JPH0341360A - Apparatus for measuring free chlorine - Google Patents

Apparatus for measuring free chlorine

Info

Publication number
JPH0341360A
JPH0341360A JP17594589A JP17594589A JPH0341360A JP H0341360 A JPH0341360 A JP H0341360A JP 17594589 A JP17594589 A JP 17594589A JP 17594589 A JP17594589 A JP 17594589A JP H0341360 A JPH0341360 A JP H0341360A
Authority
JP
Japan
Prior art keywords
hypochlorous acid
sample water
water
free chlorine
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17594589A
Other languages
Japanese (ja)
Other versions
JPH0782005B2 (en
Inventor
Satoshi Nishikata
西方 聡
Haruo Ito
晴夫 伊藤
Tadashi Takada
義 高田
Toshi Sakai
酒井 才
Toyoaki Aoki
青木 豊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
New Cosmos Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, New Cosmos Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP17594589A priority Critical patent/JPH0782005B2/en
Publication of JPH0341360A publication Critical patent/JPH0341360A/en
Publication of JPH0782005B2 publication Critical patent/JPH0782005B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To enhance the reliability of a measuring apparatus by performing operation according to a plurality of specific formulae using a detection means of uncontaminated hypochlorous acid. CONSTITUTION:The circumferential air is sucked in an apparatus by an air pump 8. The air is dehymidified and purified by a filter 1 and a part of this air passes through a flowmeter 2 to become dry gas while the remainder passes through a flowmeter 3 to become carrier gas. The carrier gas flows in the gaseous phase part in an extraction tank 4 and hyprochlorous acid in sample water is diffused to the carrier gas from the surface of the water. The hypochlorous acid-containing carrier gas mixed with the dry gas is guided to a measuring chamber 7 and the concn. of hypochlorous acid is measured by a semiconductor type gas sensor 15 to be inputted to an operation apparatus 9. Subsequently, in the operation apparatus 9, the concn. OCl<-> of hypochlorite ion and the concn. of total free chlorine are operated from the concn. HOCl<-> of hypochlorous acid, pH and water temp. on the basis of formulae I, II. By this method, the reliability of the measuring apparatus can be enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は上下水道水、工業用水、河川水等に存在する
遊離塩素の測定装置に係り、特に試料水中の全遊離塩素
濃度を正確に測定する遊離塩素測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a device for measuring free chlorine present in water supply and sewage water, industrial water, river water, etc., and particularly to a device for accurately measuring the total free chlorine concentration in sample water. This invention relates to a free chlorine measuring device.

〔従来の技術〕[Conventional technology]

水の消毒には一般に塩素(cliが用いられる。塩素を
水中に注入した場合、次亜塩素酸(HQC1)および次
亜塩素酸イオン(○C1−)を生じる。
Chlorine (cli) is generally used to disinfect water. When chlorine is injected into water, hypochlorous acid (HQC1) and hypochlorite ions (○C1-) are produced.

C1t +Hz O;”HOC1+H” +CI−(1
1HOC1≠0CI−+H”         (2)
ここで塩素9次亜塩素酸及び次亜塩素酸イオンを総称し
て遊離塩素といい、これらは強い殺菌力を持つ。
C1t +Hz O;"HOC1+H" +CI-(1
1HOC1≠0CI-+H” (2)
Here, chlorine 9 hypochlorous acid and hypochlorite ions are collectively referred to as free chlorine, and these have strong sterilizing power.

さて、この殺菌処理における塩素の注入量は、例えば水
道法では「給水せんにおけろ水が、遊離残留塩素を0.
lppm以上保持するように塩素消毒をすること」と義
務付けられているので、遊離塩素の監視は不可欠である
Now, the amount of chlorine injected in this sterilization treatment is determined by the Water Supply Law, for example, which states that ``the effluent in the water supply has 0.00 free residual chlorine.''
Monitoring of free chlorine is essential, as it is mandatory that chlorine be disinfected to maintain a concentration of 1 ppm or higher.

遊離塩素の存在割合、つまり塩素1次亜塩素酸。Existence ratio of free chlorine, that is, chlorine primary hypochlorous acid.

次亜塩素酸イオンの存在割合は試料水のpHの影響を大
きく受ける。pHを通常のpH範囲、例えば飲料水基準
のpH=5.8〜8.6に限定してみても次亜塩素酸と
次亜塩素酸イオンが魂柱している領域であり、その割合
は大きく異なる。したがって塩素殺菌を行う場合には次
亜塩素酸1次亜塩素酸イオンの各濃度、あるいはその合
計濃度を知ることが重要である。
The proportion of hypochlorite ions present is greatly affected by the pH of the sample water. Even if we limit the pH to the normal pH range, for example drinking water standard pH = 5.8 to 8.6, it is a region where hypochlorous acid and hypochlorite ions are the main pillars, and the ratio is to differ greatly. Therefore, when performing chlorine sterilization, it is important to know the respective concentrations of hypochlorous acid and primary hypochlorite ions, or the total concentration thereof.

