular thing.

(問題点を解決する手段) 本発明者は上記欠点を解決するために種々の検討を加え
たところ、稀土類鉄系磁石とぅの被保護材料の表面にp
−キシリレン重合膜又は塩素化p−キシリレン重合膜を
被覆し次いで合成樹脂塗膜、特にエポキシ樹脂、アクリ
ル樹脂、およびメラミン樹脂等の樹脂塗料を薄く被囚す
ることにより表面硬度が高くしかも接着剤に対する濡れ
が大きく向上することを見出した。なお、より好ましく
は被保護材料の表面をプラズマ処理にかけるか又はプラ
ズマ重合膜で被覆するかにより、p−キシ1ルン重合膜
又は塩素化p−キシリレン重合膜と合成樹脂塗膜との結
合力を向上し得ることができる。
(Means for Solving the Problems) After making various studies to solve the above-mentioned drawbacks, the present inventor found that the surface of the protected material of the rare earth iron magnet was
- By coating a xylylene polymer film or chlorinated p-xylylene polymer film and then encasing a thin layer of synthetic resin coating, especially resin coatings such as epoxy resin, acrylic resin, and melamine resin, the surface hardness is high and resistant to adhesives. It was found that the wettability was greatly improved. More preferably, the bonding strength between the p-xylene polymer film or the chlorinated p-xylylene polymer film and the synthetic resin coating film can be adjusted by subjecting the surface of the material to be protected to plasma treatment or coating it with a plasma polymer film. can be improved.

(発明の詳細な説明) 耐食性物品 本発明で耐食性物品とは被保護材料にp−キシルシン重
合膜及び塩素化p−キシリレン重合膜を被覆したものを
指す。ここに被保護材料は任意のもので良く例えば湿度
や酸素の影響により特性が劣化する電子部品、例えば合
金磁石等があるが、特に周囲の湿気と空気の作用により
錆を生じ易い上記の希土類鉄系磁石である。例えば、N
d−Fe系磁石を始めとする希土類鉄系磁石の表面を先
ず表面粗度Raが約1μm以下となるように研磨する。
(Detailed Description of the Invention) Corrosion-Resistant Article In the present invention, the corrosion-resistant article refers to a material to be protected coated with a p-xylcine polymer film and a chlorinated p-xylylene polymer film. The material to be protected here can be any material, such as electronic parts whose characteristics deteriorate due to the influence of humidity or oxygen, such as alloy magnets, but the above-mentioned rare earth irons, which are particularly prone to rust due to the action of surrounding humidity and air. It is a system magnet. For example, N
The surface of a rare earth iron magnet such as a d-Fe magnet is first polished to a surface roughness Ra of about 1 μm or less.

このような稀土類鉄系磁石は耐食性に劣るもので、一般
にR−T−B又はR−T −B −M(ただしRは稀土
類元素、TはFe又はFe、Coを主体とする遷移金属
、MはZr、Nb、Mo、Hf、Ta、Wの少なくとも
1種)の組成を有するもの、例えばNd−Fe−B’、
NdFe−B−Zr、ミツシュメタル任意の希土類鉄系
磁石を挙げることができる。このような磁石:ま粉末を
成形し焼結した焼結型磁石、あるいはこれらの磁石を機
械的に粉砕し10重量%以下の有機バインダーで結合し
たボンド磁石の形で使用することができる。
Such rare earth iron-based magnets have poor corrosion resistance, and are generally RT-B or RT-B-M (where R is a rare earth element and T is Fe or a transition metal mainly composed of Fe or Co). , M is at least one of Zr, Nb, Mo, Hf, Ta, W), for example, Nd-Fe-B',
Examples include NdFe-B-Zr, Mitsushmetal, and any rare earth iron-based magnets. Such magnets can be used in the form of sintered magnets obtained by molding and sintering powder, or bonded magnets obtained by mechanically pulverizing these magnets and bonding them with an organic binder of 10% by weight or less.

p−キシリレン重合膜及び塩素化p−キシ1ルン重合膜
被覆を有する磁石等の電子部品はそれ自体公知である。
Electronic components such as magnets having coatings of p-xylylene polymer films and chlorinated p-xylylene polymer films are known per se.