このための手段が実公昭59−42693号公報および
特開昭63−27745号公報に開示されている。
Means for this purpose are disclosed in Japanese Utility Model Publication No. 59-42693 and Japanese Unexamined Patent Publication No. 63-27745.

大公[59−42693号公報に開示された考案は式(
2)の解離平衡がpHに依存するとともに、その解離定
数は水温が既知になれば定まることに着目し、隔膜式次
亜塩素酸電極で試料水中の次亜塩素酸濃度を測定すると
同時に試料水のpH及び水温を検出し、下記の式(3) %式% により演算で次亜塩素酸イオン濃度を求め、これにより
次亜塩素酸と次亜塩素酸イオンとの合計濃度を求める。
The idea disclosed in the Grand Duke [59-42693 publication is the formula (
Focusing on the fact that the dissociation equilibrium in 2) depends on pH and that the dissociation constant is determined once the water temperature is known, we measured the hypochlorous acid concentration in the sample water with a diaphragm-type hypochlorous acid electrode, and at the same time Detect the pH and water temperature, calculate the hypochlorite ion concentration using the following formula (3), and calculate the total concentration of hypochlorous acid and hypochlorite ions.

特開昭63−27745号公報に開示された発明は、試
料水のpHが3〜5であれば遊離塩素はほぼ100%次
亜塩素酸の形態で存在することに着目したもので、試料
水を実質的に希釈することなくpHを3〜5に調整し、
この試料水中の次亜塩素酸を隔膜式次亜塩素酸電極で測
定し、全遊離塩素濃度を求めるものである。
The invention disclosed in JP-A No. 63-27745 focuses on the fact that if the pH of the sample water is 3 to 5, almost 100% of free chlorine exists in the form of hypochlorous acid. adjusting the pH to 3 to 5 without substantially diluting the
Hypochlorous acid in this sample water is measured using a diaphragm-type hypochlorous acid electrode to determine the total free chlorine concentration.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

実公昭59−42693号公報に開示された考案及び特
開昭63−27745号公報に開示された発明のいずれ
も、試料水中の次亜塩素酸の測定に隔膜式次亜塩素酸電
極を用いている。この隔膜式次亜塩素酸電極は電解液が
封入され、一部に次亜塩素酸を透過する隔膜(例えば、
多孔質テフロン膜(テフロンはデュポンの商品名))を
持ち、内部にアノード及びカソードが収容された構造の
ものである。
Both the invention disclosed in Japanese Utility Model Publication No. 59-42693 and the invention disclosed in Japanese Unexamined Patent Publication No. 63-27745 use a diaphragm-type hypochlorous acid electrode to measure hypochlorous acid in sample water. There is. This diaphragm-type hypochlorous acid electrode has an electrolyte sealed in it, and has a diaphragm that partially permeates hypochlorous acid (for example,
It has a porous Teflon membrane (Teflon is a product name of DuPont) and has an anode and a cathode housed inside.

この隔膜は試料水に浸漬されている内に、試料水中の微
粒子の隔膜内の細孔への侵入や表面への汚れの付着によ
り次第に汚染される。このため試料水中の次亜塩素酸の
隔膜の透過特性が変化し、測定誤差が生じるという問題
がある。さらに隔膜式次亜塩素酸電極は定期的に内部電
解液の交換を行わなければならないという問題もある。
While the diaphragm is immersed in sample water, it gradually becomes contaminated due to the penetration of fine particles in the sample water into the pores in the diaphragm and the adhesion of dirt to the surface. This causes a problem in that the permeation characteristics of the hypochlorous acid in the sample water through the diaphragm change, resulting in measurement errors. Furthermore, the diaphragm-type hypochlorous acid electrode has the problem that the internal electrolyte must be replaced periodically.