このような被覆には例えば米国ユニオン・カーバイド社
よりパリレンN(ボリルキシリレン)、バ1ルンC(ポ
リモノクロクロロp−キシリレン)、パリレンD(ポリ
ジクロロp−キシリレン)等があるがガス透過性が低い
ので特にパリレンCが好ましい。ポリp−キシリレン等
の膜は2量体のガスを減圧下に熱分解することにより得
られる。膜厚としては0.5μm以上、好ましくは1〜
20μmである。しかしp−キシリレン重合膜及び塩素
化p−キシリレン重合膜は接着性が悪いために被保護材
料の表面から剥れ易く、このため耐食性が充分ではない
。この対策としては本発明者は最近被保護材料の表面の
接着性を改善し、結果的に耐食性を改善することを提案
した。その一つは被保護材料の表面をプラズマ処理する
ことによりエツチング、各種ラジカルの形成、OH等の
官能基等を行なって接着性ないし密着性を改善する(特
願平1−67521号)。他の方法は被保護材料の表面
に実質的に炭素と水素からなるプラズマ重合膜を形成し
てp−キシリレン重合膜及び塩素化p−キシリレン重合
膜に対する接着性を改善し、結果的に耐食性を改善する
(特願昭63−109063号)。更に他の方法は被保
護材料の表面平滑度を上げ、あるいはこれを上記の方法
に組合せるとかの方法を採用する(特願平1−6928
9号)。本発明の対象となる耐食性物品は一般に被保護
材料にp−キシリレン重合膜及び塩素化p−キシリレン
重合膜を被覆したものであるが、好ましくは上記の改良
された物品である。また、本発明で必須の硬度および接
着性改善のための合成樹脂塗膜はp−キシリレン重合膜
及び塩素化p−キシリレン重合膜の表面に直接塗布して
も良いが、好ましくは合成樹脂塗膜の塗布に先立ってp
−キシリレン重合膜及び塩素化p−キシリレン重合膜の
表面に上記のプラズマ処理又はプラズマ重合膜を施すと
良い。なおこれらの処理については後で述べる。
Such coatings include, for example, Parylene N (boryl xylylene), Valun C (polymonochlorochloro p-xylylene), and Parylene D (polydichloro p-xylylene) manufactured by Union Carbide Company of the United States, but they have low gas permeability. Therefore, parylene C is particularly preferred. Films such as polyp-xylylene are obtained by thermally decomposing dimer gas under reduced pressure. The film thickness is 0.5μm or more, preferably 1~
It is 20 μm. However, p-xylylene polymer films and chlorinated p-xylylene polymer films have poor adhesion and are easily peeled off from the surface of the material to be protected, and therefore do not have sufficient corrosion resistance. As a countermeasure to this problem, the present inventor has recently proposed improving the adhesiveness of the surface of the material to be protected, thereby improving the corrosion resistance. One method is to improve adhesiveness or adhesion by subjecting the surface of the material to be protected to plasma treatment to perform etching, formation of various radicals, functional groups such as OH, etc. (Japanese Patent Application No. 1-67521). Another method is to form a plasma polymerized film consisting essentially of carbon and hydrogen on the surface of the material to be protected to improve adhesion to p-xylylene polymeric films and chlorinated p-xylylene polymeric films, resulting in improved corrosion resistance. Improve (Japanese Patent Application No. 109063/1983). Still other methods employ methods such as increasing the surface smoothness of the material to be protected or combining this with the above method (Japanese Patent Application No. 1-6928).
No. 9). Corrosion-resistant articles to which the present invention is applied generally consist of a material to be protected coated with a p-xylylene polymer film and a chlorinated p-xylylene polymer film, and preferably are the improved articles described above. Furthermore, the synthetic resin coating film for improving hardness and adhesion, which is essential in the present invention, may be applied directly to the surface of the p-xylylene polymer film and the chlorinated p-xylylene polymer film, but preferably the synthetic resin coating film p prior to application of
- It is preferable to subject the surfaces of the xylylene polymer film and chlorinated p-xylylene polymer film to the above plasma treatment or plasma polymer film. Note that these processes will be described later.

なお上記の表面平滑化は被保護材料、稀土類鉄磁石の表
面を研磨してJIS規格による表面粗度Raを約1μm
以下にすることにより耐食性か飛躍的に向上する。その
原因は明らかでないがp −キシリレン重合膜及び塩素
化p−キシリレン重合膜のステップカバレージ特性と表
面粗度のマツチングかとれる事により保護膜が被保護材
料をうまくカバーすることと、被保護材料の表面粗度を
小さくすることは最初に存在する穴、ホール等の欠陥を
減少させるためと考えられる。通常稀土類鉄系磁石の表
面粗度はかなり大きく、JIS規格によるRaで表わし
て2μm12J上である。プラズマ処理、炭化水素系の
プラズマ重合膜、p−キシリレン重合膜、あるいはこれ
ら両者の形成に先立って、被保護材料、特に稀土類鉄系
磁石の表面を研磨して表面粗度Raを約1μm以下まで
研磨し、その表面に上記の保護膜を形成すると良い。
The surface smoothing described above involves polishing the surface of the protected material, a rare earth iron magnet, to a surface roughness Ra of approximately 1 μm according to the JIS standard.
By doing the following, corrosion resistance will be dramatically improved. The reason for this is not clear, but the step coverage characteristics and surface roughness of the p-xylylene polymer film and chlorinated p-xylylene polymer film are well matched, allowing the protective film to cover the material to be protected. It is thought that reducing the surface roughness reduces defects such as holes, holes, etc. that initially exist. Normally, the surface roughness of rare earth iron-based magnets is quite large, and is 2 μm12J or more expressed in Ra according to the JIS standard. Prior to plasma treatment and formation of a hydrocarbon-based plasma polymerized film, a p-xylylene polymerized film, or both, the surface of the material to be protected, especially the rare earth iron magnet, is polished to a surface roughness Ra of approximately 1 μm or less. It is preferable to polish the surface to a certain level and then form the above-mentioned protective film on the surface.

万1久ヱ呉1 上に簡単に述べたように、稀土類鉄系磁石の表面および
/又はp−キシリレン重合膜及び塩素化p−キシリレン
重合膜表面はプラズマ処理を施こしても良い。プラズマ
処理はAr、He、Ne等の希ガス82 N2.O□、
co、co2H20、NOx、Ne2、NH3のガス等
を真空室シこ導入し、プラズマ化しこれを稀土類鉄系磁
石に接触させることにより行なオつれる。プラズマ処理
の条件としては通常次ぎのものを使用する。ガス圧力0
.01〜10Torrにて電源は直流、交流が使用でき
、交流の周波数は50Hzから5GHzまで使用できる
。サンプルの形状及び量により処理条件は異なるが使用
電力10W〜l0KW処理時間0.5秒〜10分に設定
することかできる。処理後の表面の接触角は30°以下
が望ましい。
As briefly mentioned above, the surface of the rare earth iron magnet and/or the surface of the p-xylylene polymer film and the chlorinated p-xylylene polymer film may be subjected to plasma treatment. Plasma treatment is performed using a rare gas such as Ar, He, Ne, etc.82N2. O□,
Gases such as co, co2H20, NOx, Ne2, and NH3 are introduced into a vacuum chamber, turned into plasma, and then brought into contact with a rare earth iron magnet. The following conditions are usually used for plasma treatment. gas pressure 0
.. Direct current or alternating current can be used as a power source at 01 to 10 Torr, and the frequency of alternating current can be from 50 Hz to 5 GHz. Processing conditions vary depending on the shape and amount of the sample, but the power consumption can be set to 10 W to 10 KW and the processing time can be set to 0.5 seconds to 10 minutes. The contact angle of the surface after treatment is preferably 30° or less.

プラズマ処理は磁石および/又はp−キシリレン重合膜
及び塩素化p−キシリレン重合膜の表面を活性化し、使
用するガスの種類により各種の活性なラジカル、○H基
等の官能基が生じその後に形成されるプラズマ重合膜又
は合成樹脂膜に対する反応性、濡れ性が改善され、接着
剤か基体に充分入り込む結果(アンカー効果)接着性を
大幅に改善し、更に表面硬度を大幅に向上させる。
Plasma treatment activates the surface of the magnet and/or p-xylylene polymer film and chlorinated p-xylylene polymer film, and depending on the type of gas used, various active radicals and functional groups such as ○H groups are generated and subsequently formed. The reactivity and wettability of the plasma-polymerized film or synthetic resin film are improved, and as a result of the adhesive sufficiently penetrating into the substrate (anchor effect), the adhesion is greatly improved, and the surface hardness is also greatly improved.