この発明は上述の点に鑑みなされ、その目的は汚染され
ることがない次亜塩素酸の検知手段を用いることにより
、信頼性に優れる全遊離塩素測定装置を提供することに
ある。
The present invention was made in view of the above points, and its object is to provide a highly reliable total free chlorine measuring device by using a hypochlorous acid detection means that is not contaminated.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的はこの発明によれば、 1)試料水中の次亜塩素酸を気相に移行させて行う遊離
塩素測定装置において、 (1)試料水中の次亜塩素酸を気相に移行させる気相抽
出手段1.2,3.4と、 (2)気相に移行した次亜塩素酸を検知して試料水中の
次亜塩素酸濃度(HOCI)を測定する半導体式ガス検
知手段15と、 して試料水中のI)Hを検知する手段5と、(4)試料
水の温度(T)を測定する手段6と、(5)次亜塩素酸
イオン濃度を(OCI−)、Kt(T)を温度によって
決まる酸解離定数とするときに次式 %式%) および(OCI−)+ (HOCI)の計算を行う演算
部9、とを備えること、または 2)試料水中の次亜塩素酸を気相に移行させて行う遊離
塩素測定装置において、 − (1)試料水中の次亜塩素酸を気相に移行させる気相抽
出手段1,2,3.4と、 (2)気相に移行した次亜塩素酸を検知して試料水中の
次亜塩素酸濃度を測定する半導体式ガス検知手段15と
、 して試料水中の次亜塩素酸濃度を(CI−)とするとき
に試料水のpHを下記範囲内にするpHl整手段31.
33 、とを備えることにより達成される。
According to the present invention, the above-mentioned object is achieved by: 1) In a free chlorine measurement device that transfers hypochlorous acid in sample water to the gas phase; phase extraction means 1.2, 3.4; (2) semiconductor gas detection means 15 for detecting hypochlorous acid transferred to the gas phase and measuring the hypochlorous acid concentration (HOCI) in the sample water; means 5 for detecting I)H in sample water; (4) means 6 for measuring temperature (T) of sample water; and (5) means 6 for measuring hypochlorite ion concentration (OCI-), Kt (T ) is an acid dissociation constant determined by temperature, the following formula % formula %) and (OCI-) + (HOCI) are provided. In a free chlorine measurement device that transfers hypochlorous acid in the sample water to the gas phase, - (1) gas phase extraction means 1, 2, 3.4 that transfers hypochlorous acid in the sample water to the gas phase; a semiconductor gas detection means 15 for detecting migrated hypochlorous acid and measuring the hypochlorous acid concentration in the sample water; pH adjustment means 31.
33.

〔作用〕[Effect]

試料水中の次亜塩素酸はキャリアガスとの接触により気
相に移行する。試料水から気相に移行した次亜塩素酸は
、そのままの形であるいは分解した状態で半導体式ガス
センサの抵抗を変化させるものと推定される。
Hypochlorous acid in the sample water is transferred to the gas phase by contact with the carrier gas. It is estimated that the hypochlorous acid transferred from the sample water to the gas phase changes the resistance of the semiconductor gas sensor either in its original form or in a decomposed state.

請求項1に係る発明においては半導体式ガスセンサで次
亜塩素酸濃度が測定され、この次亜塩素酸濃度と試料水
のpHと試料水の温度Tとから計算によって次亜塩素酸
イオン濃度が求められるので(HOCI) +(OCI
−)により遊離塩素の総量が求まる。
In the invention according to claim 1, the hypochlorous acid concentration is measured with a semiconductor type gas sensor, and the hypochlorous acid ion concentration is calculated from this hypochlorous acid concentration, the pH of the sample water, and the temperature T of the sample water. (HOCI) + (OCI
−) to determine the total amount of free chlorine.

請求項2に係る発明においては試料水を所定のpHにす
ると遊離塩素のうち次亜塩素酸の占める割合が95%以
上になる。
In the invention according to claim 2, when the sample water is brought to a predetermined pH, the proportion of hypochlorous acid in free chlorine becomes 95% or more.

〔実施例〕〔Example〕

以下にこの発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は請求項1の発明の実施例に係る装置の槽底を示
す配置図である。第1図において、1は清浄な除湿空気
を得るための活性炭とシリカゲルが充填されたフィルタ
、2及び3はそれぞれ乾燥ガス、キャリアガス用の流量
計、4は抽出槽で内部に試料水があり、I)H計5及び
水温計6が試料水中に浸漬されている。7は気相部の次
亜塩素酸を検出するための半導体式ガスセンサを内蔵し
た測定チャンバ、8は乾燥ガス及びキャリアガスを吸引
するためのエアポンプ、9は演算装置、10はサンプリ
ングポンプである。測定チャンバ7に内蔵された半導体
式ガスセンサ15の詳細が第2図に示される。半導体式
ガスセンサは電気絶縁性基板、例えばアル果す基板11
、アル果す基板11の表面に蒸着により形成されたIn
Jsを主成分とする金属酸化物半導体薄膜12、半導体
薄膜12の抵抗変化を測定するptt電極13A、13
B 、アルξす基板11の裏面に形成された気相中の水
分、油脂分による感度の経時的劣化を避けるためのpt
膜上ヒータ14より槽底される。
FIG. 1 is a layout diagram showing a tank bottom of an apparatus according to an embodiment of the invention. In Figure 1, 1 is a filter filled with activated carbon and silica gel to obtain clean dehumidified air, 2 and 3 are flow meters for dry gas and carrier gas, respectively, and 4 is an extraction tank with sample water inside. , I) The H meter 5 and the water temperature gauge 6 are immersed in the sample water. 7 is a measurement chamber incorporating a semiconductor gas sensor for detecting hypochlorous acid in the gas phase, 8 is an air pump for sucking dry gas and carrier gas, 9 is a calculation device, and 10 is a sampling pump. Details of the semiconductor gas sensor 15 built into the measurement chamber 7 are shown in FIG. A semiconductor gas sensor uses an electrically insulating substrate, such as an aluminum substrate 11.
, In is formed on the surface of the substrate 11 by vapor deposition.
Metal oxide semiconductor thin film 12 whose main component is Js, PTT electrodes 13A, 13 for measuring the resistance change of the semiconductor thin film 12
B, PT to avoid deterioration of sensitivity over time due to moisture, oil and fat in the gas phase formed on the back surface of the aluminum substrate 11
The water is supplied to the bottom of the tank by the membrane heater 14.