プラズマ重AIr″ 上に簡単に述へたように、稀土類鉄系磁石の表面および
/又はp−キシリレン重合膜及び塩素化p−キシリレン
重合膜表面はプラズマ重合膜を形成しても良い。プラズ
マ重合膜は、従来知られている任意のモノマーガスを使
用し得る。例えばメタン、エタン、プロパン、ブタン、
ヘンタン、エチレン、プロピレン、ブテン、ブタジェン
、アセチレン、メチルアセチレン等の炭化水素モノマー
の他、テトラメトキシシラン等のケイ素系千ツマ−、テ
トラフルオロエチレン等のフッ化水素系千ツマ−、メチ
ルメタアクリレート等を挙げることができる。特に実質
的に炭素と水素のみからなるプラズマ重合膜は被膜を形
成したもので、表面にち密でピンホールの無い硬質の膜
を形成し、耐食i生が良好で、長期安定性にすぐれた磁
気特性を保つことができるという利点を有するので好ま
しく、中でも原子数の比(原子組成比)で表わして好ま
しくはH/C=1.5以下であると三次元的に充分架橋
した特性の良いプラズマ重合膜が形成できる。この場合
、膜厚が0.2μm以下で充分な耐食性が得られる。こ
のようなプラズマ重合保護膜は炭化水素モノマーガスの
量を少なくし、反応圧力を低くし、且つ印加電力を大き
くすることにより生成し得る。すなわち、反応圧力を低
く印加電力を大きくすることにより、モノマー単位量あ
たりの分解エネルギーが大きく成って分解が進み、架橋
したプラズマ重合保護膜が形成できる。本発明の実施に
適当なエネルギー密度W/(FM)は108J/kg以
上である(Wはプラズマ投入電力57秒、Fは原料ガス
流量kg/秒、Mは原料ガス分子量)。その他キャリア
ガスとして水素、不活性ガス等のガスが使用できる。
Plasma-polymerized AIr'' As briefly mentioned above, a plasma-polymerized film may be formed on the surface of the rare earth iron magnet and/or the p-xylylene polymeric film and the chlorinated p-xylylene polymeric film.Plasma The polymerized membrane can use any conventionally known monomer gas, such as methane, ethane, propane, butane,
In addition to hydrocarbon monomers such as hentane, ethylene, propylene, butene, butadiene, acetylene, and methylacetylene, silicon-based monomers such as tetramethoxysilane, hydrogen fluoride-based monomers such as tetrafluoroethylene, methyl methacrylate, etc. can be mentioned. In particular, a plasma polymerized film consisting essentially of carbon and hydrogen forms a hard film on the surface with no pinholes, has good corrosion resistance, and has excellent long-term stability. It is preferable because it has the advantage that the characteristics can be maintained, and in particular, H/C=1.5 or less in terms of the ratio of the number of atoms (atomic composition ratio) is preferable because it is a plasma with good three-dimensionally crosslinked characteristics. A polymer film can be formed. In this case, sufficient corrosion resistance can be obtained with a film thickness of 0.2 μm or less. Such a plasma polymerized protective film can be produced by reducing the amount of hydrocarbon monomer gas, lowering the reaction pressure, and increasing the applied power. That is, by lowering the reaction pressure and increasing the applied power, the decomposition energy per unit amount of monomer increases, the decomposition progresses, and a crosslinked plasma polymerized protective film can be formed. The energy density W/(FM) suitable for carrying out the present invention is 108 J/kg or more (W is the plasma input power of 57 seconds, F is the raw material gas flow rate kg/sec, and M is the raw material gas molecular weight). Other gases such as hydrogen and inert gas can be used as carrier gases.

ただし不可避不純物として入ってくる微量以上の酸素は
用いてはならない。このように不可避的な不純物ガスを
除いて実質的に炭素と水素のみから成る時高い耐食性と
良好な接着性を示すことになる。更に、プラズマ重合膜
を形成するとき、磁石の温度を上げておくことにより更
に効果を上げることができる。
However, more than a trace amount of oxygen, which comes as an unavoidable impurity, must not be used. In this way, when the material consists essentially only of carbon and hydrogen, excluding unavoidable impurity gases, it exhibits high corrosion resistance and good adhesion. Furthermore, when forming a plasma polymerized film, the effect can be further improved by raising the temperature of the magnet.

含j」l1膳 本発明では稀土類鉄系合金磁石等の被保護材料の表面に
p−キシリレン重合膜又は塩素化p−キシリレン重合膜
を形成して成る高耐食物品の接着剤に対する濡れおよび
擦傷の発生を防止するために、硬度4H以上でしかも濡
れ性の良い合成樹脂膜をp−キシリレン重合膜又は塩素
化p−キシリレン重合膜の表面に被覆する。
In the present invention, a highly corrosion resistant product formed by forming a p-xylylene polymer film or a chlorinated p-xylylene polymer film on the surface of a material to be protected, such as a rare earth iron alloy magnet, can be protected against wetting and scratches by adhesives. In order to prevent this from occurring, the surface of the p-xylylene polymer film or chlorinated p-xylylene polymer film is coated with a synthetic resin film having a hardness of 4H or higher and good wettability.

このような合成樹脂の材料にはエポキシ樹脂、アクリル
樹脂、およびメラミン樹脂がある。
Such synthetic resin materials include epoxy resin, acrylic resin, and melamine resin.