次に第1図、第2図に示した装置において、どのように
して遊離塩素の測定が行われるかについて述べる。
Next, a description will be given of how free chlorine is measured using the apparatus shown in FIGS. 1 and 2.

エアポンプ8によって周囲空気が装置内に吸引される。Ambient air is drawn into the device by an air pump 8.

この空気はフィルタ1で除湿、清浄化され、一方は流量
計2を通って乾燥ガスに、もう−方は流量計3を通って
キャリアガスになる。キャリアガスは抽出槽4内の気相
部に流入し、試料水中の次亜塩素酸は水面から気相に拡
散してくる。
This air is dehumidified and purified by a filter 1, one of which passes through a flow meter 2 to become a dry gas, and the other one passes through a flow meter 3 to become a carrier gas. The carrier gas flows into the gas phase in the extraction tank 4, and hypochlorous acid in the sample water diffuses from the water surface into the gas phase.

この気相には次亜塩素酸だけでなく、水蒸気も拡散して
くる。抽出槽4から9 9 測定チャンバ7に至る配管の温度が低ければこの水蒸気
は凝縮し、液滴になる。このようにして液滴ができれば
、気相に抽出された次亜塩素酸が液滴部分で再び気液平
衡を起こし気相部の次亜塩素酸濃度が変化するから、測
定誤差の原因になる。
Not only hypochlorous acid but also water vapor diffuses into this gas phase. If the temperature of the piping from the extraction tank 4 to the measurement chamber 7 is low, this water vapor will condense and become droplets. If droplets are formed in this way, the hypochlorous acid extracted into the gas phase will enter vapor-liquid equilibrium again in the droplet portion, changing the hypochlorous acid concentration in the gas phase, which may cause measurement errors. .

この装置では水蒸気が凝縮しないように、抽出槽4から
測定チャンバ7に至る配管の途中で、流量計2を経由し
てきた乾燥ガスと混合している。この混合する箇所は抽
出槽4になるべく近いところが望ましい。
In this device, in order to prevent water vapor from condensing, it is mixed with the dry gas that has passed through the flow meter 2 in the middle of the piping from the extraction tank 4 to the measurement chamber 7. It is desirable that this mixing point be as close to the extraction tank 4 as possible.

乾燥ガスと混合された次亜塩素酸を含有するキャリアガ
スは、ついで測定チャンバ7に導かれて半導体式ガスセ
ンサ15で次亜塩素酸濃度が測定され、その濃度は演算
装置9に入力される。演算装置9にはさらに、抽出槽4
内の試料水のpHおよび水温がそれぞれpH計5、水温
計6から入力される。
The carrier gas containing hypochlorous acid mixed with the dry gas is then led to the measurement chamber 7, where the concentration of hypochlorous acid is measured by the semiconductor gas sensor 15, and the concentration is input to the calculation device 9. The computing device 9 further includes an extraction tank 4.
The pH and temperature of the sample water in the water are input from a pH meter 5 and a water thermometer 6, respectively.

演算装置9では次亜塩素酸濃度+pH+水温から次亜塩
素酸イオン濃度さらには全遊離塩素濃度の演算を行う。
The calculation device 9 calculates the hypochlorous acid ion concentration and the total free chlorine concentration from the hypochlorous acid concentration + pH + water temperature.

以下に演算内容を説明する。The contents of the calculation will be explained below.

1〇− 式(2)の解離平衡は平衡定数をKt(’r)とすると
次の式で示される。
10- The dissociation equilibrium in equation (2) is expressed by the following equation, where the equilibrium constant is Kt('r).

(HO,CI) 解離定数に!(T)は水温Tの関数であり、−1・g 
K t(T)ζ5097/ T −92,77+ 33
.63ホkg Tである。
(HO, CI) Dissociation constant! (T) is a function of water temperature T, -1 g
K t(T)ζ5097/ T -92,77+ 33
.. It is 63 kg T.