これらの樹脂は上記の濡れおよび硬度の条件を満足する
。合成樹脂塗料の塗布方法はデイツプ法、スプレィ法等
任意の塗布方法が使用できる。塗布厚さは乾燥後に2〜
30μ、より好ましくは5〜15μである。余り薄いと
硬度が小さく傷を受は易い。余り厚いと寸法むらが生じ
精度が出しにくい。
These resins satisfy the wettability and hardness conditions described above. Any coating method such as a dip method or a spray method can be used to apply the synthetic resin paint. The coating thickness is 2~2~ after drying.
It is 30μ, more preferably 5 to 15μ. If it is too thin, its hardness is low and it is easily scratched. If it is too thick, dimensional unevenness will occur and accuracy will be difficult to achieve.

(実施例の説明) 食 ボンド磁石の  ) 原料を秤量し、溶融し、鋳造して、合金組成がNda 
Fe79.a Zr4B7.5  (合金1)及びNd
a、 5F1980Zr3.5Ba (合金2)の2種
類の合金インゴットを製造した。これらをそれぞれ高周
波溶解し、Ar雰囲気中Cu単ロール(周速20m/秒
)の表面に射出して高速急冷して合金薄帯を得た。これ
をAr雰囲気中、700℃で30分間熱処理した後、ス
タンプミルて50〜200LLmの平均拉子径となるよ
うに粉砕して磁石粉末を得た。
(Explanation of Examples) Raw materials for food bonded magnets are weighed, melted, cast, and the alloy composition is Nda.
Fe79. a Zr4B7.5 (alloy 1) and Nd
Two types of alloy ingots were manufactured: a. 5F1980Zr3.5Ba (alloy 2). These were each melted by high frequency, injected onto the surface of a Cu single roll (peripheral speed 20 m/sec) in an Ar atmosphere, and rapidly quenched to obtain an alloy ribbon. This was heat-treated at 700° C. for 30 minutes in an Ar atmosphere, and then ground in a stamp mill to an average diameter of 50 to 200 LLm to obtain magnet powder.

上記、磁石粉末に対して、2.5 w t%のエポキシ
樹脂を混合し、5 ton/cm2て加圧成形し、吹い
て180°Cの温度で樹脂硬化を行なった。得られた成
形体の磁気特性は表1に示す通りである。
2.5 wt% of epoxy resin was mixed with the above magnet powder, pressure molded at 5 ton/cm2, and the resin was cured by blowing at a temperature of 180°C. The magnetic properties of the obtained compact are shown in Table 1.

表  1 又これらの成形体の表面粗度Raはそnぞれ21μmで
あった。これらの成形体の表面を研磨して0・3μmに
した。
Table 1 The surface roughness Ra of each of these molded bodies was 21 μm. The surfaces of these molded bodies were polished to 0.3 μm.

次いでこれら試料の表面に下記の条件によりプラズマ処
理を施した。
Next, the surfaces of these samples were subjected to plasma treatment under the following conditions.

02ガスを用いガス圧0. I Torrて1356M
 HzのRF電源にて電力toowの条件て表面をプラ
ズマ処理した。表面の接触角は10°であった。
Using 0.02 gas, the gas pressure was 0. I Torr 1356M
The surface was subjected to plasma treatment using a Hz RF power source at too much power. The contact angle of the surface was 10°.

次いで、これらすべての成形体をプラズマ重合装置に装
入し、圧力0.02  Torr 、 RF電力800
W、、CH453CCMの条件で成形体の表面に炭化水
素重合膜を成膜した。成膜処理はエリプソメーターを用
いて測定して約0.15μmの膜厚に成るまで行なった
。二次電子質量分析器SIMSで測定したところ、H/
C比は1.21であった。
Next, all of these molded bodies were charged into a plasma polymerization apparatus, and the pressure was 0.02 Torr and the RF power was 800.
A hydrocarbon polymer film was formed on the surface of the molded body under the conditions of W, CH453CCM. The film forming process was continued until the film thickness reached approximately 0.15 μm as measured using an ellipsometer. When measured with a secondary electron mass spectrometer SIMS, H/
The C ratio was 1.21.

次いで、得られた成形体にモノクロルパラキシレンニ量
体の25℃、0.05Torrの条件下に熱分解及び重
合によりパリレンCを10μmの厚さに成膜した。
Next, a 10 μm thick film of parylene C was formed on the obtained molded body by thermal decomposition and polymerization of a monochloropara-xylene dimer at 25° C. and 0.05 Torr.

(耐 ↑少 内磁 Nd+g Fe、7B8からなる組成の合金(合金3)
を作製し、粗粉砕した後、ジェットミルを用いて平均粒
径3.5μmの磁性粉末に微粉砕した。本磁性粉末を1
0kOeの磁場中でL5ton/am2の圧力で成形し
た。その後真空中で1100℃、2hrの焼結を行ない
、続いて600°C11hrの時効処理を行なった。
(Resistance ↑low internal magnetism Nd + g Fe, alloy with composition consisting of 7B8 (alloy 3)
was prepared, coarsely pulverized, and then finely pulverized using a jet mill into magnetic powder with an average particle size of 3.5 μm. 1 of this magnetic powder
Molding was carried out at a pressure of L5ton/am2 in a magnetic field of 0kOe. Thereafter, sintering was performed in vacuum at 1100°C for 2 hours, followed by aging treatment at 600°C for 11 hours.

得られた磁石の磁気特性は表2に示す通りである。表面
粗度は23μmであった。
The magnetic properties of the obtained magnet are shown in Table 2. The surface roughness was 23 μm.

表  2 本成形体に対して上記の耐食性ボンド磁石の調製と同じ
処理を施し、H/C比が1,21の表面被覆膜を有する
焼結磁石を得た。次いてパリレンCを10μmの厚さに
被覆した。合金1.2.3に対するこれらの処理を行な
ったものはいずれも耐食性が良好である。
Table 2 This compact was subjected to the same treatment as in the preparation of the above-mentioned corrosion-resistant bonded magnet to obtain a sintered magnet having a surface coating film with an H/C ratio of 1.21. Next, Parylene C was coated to a thickness of 10 μm. All alloys 1.2.3 subjected to these treatments have good corrosion resistance.

、施例1 ボンド磁 ) 上記の耐食処理した合金1.2にプラズマガスとしてH
2を用い、ガス圧0.2Torr、100kHzの電源
を用い200’Wの電力でプラズマ処理を施した。合金
1の表面にスプレィ法によりエポキシ樹脂を乾燥厚さ0
〜40μmとなるように塗布した。合金1について表面
硬度(鉛筆硬度)および寸法精度を表3に示す。寸法の
測定は20箇所で行ないその平均値とばらつきを示す。
, Example 1 Bonded Magnetism) H as a plasma gas was applied to the above corrosion-resistant alloy 1.2.
2, plasma treatment was performed using a gas pressure of 0.2 Torr and a power source of 100 kHz and a power of 200'W. Spray epoxy resin onto the surface of Alloy 1 to a dry thickness of 0.
It was coated to a thickness of ~40 μm. Table 3 shows the surface hardness (pencil hardness) and dimensional accuracy of Alloy 1. Dimensions were measured at 20 locations, and the average value and variation are shown.

更に、上記試料のうちエポキシ樹脂か乾燥厚さ10μm
のもの(合金1.2に対してそれぞれ試料1.2、又エ
ポキシ樹脂を施さないものをそれぞれ比較試料1.2)
の接着試験として、底が1 cmX 1 cmで長さ1
0cmの鉄製の四角柱の表面にエポキシ接着剤で接着し
た。テンシロンを使用して剥離試験をした。結果を表4
に示す。表中Cはパリレンと接着剤との境界面を示し、
Eは鉄と接着剤の境界面を示す。結果を表4に示す。
Furthermore, among the above samples, the epoxy resin had a dry thickness of 10 μm.
(Sample 1.2 for Alloy 1.2, and Comparative Sample 1.2 for No epoxy resin)
As an adhesion test, the bottom is 1 cm x 1 cm and the length is 1.
It was adhered to the surface of a 0 cm square iron prism using epoxy adhesive. A peel test was conducted using Tensilon. Table 4 shows the results.
Shown below. C in the table indicates the interface between parylene and adhesive,
E indicates the interface between iron and adhesive. The results are shown in Table 4.

″′ア施何例2・結石 ) 合金3に対して上記の耐食処理をした。この試料に実施
例1と同一の条件でプラズマ処理を施した。その表面に
アクリル樹脂を乾燥厚さ0〜40μmに施した。表面硬
度および寸法精度を表3に示す。またアクリル樹脂を乾
燥厚さ10μmに塗布したもの(試料3、又樹脂膜のな
いものを比較試料3)につき接着試験の結果を表4に示
す。
''A Treatment Example 2 - Stone) Alloy 3 was subjected to the above corrosion resistance treatment. This sample was subjected to plasma treatment under the same conditions as in Example 1. Acrylic resin was applied to the surface to a dry thickness of 0 to The surface hardness and dimensional accuracy are shown in Table 3. The results of the adhesion test are also shown for samples coated with acrylic resin to a dry thickness of 10 μm (sample 3, and comparative sample 3 without resin film). 4.