また〔H″″〕とpHの間には、pH=−1og(H”
〕の関係がある。よって式(4)より(OCI−)は以
下のように表現できる。
Also, between [H″″] and pH, pH=-1og(H″
] There is a relationship. Therefore, from equation (4), (OCI-) can be expressed as follows.

(OCl−)=Kg(T)傘(HOCI)*10pH+
51したがって次亜塩素酸濃度+  pH+水温が測定
されれば、演算により次亜塩素酸イオン濃度が求まり、
さらには次亜塩素酸と次亜塩素酸イオンの合計濃度、つ
まり全遊離塩素濃度が求まる。
(OCl-)=Kg(T)umbrella(HOCI)*10pH+
51 Therefore, if the hypochlorous acid concentration + pH + water temperature is measured, the hypochlorite ion concentration can be found by calculation,
Furthermore, the total concentration of hypochlorous acid and hypochlorite ions, that is, the total free chlorine concentration, is determined.

以上、この実施例では試料水中の次亜塩素酸の抽出方法
としてヘッドスペース法を用いた測定方ヱ 法について説明しカきたが、この発明の抽出方法はヘッ
ドスペース法に限定されるものではなく、試料水中の次
亜塩素酸を気相中に拡散させ抽出する方法であればその
方法を問わない。
As described above, in this example, a measurement method using the headspace method as an extraction method for hypochlorous acid in sample water has been explained, but the extraction method of this invention is not limited to the headspace method. Any method may be used as long as the hypochlorous acid in the sample water is diffused into the gas phase and extracted.

第3図には抽出方法としてバブリング法を用いたときの
装置構成を示した。エアポンプ8でガスを吸引すると抽
出槽4内は減圧になるから、ボールデイフユーザ−21
からキャリアガスが試料水中に吹き込まれ、試料水中の
次亜塩素酸は気相部に抽出される。したがって第1図に
示した装置と同様に試料水中の次亜塩素酸濃度が測定さ
れる。このバブリング法は試料水中に強制的にキャリア
ガスを吹き込んでいることから、応答速度が速く、低濃
度まで測定可能であるという利点がある。
FIG. 3 shows the configuration of the apparatus when the bubbling method is used as the extraction method. When the air pump 8 sucks gas, the pressure inside the extraction tank 4 is reduced, so the ball diffuser 21
A carrier gas is blown into the sample water, and the hypochlorous acid in the sample water is extracted into the gas phase. Therefore, the hypochlorous acid concentration in the sample water is measured in the same way as the apparatus shown in FIG. Since this bubbling method forcibly blows a carrier gas into the sample water, it has the advantage of a fast response speed and the ability to measure even low concentrations.

第4図は請求項2の発明の実施例に係る装置の構成を示
す配置図である。この発明は試料水に緩衝液を注入して
次亜塩素酸の存在割合をほぼ100%にしてから次亜塩
素酸を測定するもので、緩衝液33を試料水に注入する
ための薬液ポンプ31を備え、さらに演算の必要がない
ため測定チャンバ7内の半導体式ガスセンサの出力は直
接レコーダ32に接続されている。
FIG. 4 is a layout diagram showing the configuration of an apparatus according to an embodiment of the invention according to claim 2. This invention measures hypochlorous acid after injecting a buffer solution into sample water to make the proportion of hypochlorous acid almost 100%. The output of the semiconductor gas sensor in the measurement chamber 7 is directly connected to the recorder 32 since there is no need for further calculation.

この装置において、抽出槽4内の試料水には薬液ポンプ
31によって緩衝液が添加され、pHの上限が6.15
、下限が水素イオン濃度と次亜塩素酸濃度の積(H” 
)*  (C,1−)がa、s4*io −’になるよ
うに調節される。この条件を満たせば試料水中の遊離塩
素の95%以上か次亜塩素酸として存在する。
In this device, a buffer solution is added to sample water in an extraction tank 4 by a chemical pump 31, and the upper limit of pH is 6.15.
, the lower limit is the product of hydrogen ion concentration and hypochlorous acid concentration (H”
)*(C,1-) is adjusted to become a,s4*io-'. If this condition is met, more than 95% of the free chlorine in the sample water exists as hypochlorous acid.

理由を以下に説明する。式(1)1式(2)の解離平衡
は第5図のようになり、次亜塩素酸としてほぼ100%
存在するためにはpHは所定の範囲に限定される。いま
上限、下限を次亜塩素酸として95%以上存在する範囲
と定義する。次亜塩素酸として95%以上存在するため
には、上限は次式を満たせばよい。
The reason is explained below. The dissociation equilibrium of formula (1) and formula (2) is as shown in Figure 5, and it is almost 100% hypochlorous acid.
In order to exist, the pH is limited to a certain range. The upper and lower limits are now defined as the range in which 95% or more of hypochlorous acid exists. In order to have 95% or more of hypochlorous acid, the upper limit should satisfy the following formula.

(HOCI) 十(OCI−) (OCI−)は、 であるから、式(7)を式(6)に代入して整理すると
、〔H4〕 219傘Kg(T)          
+81となる。通常、上下水道水、工業用水、河川水等
3− の水温は0〜25℃であるから、式(8)に結果的に値
が大きくなるKl(25) =3.7*10−”を代入
すると、〔H“〕≧7.0寧10−  、pHで表わす
と6.15以下にすればよい。
(HOCI) 10 (OCI-) (OCI-) is , so substituting equation (7) into equation (6) and rearranging, [H4] 219 umbrellas Kg (T)
It becomes +81. Normally, the water temperature of water, sewage water, industrial water, river water, etc. is 0 to 25℃, so in equation (8), Kl (25) = 3.7 * 10-'', which results in a large value, is added. When substituted, [H"]≧7.0 10-, expressed in pH, should be 6.15 or less.

一方、下限は次の条件を満たす必要がある。On the other hand, the lower limit must satisfy the following conditions.

(HOCI)+2*  (C1g  )(clg)は、 Kl(T) Kl(T)  4式(1)の平衡定数 であるから、弐〇のを式(9)に代入して整理すると、
(H”)*  (C1−)  ≦2.6hlO−”  
傘に、(T)      (11)となる。上限を求め
た時と同様に、上下水道水。
(HOCI)+2*(C1g)(clg) is Kl(T) Kl(T) 4Since it is the equilibrium constant of equation (1), substituting 2〇 into equation (9) and rearranging it, we get
(H”)* (C1-) ≦2.6hlO-”
The umbrella becomes (T) (11). Water and sewage water, same as when finding the upper limit.

工業用水、河川水等の水温は0〜25℃であるから結果
的に値が小さくなるに+(0) ”1.46*10−’
を代入して、(H”)*  (CI−)≦3.s4*t
o −’となる。
Since the water temperature of industrial water, river water, etc. is 0 to 25℃, the value will be small as a result.+(0) "1.46*10-'
Substituting (H”)* (CI-)≦3.s4*t
o −'.

よってpH≦6.15でかつ(H”3本 (CI−)≦
3.s4*to−hの条件を満たせば、遊離塩素は常に
4 次亜塩素酸の形態で95%以上が存在する。したがって
、このように調整された試料水の次亜塩素酸を測定すれ
ば、試料水中の次亜塩素酸と次亜塩素酸イオンの合計濃
度が求まる。
Therefore, pH≦6.15 and (H”3 (CI-)≦
3. If the condition of s4*to-h is satisfied, 95% or more of free chlorine always exists in the form of 4 hypochlorous acid. Therefore, by measuring the hypochlorous acid in the sample water adjusted in this way, the total concentration of hypochlorous acid and hypochlorite ions in the sample water can be determined.

第4図の実施例では次亜塩素酸の抽出方法としてヘッド
スペース法を示したが、請求項1の発明と同様にこれに
限定されるものではなく、バブリング法を用いてもよい
In the embodiment shown in FIG. 4, the headspace method is shown as the method for extracting hypochlorous acid, but as with the invention of claim 1, the present invention is not limited to this, and a bubbling method may also be used.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、 1)試料水中の次亜塩素酸を気相に移行させて行う遊離
塩素測定装置において、 (1)試料水中の次亜塩素酸を気相に移行させる気相抽
出手段と、 (2)気相に移行した次亜塩素酸を検知して試料水中の
次亜塩素酸濃度(HOCI)を測定する半導体式ガス検
知手段と、 して試料水中のpHを検知する手段と、(4)試料水の
温度(T)を測定する手段と、(5)次亜塩素酸イオン
濃度を(QCl−)、に!(T)を温度によって決まる
酸解離定数とするときに次式 %式% および(QCl−)+ (HOC1) の計算を行う演
算部、とを備え、または 2)試料水中の次亜塩素酸を気相に移行させて行う遊離
塩素測定装置において、 +11試料水中の次亜塩素酸を気相に移行させる気相抽
出手段と、 (2)気相に移行した次亜塩素酸を検知して試料水中の
次亜塩素酸濃度を測定する半導体式ガス検知手段と、 して試料水中の次亜塩素酸濃度を(C1−)とするとき
に試料水のpHを下記範囲内にするpH調整手段、とを
備えるので、 イ)試料水中の次亜塩素酸は汚染を受けることのない半
導体式ガスセンサによって高信頼性の測定がなされる。
According to this invention, 1) a free chlorine measuring device that transfers hypochlorous acid in sample water to the gas phase, comprising: (1) gas phase extraction means for transferring hypochlorous acid in sample water to the gas phase; (2) a semiconductor gas detection means for detecting hypochlorous acid transferred to the gas phase and measuring the hypochlorous acid concentration (HOCI) in the sample water; and a means for detecting the pH in the sample water; (4) A means for measuring the temperature (T) of the sample water, and (5) a means for measuring the hypochlorite ion concentration (QCl-)! (T) is an acid dissociation constant determined by temperature, and a calculation unit that calculates the following formula % and (QCl-) + (HOC1), or 2) hypochlorous acid in the sample water. A free chlorine measurement device that transfers hypochlorous acid to the gas phase includes +11 gas phase extraction means that transfers hypochlorous acid in the sample water to the gas phase, and (2) detects the hypochlorous acid that has transferred to the gas phase and extracts the sample a semiconductor gas detection means for measuring the concentration of hypochlorous acid in water; a pH adjustment means for adjusting the pH of the sample water within the following range when the concentration of hypochlorous acid in the sample water is (C1-); (a) Hypochlorous acid in the sample water can be measured with high reliability using a semiconductor gas sensor that is free from contamination.