−何例3(ホント磁石) 上記耐食処理した合金1.2をプラズマ重合装置に装入
し、圧力0.02 Torr 、 RF電力800W、
CH,5SCC″Y1の条件で成形体の表面に炭化水素
重合膜を成膜した。成膜処理はエリプソメータを用いて
測定して約0.15μmの膜厚に成るまで行なった。得
られた膜を二次電子質里分析器SIMSで測定したとこ
ろ、H/C比は121てあった。得られた合金1にメラ
ミン樹脂を乾燥厚さ0〜40μmに塗布した。硬度試験
の結果を表3に示す。メラミン樹脂を乾燥厚さ10gm
に塗布したもの(合金1.2に対しそれぞれ試料1’ 
、2’ )についてエポキシ接着剤によりこれらの試料
を鉄棒の表面に接着した。接着試験の結果を表4に示す
- Example 3 (Real magnet) The above corrosion-resistant alloy 1.2 was charged into a plasma polymerization apparatus, the pressure was 0.02 Torr, the RF power was 800 W,
A hydrocarbon polymer film was formed on the surface of the molded body under the conditions of CH, 5SCC''Y1. The film formation process was carried out until the film thickness reached approximately 0.15 μm as measured using an ellipsometer. The obtained film When measured using a secondary electron quality analyzer SIMS, the H/C ratio was 121.Melamine resin was applied to the obtained alloy 1 to a dry thickness of 0 to 40 μm.The results of the hardness test are shown in Table 3. The dry thickness of melamine resin is 10 gm.
(alloy 1.2 and sample 1' respectively)
, 2'), these samples were adhered to the surface of the iron rod by epoxy adhesive. The results of the adhesion test are shown in Table 4.

何例4  結石石) 上記の耐食処理した合金3に実施例3と同一の条件でプ
ラズマ重合膜を形成した。エポキシ樹脂を乾燥厚さ10
 Bに塗布したもの(試料3″)についてエポキシ接着
剤を施した。接着試験の結果を表4に示す。
Example 4: A plasma polymerized film was formed on the above-mentioned corrosion-resistant Alloy 3 under the same conditions as in Example 3. Dry epoxy resin to thickness 10
Epoxy adhesive was applied to the sample B (sample 3''). The results of the adhesion test are shown in Table 4.

実施例 (合金 ) 表3 実施例3(合金2) 表4 実施例2 (合金3) (作用効果のまとめ) 以」二の実施例から分かるように、被保護材F斗にp−
キシリレン重合膜又は塩素化p−キシリレン重合膜を披
位し、次いてその外表面をプラズマ処理し又はプラズマ
重合膜を形成させただ高耐食物品は、接着剤に対する濡
れないし接着力か改善されるたけてなく、硬度も改善さ
れることが分かる。従って先に述へた各種用途において
この物品を接着剤を使用して所定の位置に容易に固定す
ることが出来るし、厚擦作用を受ける場所に使用するこ
とも出来る。
Example (alloy) Table 3 Example 3 (alloy 2) Table 4 Example 2 (alloy 3) (Summary of effects) As can be seen from the second example, p-
Highly corrosion resistant products with a xylylene polymer film or chlorinated p-xylylene polymer film on which the outer surface is then subjected to plasma treatment or a plasma polymer film formed thereon do not get wet with adhesives and have improved adhesive strength. It can be seen that the hardness is also improved. Therefore, this article can be easily fixed in place using adhesives in the various applications mentioned above, and can also be used in areas subject to the effects of thick friction.

Claims (1)