半導体式ガスセンサで検知されない次亜塩素酸イオンは
試料水のpHと温度をもとにして計算され、これらの結
果として遊離塩素を高いIII性で測定することが可能
となる。
Hypochlorite ions, which are not detected by the semiconductor gas sensor, are calculated based on the pH and temperature of the sample water, and as a result of these, it becomes possible to measure free chlorine with high III properties.

口)試料水のpHが所定範囲に調整されると、遊離塩素
の95%・以上が次亜塩素酸となり、半導体式ガスセン
サによりこれを検知して遊離塩素を高い(III性で測
定することができる。
(1) When the pH of the sample water is adjusted to a specified range, more than 95% of the free chlorine becomes hypochlorous acid, which is detected by a semiconductor gas sensor and the free chlorine is detected at a high level (it is possible to measure with III). can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は請求項1の発明の実施例に係る遊離塩素測定装
置を示す配置図、第2図は請求項1または2の発明の実
施例に係る装置のうちの半導体式ガスセンサを示し、第
2図fa)は斜視図、第2図(blは断面図、第3図は
請求項1の発明の異なる実施例に係る遊離塩素測定装置
を示す配置図、第4図は請求項2の発明の実施例に係る
遊離塩素測定装置を示す配置図、第5図は試料水p)(
とHOC1存在割合を示す線図である。 1:フィルタ、2.3二流量針、4:抽出槽、5:pH
計、6:水温計、7:測定チャンバ、8:エアポンプ、
9:演算装置、31:薬液ポンプ、=17= 18
FIG. 1 is a layout diagram showing a free chlorine measuring device according to an embodiment of the invention of claim 1, and FIG. 2 shows a semiconductor gas sensor of the device according to an embodiment of the invention of claim 1 or 2. Figure 2 fa) is a perspective view, Figure 2 (bl is a sectional view, Figure 3 is a layout diagram showing a free chlorine measuring device according to a different embodiment of the invention of claim 1, and Figure 4 is the invention of claim 2). A layout diagram showing the free chlorine measuring device according to the example of
It is a diagram showing the HOC1 abundance ratio. 1: Filter, 2.3 dual flow needle, 4: Extraction tank, 5: pH
meter, 6: water temperature gauge, 7: measurement chamber, 8: air pump,
9: Arithmetic device, 31: Chemical liquid pump, = 17 = 18

Claims (1)

【特許請求の範囲】 1)試料水中の次亜塩素酸を気相に移行させて行う遊離
塩素測定装置において、 (1)試料水中の次亜塩素酸をキャリアガス中に移行さ
せる気相抽出手段と、 (2)キャリアガス中に移行した次亜塩素酸を検知して
試料水中の次亜塩素酸濃度〔HOCl〕を測定する半導
体式ガス検知手段と、 (3)試料水のpHを検知する手段と、 (4)試料水の温度(T)を測定する手段と、(5)次
亜塩素酸イオン濃度を〔OCl^−〕、K_2(T)を
温度によって決まる酸解離定数とするときに次式 〔OCl^−〕=K_2(T)*〔HOCl〕*10^
p^Hおよび〔OCl^−〕+〔HOCl〕の計算を行
う演算部、とを備えることを特徴とする遊離塩素測定装
置。 2)試料水中の次亜塩素酸を気相に移行させて行う遊離
塩素測定装置において、 (1)試料水中の次亜塩素酸をキャリアガス中に移行さ
せる気相抽出手段と、 (2)キャリアガス中に移行した次亜塩素酸を検知して
試料水中の次亜塩素酸濃度を測定する半導体式ガス検知
手段と、 (3)試料水の塩素イオン濃度を〔Cl^−〕とすると
きに試料水のpHを下記範囲内にする −log(3.84*10^−^6/〔Cl^−〕)≦
pH≦6.15pH調整手段、とを備えることを特徴と
する遊離塩素測定装置。
[Scope of Claims] 1) A free chlorine measuring device that transfers hypochlorous acid in sample water to a gas phase, comprising: (1) gas phase extraction means for transferring hypochlorous acid in sample water to a carrier gas; (2) A semiconductor gas detection means that detects hypochlorous acid that has migrated into the carrier gas and measures the hypochlorous acid concentration [HOCl] in the sample water; (3) Detects the pH of the sample water. (4) A means for measuring the temperature (T) of the sample water; (5) When the hypochlorite ion concentration is [OCl^-] and K_2 (T) is the acid dissociation constant determined by the temperature. The following formula [OCl^-]=K_2(T)*[HOCl]*10^
A free chlorine measuring device comprising: a calculation unit that calculates p^H and [OCl^-] + [HOCl]. 2) A free chlorine measuring device that transfers hypochlorous acid in sample water to a gas phase, which includes (1) gas phase extraction means for transferring hypochlorous acid in sample water to a carrier gas; (2) a carrier. A semiconductor gas detection means for detecting the hypochlorous acid that has migrated into the gas and measuring the hypochlorous acid concentration in the sample water; Adjust the pH of the sample water to within the following range -log(3.84*10^-^6/[Cl^-])≦
A free chlorine measuring device comprising: pH≦6.15 pH adjusting means.
JP17594589A 1989-07-07 1989-07-07 Free chlorine measuring device Expired - Lifetime JPH0782005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17594589A JPH0782005B2 (en) 1989-07-07 1989-07-07 Free chlorine measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17594589A JPH0782005B2 (en) 1989-07-07 1989-07-07 Free chlorine measuring device

Publications (2)

Publication Number Publication Date
JPH0341360A true JPH0341360A (en) 1991-02-21
JPH0782005B2 JPH0782005B2 (en) 1995-09-06

Family

ID=16005003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17594589A Expired - Lifetime JPH0782005B2 (en) 1989-07-07 1989-07-07 Free chlorine measuring device

Country Status (1)

Country Link
JP (1) JPH0782005B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111135332A (en) * 2019-12-23 2020-05-12 浙江吉叶生物科技有限公司 Method and system for testing disinfection effect of disinfectant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169049A (en) * 1982-03-31 1983-10-05 Kanegafuchi Chem Ind Co Ltd Method and apparatus for measuring concentration of substance in liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169049A (en) * 1982-03-31 1983-10-05 Kanegafuchi Chem Ind Co Ltd Method and apparatus for measuring concentration of substance in liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111135332A (en) * 2019-12-23 2020-05-12 浙江吉叶生物科技有限公司 Method and system for testing disinfection effect of disinfectant

Also Published As

Publication number Publication date
JPH0782005B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US5439569A (en) Concentration measurement and control of hydrogen peroxide and acid/base component in a semiconductor bath
US4581121A (en) Free chlorine gas analyzer
US5346605A (en) Apparatus for quantitative determination of chemical oxidizing or reducing agents in a fluid environment
WO2009055093A1 (en) Electrochemical methods for selective detection of free chlorine, monochloramine and dichloramine
Jin et al. A miniaturized FIA system for the determination of residual chlorine in environmental water samples
US4460448A (en) Calibration unit for gases
US3960673A (en) Technique for continuously analyzing the concentration of ozone dissolved in water
JP3339651B2 (en) Constant potential electrolytic acid gas sensor
US20060175208A1 (en) Water-conductivity CO2 sensor
US20070227908A1 (en) Electrochemical cell sensor
JPH0341360A (en) Apparatus for measuring free chlorine
US3296098A (en) Method and apparatus for gas analysis
US6330819B1 (en) Method and apparatus for calibrating a dissolved oxygen analyzer
US20060163088A1 (en) Amperometric sensor with counter electrode isolated from fill solution
Hara et al. Continuous flow determination of low concentrations of ammonium ions using a gas dialysis concentrator and a gas electrode detector system
JP4166104B2 (en) Constant potential electrolytic acid gas detector
JP3307827B2 (en) Potentiometric electrolytic ammonia gas detector
US3573174A (en) Process for the detection or determination of fluorine
JPH02285259A (en) Apparatus for measuring free chlorine in sample water
Matuszewski et al. Continuous monitoring of gas-phase species at trace levels with electrochemical detectors: Part 2. Detection of chlorine and hydrogen chloride
JPH0778478B2 (en) Method for measuring free chlorine in sample water
JPH0535823B2 (en)
JPH04337457A (en) Water quality analyzer
JP2004317395A (en) Electrochemical chloride sensor
JPS6327745A (en) Apparatus for measuring residual chlorine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070906

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 14

EXPY Cancellation because of completion of term