【特許請求の範囲】 1)被保護材料の表面に、p−キシリレン重合膜又は塩
素化p−キシリレン重合膜、および硬度4H以上の合成
樹脂塗膜をこの順に有する高耐食物品。 2)合成樹脂塗膜はエポキシ樹脂、アクリル樹脂、およ
びメラミン樹脂より成る群から選択されている前記第1
項記載の高耐食物品。 3)合成樹脂塗膜は2〜30μmの厚さを有する前記第
1項記載の高耐食製物品。 4)p−キシリレン重合膜又は塩素化p−キシリレン重
合膜の厚さは0.5μ以上である前記第1項又は第3項
記載の高耐食物品。 5)被保護材料は稀土類鉄系合金磁石である前記第1項
ないし第4項のいずれかに記載の高耐食物品。 6)被保護材料の表面に気相熱重合によりp−キシリレ
ン重合膜又は塩素化p−キシリレン重合膜を形成し、そ
の表面にエポキシ樹脂、アクリル樹脂、およびメラミン
樹脂より成る群から選択された樹脂の塗料を塗布し、乾
燥又は硬化することを特徴とする高耐食物品の製造方法
[Scope of Claims] 1) A highly food-resistant product having, in this order, a p-xylylene polymer film or a chlorinated p-xylylene polymer film, and a synthetic resin coating film with a hardness of 4H or more on the surface of a material to be protected. 2) The synthetic resin coating is selected from the group consisting of epoxy resin, acrylic resin, and melamine resin.
Highly food resistant products listed in section. 3) The highly corrosion-resistant article according to item 1 above, wherein the synthetic resin coating has a thickness of 2 to 30 μm. 4) The highly food-resistant product according to item 1 or 3, wherein the p-xylylene polymer film or the chlorinated p-xylylene polymer film has a thickness of 0.5 μm or more. 5) The highly corrosion-resistant product according to any one of items 1 to 4, wherein the material to be protected is a rare earth iron alloy magnet. 6) A p-xylylene polymer film or a chlorinated p-xylylene polymer film is formed on the surface of the material to be protected by vapor phase thermal polymerization, and a resin selected from the group consisting of epoxy resin, acrylic resin, and melamine resin is applied to the surface. A method for producing a highly corrosion-resistant product, which comprises applying a coating and drying or curing the coating.
JP14123589A 1989-03-22 1989-06-05 Article having p-xylylene polymer film treated for improving adhesion and hardness Expired - Fee Related JP2856768B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14123589A JP2856768B2 (en) 1989-06-05 1989-06-05 Article having p-xylylene polymer film treated for improving adhesion and hardness
US07/497,549 US5154978A (en) 1989-03-22 1990-03-22 Highly corrosion-resistant rare-earth-iron magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14123589A JP2856768B2 (en) 1989-06-05 1989-06-05 Article having p-xylylene polymer film treated for improving adhesion and hardness

Publications (2)

Publication Number Publication Date
JPH037336A true JPH037336A (en) 1991-01-14
JP2856768B2 JP2856768B2 (en) 1999-02-10

Family

ID=15287252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14123589A Expired - Fee Related JP2856768B2 (en) 1989-03-22 1989-06-05 Article having p-xylylene polymer film treated for improving adhesion and hardness

Country Status (1)

Country Link
JP (1) JP2856768B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107599537A (en) * 2017-08-15 2018-01-19 广州新莱福磁电有限公司 High-damping plastic cement magnetic material and preparation method thereof
CN114522865A (en) * 2021-06-02 2022-05-24 常州鲲大电子科技有限公司 Bonded neodymium iron boron composite coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107599537A (en) * 2017-08-15 2018-01-19 广州新莱福磁电有限公司 High-damping plastic cement magnetic material and preparation method thereof
CN114522865A (en) * 2021-06-02 2022-05-24 常州鲲大电子科技有限公司 Bonded neodymium iron boron composite coating

Also Published As

Publication number Publication date
JP2856768B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US5154978A (en) Highly corrosion-resistant rare-earth-iron magnets
US4837114A (en) Process for producing magnets having improved corrosion resistance
Dimigen et al. Tribological and electrical properties of metal‐containing hydrogenated carbon films
EP1455368B1 (en) Corrosion-resistant rare earth element magnet
JP3330143B2 (en) Metal coating method using low temperature plasma and electrodeposition
US6777097B2 (en) Corrosion resistant rare earth magnet and its preparation
Nose et al. Properties of Zr–Si–N coatings prepared by RF reactive sputtering
US7449100B2 (en) Method for forming electroplating film on surfaces of articles
JPH037336A (en) Article having p-xylene polymer film improved for adhesive and hardness
KR101353697B1 (en) Method for preparing grain-oriented electrical steel sheet having improved adhesion and grain-oriented electrical steel sheet prepared by the same
JP4529260B2 (en) R-Fe-B permanent magnet and method for producing the same
JP2753588B2 (en) Rare earth iron-based alloy sintered magnet having p-xylylene polymer film and its manufacturing method
JPH07130520A (en) High corrosion-proof permanent magnet and manufacture of the same
JP2893455B2 (en) Rare earth iron-boron based magnet article having P-paraxylylene polymer film subjected to adhesion improving treatment
JP2761942B2 (en) High corrosion resistant magnet
JPH01280304A (en) Highly anti-corrosion and impact resistant magnet
JPH02249205A (en) High corrosion resistant magnet
Chung et al. An Auger study on the interaction of Cu and Cr films with polyimide
KR101294944B1 (en) Oriented electrical steel sheet having ultra-high tension and method for manufacturing thereof
JPH02250304A (en) Highly corrosion-resistant magnet
US6235411B1 (en) Process for coating a substrate with metallic layer
JPH01280303A (en) Highly anti-corrosive magnet
JPS63182076A (en) Surface-treated metal plate
US4110186A (en) Fluorinated ethylene-propylene copolymer powders having improved adhesion to substrates and method
JPS63232304A (en) Permanent magnet excellent in oxidation resistance and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees