JPS58169049A - Method and apparatus for measuring concentration of substance in liquid - Google Patents

Method and apparatus for measuring concentration of substance in liquid

Info

Publication number
JPS58169049A
JPS58169049A JP5418582A JP5418582A JPS58169049A JP S58169049 A JPS58169049 A JP S58169049A JP 5418582 A JP5418582 A JP 5418582A JP 5418582 A JP5418582 A JP 5418582A JP S58169049 A JPS58169049 A JP S58169049A
Authority
JP
Japan
Prior art keywords
liquid
concentration
measured
vaporizable
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5418582A
Other languages
Japanese (ja)
Other versions
JPS623366B2 (en
Inventor
Takehisa Nakayama
中山 威久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP5418582A priority Critical patent/JPS58169049A/en
Publication of JPS58169049A publication Critical patent/JPS58169049A/en
Publication of JPS623366B2 publication Critical patent/JPS623366B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To readily measure the concentration of a nonvaporizing substance in a liquid, by utilizing the fact that the vapor pressure of a vaporizing component in a liquid changes owing to the presence of a nonvaporizing substance. CONSTITUTION:Liquids containing a nonvaporizing substance at various concentrations are prepared, and a vaporizing component is added thereto until a predetermined concentration by volume is obtained, thereby to prepare test liquids. The vaporizing component concentration of the test liquids is measured under predetermined conditions by employing a tube method to obtain the calibration curve between the concentration and the vapor pressure of the vaporizing component beforehand. When the concentration of a nonvaporizing substance in a liquid 7 to be measured is actually measured, a vaporizing components is supplied into the liquid 7 from a supply device 11. By a system 1-6 for a tube method employing a carrier gas, the sensitivity to the vaporizing component is calculated in an arithmetic unit 23 from an output signal with respect to the concentration of the vaporizing component in the liquid 7, thereby allowing the concentration of the nonvaporizing substance in the liquid 7 to be made known from the calibration curve and the like stored in a memory 24.

Description

【発明の詳細な説明】 本発明は、液中成分の濃度測定法及び同月装置に関する
ものであり、特に糖分、塩分の測定に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for measuring the concentration of components in liquid, and particularly to the measurement of sugar content and salt content.

従来、微生物の培養液中の糖濃度を測定する場合、微生
物の培養液を採取し、菌体を遠心沈澱除去したのち上澄
液について、例えばフェノール・硫酸法、ンモギ法、ベ
ルトラン法、酵素反応法等を用いて測定してきた。しか
しこれらの測定法は、いずれの場合も複雑な操作や処理
を必要とし、且つ一点の測定にかなりの長時間を有する
のが常であった。
Conventionally, when measuring the sugar concentration in a culture solution of microorganisms, the culture solution of the microorganism is collected, the bacterial cells are removed by centrifugation, and then the supernatant is measured using methods such as the phenol/sulfuric acid method, the Nmogi method, the Bertrand method, or the enzyme reaction method. It has been measured using various methods. However, these measurement methods require complicated operations and processing, and usually take a considerable amount of time to measure one point.

本発明は、糖分や塩分の存在によって液中の気化性成分
の蒸気圧が変化することを利用して、液中に存在する糖
分あるいは塩分の濃度を迅速に、容易に測定する方法及
びその装置を提供するものである。
The present invention provides a method and apparatus for quickly and easily measuring the concentration of sugar or salt present in a liquid by utilizing the fact that the vapor pressure of volatile components in the liquid changes depending on the presence of sugar or salt. It provides:

かねてから、液中の気化性成分、特に微生物の培養液中
のエタノールの濃廣測宇を行う目的で、多孔質チューブ
を用いる下記チューブ法に撥液性と連続微気孔を有する
多孔質チューブを使用−した測定方法及び装置を開発し
て使用して来た。チューブ法を使用しだ液中の気化3+
戊分の測定方法では、撥液性と連続微気孔を有する多孔
質チューブを被測定液中に浸漬し、多孔質チューブに一
定量のキャリアガスを送気し、多孔質チューブを1市過
しだキャリアガスをガス成分検出器に導くことにより、
被測定液中からキャリアガス中に多孔質チューブの連続
微気孔を通して通過して米だ液中の気化性成分を検出す
ることによって液中の気化性成分の濃度が知ることが出
来た。
For some time now, in order to measure the concentration of vaporizable components in liquids, especially ethanol in microbial culture solutions, we have been using porous tubes with liquid repellency and continuous micropores in the tube method described below, which uses porous tubes. - developed and used measurement methods and devices. Vaporization in saliva using tube method 3+
In Boki's measurement method, a porous tube with liquid repellency and continuous micropores is immersed in the liquid to be measured, a certain amount of carrier gas is supplied to the porous tube, and the porous tube is passed through the tube. By guiding the carrier gas to the gas component detector,
The concentration of the volatile components in the rice saliva could be determined by passing the carrier gas from the liquid to be measured through the continuous micropores of the porous tube and detecting the volatile components in the rice saliva.

この場合、連続微気孔を1市じてキャリアガス中へ透過
して来る気化性成分の量は、系の温度、圧力及び成分等
に影響される気液平衡関係によって決まる蒸気圧と一定
の関係にあるものである。そのためキャリアガスの流量
が一定であり、且つ系の圧力、温度、測定対象以外の成
分等が一定であれば、被測定液中の気化ヰ戎分の濃度は
、キャリアガス中の該気化は成分の濃度を知ることによ
って正確に測定することができる。
In this case, the amount of vaporizable components that permeate into the carrier gas through continuous micropores has a certain relationship with the vapor pressure, which is determined by the vapor-liquid equilibrium relationship that is influenced by the temperature, pressure, and components of the system. It is something that is in . Therefore, if the flow rate of the carrier gas is constant, and the system pressure, temperature, components other than the measurement target, etc. are constant, the concentration of vaporized water in the liquid to be measured is can be measured accurately by knowing the concentration of

一方、被測定液中に測定対象成分以外の非気でヒ姓物質
や糖蜜の様な一つの物質と見なせる非気化的ユ物質の混
合物の濃度が変fヒすると、系の気液平衡関係が変化す
るため、測定対象成分の蒸気圧が変わり、その結果多孔
質チューブの連続微気孔を曲ってキャリアガス中に透過
して来る該気化性成分のばが変fしすることとなる。
On the other hand, if the concentration of a mixture of non-vaporizable substances that can be considered as a single substance such as molasses or molasses other than the component to be measured changes in the concentration of the mixture in the liquid to be measured, the vapor-liquid equilibrium relationship of the system changes. As a result, the vapor pressure of the component to be measured changes, and as a result, the amount of the vaporizable component that bends through the continuous micropores of the porous tube and permeates into the carrier gas changes.

本発明者は、気化イ成分を含む液に非気化性物質または
その混合物が混入溶解することにより、チューブ法によ
って測定したときの該気化は成分の濃唯出ツバすなわち
感度が大きく変イヒすることを発見し、かつ液中に存在
する非気化性物質の濃度と、チューブ法によって測定し
た前記液中の気化性成分の濃度出力の感度変化の間に一
定の関係が存在することを見出した。
The present inventor has discovered that when a non-vaporizable substance or a mixture thereof is mixed and dissolved in a liquid containing a vaporized component, the vaporization results in a concentrated concentration of the component, that is, the sensitivity changes greatly when measured by the tube method. and that there is a certain relationship between the concentration of non-vaporizable substances present in a liquid and the change in sensitivity of the concentration output of the vaporizable component in the liquid measured by the tube method.

本発明者は、さらに予め得られた前記の液中の非気化性
物質の濃度と気化性成分の感度変化の関係をもとにして
、前記チューブ法によって液中の気化性成分の濃度を測
定した際の感度を知ることによって液中の非気化性物質
の濃度を知る方法とその装置を発明した。
The present inventor further measured the concentration of the vaporizable component in the liquid by the tube method based on the relationship between the concentration of the non-vaporizable substance in the liquid and the sensitivity change of the vaporizable component obtained in advance. We have invented a method and device for determining the concentration of non-vaporizable substances in a liquid by determining the sensitivity when

先ず本発明の測定方法を説明する。First, the measuring method of the present invention will be explained.

非気化性物質を種々濃度含む液を調整し、この調整した
液中に気化性成分を一定容量濃唯となる様に添加し、混
合したものを試験液とする。試験更正曲線あるいは更正
表と称する。さて実際に液中の非気化性物質の濃度を測
定する場合には、予゛め被測定液中の気化性成分の濃度
が判っている場合には、チューブ法を用いて被測定液中
の気化性成分濃度に対する出力信号から気fヒ性成分に
対する感度を算出し、更正曲線あるいは更正表から被θ
11定腹中の非気化性物質の濃度を知ることが出来る。
A liquid containing a non-vaporizable substance at various concentrations is prepared, a volatilizable component is added to the prepared liquid at a constant volume, and the mixture is used as a test liquid. It is called a test correction curve or correction table. Now, when actually measuring the concentration of non-vaporizable substances in a liquid, if the concentration of the volatile component in the liquid to be measured is known in advance, the tube method can be used to measure the concentration of non-vaporizable substances in the liquid to be measured. The sensitivity to the vaporizable component is calculated from the output signal for the vaporizable component concentration, and the θ value is calculated from the correction curve or correction table.
11 You can find out the concentration of non-vaporizable substances in your stomach.

被測定液中にすでに存在している気化性成分の濃IO′
Xが予め判っていない場合には、先ずこの未知の濃度X
に対するチューブ法によって測定した出力信号aを求め
る。次に、被測定液中に該気化性成分を既知量添加混合
し、これによる該気化性成分濃度上昇分yを含めた被測
定液中の該気化性成分濃度(x+y)に対するチューブ
法による測定出力信号すを求める。第−及び第二の出力
信号の%(b−a)から、濃度上昇分yに対する出力(
5’/jの増IJlli(b−a)が判9、これにより
チューブ法副宇による気化性成分に対する感度とを算出
し、更正曲線あるいは更正表から被測定液中の非気化性
物質の濃度を知ることができる。
Concentrated IO' of vaporizable components already present in the liquid to be measured
If X is not known in advance, first calculate this unknown concentration
Obtain the output signal a measured by the tube method. Next, a known amount of the volatile component is added and mixed into the liquid to be measured, and the concentration (x+y) of the volatile component in the liquid to be measured, including the increase in concentration y due to this, is measured by the tube method. Find the output signal. From the % (b-a) of the -th and second output signals, the output (
5'/j increase IJlli(b-a) is Judgment 9. From this, the sensitivity to vaporizable components by the tube method is calculated, and the concentration of non-vaporizable substances in the liquid to be measured is calculated from the calibration curve or correction table. can be known.

以上の測定で注意しなければならないことは、被測定液
と更正曲線を作成したときに使用した試験液の成分につ
いてである。両者について測定しようとする非気化性物
質及び気化性成分は言うに及ばず、その他の物質も全く
同じ成分を含むものを選定しなければならない。例えば
、水−エタノール−グルコース溶液中のグルコースを測
定しだい場合、試験液も当然水−エタノールーグlレコ
ースでなければならない。さらに例をあげると、微生物
の培養液中の糖濃度を測定する場合、培養液中には菌内
、培地、糖、エタノール等が含まれるが、更正曲線を作
る試験液として前記培養液中の糖a唯のみが種々異なる
ものを作成し、これについて前記手順により更正曲線を
作成する必要がある。
What must be noted in the above measurements is the components of the liquid to be measured and the test liquid used when creating the calibration curve. Not only the non-vaporizable substance and vaporizable component to be measured for both, but also other substances must be selected that contain exactly the same components. For example, when measuring glucose in a water-ethanol-glucose solution, the test solution must also be water-ethanol-glucose. To give a further example, when measuring the sugar concentration in a culture solution of a microorganism, the culture solution contains bacteria, culture medium, sugar, ethanol, etc. It is necessary to create samples that differ only in sugar content and create correction curves for them using the procedure described above.

さらに前記の測定で注意を安するのは、更正曲線作成時
と被測定液中の非気化性物質の測定時において、条件が
同じであることが要求されることである。つ19試験液
と被測定液の温度が同一であること、チューブ法測定の
条件、例えばチューブ自体、キャリアガスの流量・圧力
、ガス検出器の感度等々が同一であること等である。
Furthermore, one thing to be careful about in the above-mentioned measurements is that the conditions are required to be the same when creating the calibration curve and when measuring the non-vaporizable substance in the liquid to be measured. The temperature of the test liquid and the liquid to be measured must be the same, and the conditions for tube method measurement, such as the tube itself, the flow rate and pressure of the carrier gas, the sensitivity of the gas detector, etc., must be the same.

液の温度については、液温度変化に対する気化性成分製
噴出力の変化を予め求めておき、チューブ法による測定
の際に液温度を検出し、これにより液温呻の違いによる
影響を補正することも極めて容易かつ有効な方法である
Regarding the temperature of the liquid, the change in the ejection force of the vaporizable component in response to the change in liquid temperature is determined in advance, and the liquid temperature is detected during measurement using the tube method, thereby correcting the influence of differences in liquid temperature. This is also an extremely easy and effective method.

さらに、測定対象である非気化性物質としては、チュー
ブ法による測定が気化性成分に対してあまり選択性を有
さない場合が多いため、糖あるいは塩の様な、チューブ
法による測定にはそれ自身検出されないが、気化性成分
を陰む液の気液平衡に大きな影響を及ぼすものが最適で
ある。特に、水溶液や微生物の培養液あるいは酒類中の
グルコース、蔗糖、サッカロース、糖蜜、等の糖類や、
食塩、グルタミン酸ソーダー等の塩類や、醤油やみりん
等の調味料中の糖類や塩類等が測定対象として適当であ
る。
Furthermore, for non-vaporizable substances to be measured, the tube method often does not have much selectivity for volatile components, such as sugars or salts. The best choice is one that is not detected itself but has a large effect on the vapor-liquid equilibrium of the liquid that conceals the volatile components. In particular, sugars such as glucose, sucrose, sucrose, and molasses in aqueous solutions, microbial culture solutions, and alcoholic beverages,
Salts such as table salt and sodium glutamate, sugars and salts in seasonings such as soy sauce and mirin are suitable as measurement targets.

次に本測定方法を実現する装置を図1に従って説明する
Next, an apparatus for implementing this measurement method will be explained with reference to FIG.

撥液性と連続微気孔を有する多孔質チューブ(1)の一
端にキャリアガス送気導管(3)を経て、キャリアガス
送気部(2)が接続される。多孔質チューブ(1)の他
端には、キャリアガス排出導管(4)を通じて検出器(
5)が接続されている。(6)はキャリアガス排出導管
(4)を被測定液(7)の@唯以上に加熱保温するヒー
ターである。0りは被測定液の原液03を収容する原液
槽であり、0荀は原液を測定容器αGへ移送するポンプ
、αBは測定容器00中に一定量の、あるいは一定流量
の気化性成分を供給する気化性成2分供給装置である。
A carrier gas supply section (2) is connected to one end of a porous tube (1) having liquid repellency and continuous micropores through a carrier gas supply conduit (3). The other end of the porous tube (1) is connected to a detector (
5) is connected. (6) is a heater that heats the carrier gas discharge conduit (4) to a temperature higher than that of the liquid to be measured (7). 0 is a stock solution tank that stores the stock solution 03 of the liquid to be measured, 0x is a pump that transfers the stock solution to the measurement container αG, and αB is a pump that supplies a fixed amount or constant flow rate of vaporizable components into the measurement container 00. This is a vaporizable component supply device.

又、測定容器で撹拌混合と測定を行うかわりに原液槽U
aと測定容器αGの間に、被測定液を収容しこれに気化
性成分を供給し混合する「混合容器」を別に設けてもよ
い。これによって連続して異った測定の回数を重ねる場
合、切換が速くでき、混合時間かはぶける等の効果があ
る。
Also, instead of stirring and mixing and measuring in the measurement container, the stock solution tank U
A "mixing container" may be separately provided between a and the measurement container αG for storing the liquid to be measured and supplying and mixing the vaporizable component thereto. This has the effect that when different measurements are repeated several times in succession, switching can be done quickly and the mixing time can be shortened.

測定容器αGには、液の撹拌装置儲り及び温度調節11
α7)が備わっている。測定容器αeには多孔質チュー
ブ(1)及び液温度検出端−を収容し、測定液を入れる
。0樽は測定の終了した被測定液を排出する排出ライン
(イ)に設けた排出弁、01は廃液槽である。
The measurement container αG includes a liquid stirring device and temperature control 11.
α7). The measurement container αe accommodates a porous tube (1) and a liquid temperature detection end, and contains the measurement liquid. Barrel 0 is a discharge valve installed in a discharge line (a) for discharging the measured liquid after measurement, and barrel 01 is a waste liquid tank.

(ハ)は演算部であり、検出器(5)からの出力信号か
ら感度を計算し、予め求められて記憶装置(ハ)に記憶
されている非気化性物質の濃度と感度の関係から非気化
性物質のa鬼を算出し、その結果を表示部−に表示する
か、あるいは出力部啼に出力する機能を有するものであ
る。
(C) is a calculation unit that calculates the sensitivity from the output signal from the detector (5) and calculates the It has a function of calculating the value of a vaporizable substance and displaying the result on the display section or outputting it to the output section.

さらに演算部(ハ)は液@墳検出端翰及び温度変換器(
ハ)によって得られだ液温変信号をもとに、被測定液温
度変化による検出器出力信号変化の補正演算を行う機能
を有するものを使用することも有効である。それに加え
て、原液移送ポンプ04)、気化性成分供給装置(ID
、被測定液の排出弁α8)等の動作を制御する機能を持
たせることも効果的である。
Furthermore, the calculation section (c) includes a liquid@funeral detection terminal and a temperature converter (
It is also effective to use a sensor having a function of performing correction calculations for changes in the detector output signal due to changes in the temperature of the liquid to be measured based on the liquid temperature change signal obtained in step (c). In addition, the stock solution transfer pump 04), vaporizable component supply device (ID
It is also effective to provide a function to control the operation of the liquid to be measured, the discharge valve α8), etc.

これらの係から判断すると演算部翰は、コンピューター
を利用したものが最適であると考えられる。
Judging from these staff members, it is thought that the optimal computing department would be one that utilizes a computer.

液の移動は回分式でも良く、あるいは連続的でも良い。The liquid may be moved batchwise or continuously.

すなわち測定容器OGに一定量の被測定液原液03を移
送し、しかる後、気化性成分を一定量添加し、充分撹拌
混合した後、気化性成分の感度測定後、全量排出するこ
とによりlサイクル終了する。あるいは被測定液の測定
容器αGへの移送、測定容器0Qからの排出を一定流量
で行い、さらに気化性成分の添加を被測定液原液の流量
に対して厳密に一定割合となる様に供給、混合すること
により非気化性物質の測定も連続的に行うことが出来る
。この場合、測定容器α0、被測定液の移送流量に注意
して、なるべく応答の速い迅速な連続測定が行える様に
工夫する必要がある。温tw調0節器aηは測定容器0
0及びその内部の液の温度を一定に調節するだめのもの
である。気化性成分供給装置G心は、定量ポンプあるい
は重力による定量落下式等を用いたもの、さらに回分の
場合には電気的な弁の動作により電量の気化性成分が供
給されるもの等を使うことができる。液移送装置Q4)
も重力による定量落下と(電磁)弁等を組み合わせたも
のを用いても良い。
That is, a certain amount of the liquid to be measured undiluted solution 03 is transferred to the measurement container OG, then a certain amount of the volatile component is added, the mixture is thoroughly stirred, the sensitivity of the volatile component is measured, and the entire amount is discharged to complete one cycle. finish. Alternatively, the liquid to be measured is transferred to the measurement container αG and discharged from the measurement container 0Q at a constant flow rate, and the vaporizable component is added at a strictly constant ratio to the flow rate of the stock solution of the liquid to be measured, By mixing, non-vaporizable substances can also be measured continuously. In this case, it is necessary to pay attention to the measurement container α0 and the transfer flow rate of the liquid to be measured so as to be able to perform rapid continuous measurements with as fast a response as possible. Temperature tw 0 regulator aη is measurement container 0
This is to keep the temperature of the 0 and the liquid inside it constant. The vaporizable component supply device G should be one that uses a metering pump or a metered drop type using gravity, or in the case of batch delivery, one that supplies the vaporizable component in electricity by the operation of an electric valve. Can be done. Liquid transfer device Q4)
It is also possible to use a combination of a fixed amount drop due to gravity and a (electromagnetic) valve.

多孔質チューブ(1)は、撥液性の点で四弗化エチレン
樹脂製のチューブが最適であり、微孔径と開孔率につい
ては多孔質チューブ自身の感度と耐久1ノ11強厖専の
、(jから微孔径約0.2〜約1.0μm1開化率約2
0〜約80係のものが良い。その中でも倣孔径約0.4
〜0.6μm1間孔率約45〜60係のものが殊に好ま
しい。
For the porous tube (1), a tube made of tetrafluoroethylene resin is optimal in terms of liquid repellency, and the micropore diameter and porosity are determined by the sensitivity and durability of the porous tube itself. , (from j to micropore diameter of about 0.2 to about 1.0 μm1 opening rate of about 2
Something between 0 and about 80 is good. Among them, the copying hole diameter is approximately 0.4
Particularly preferred are those having a porosity of about 45 to 60 mm/~0.6 μm.

キャリアガスは窒素等の不活性ガスあるいは空気等を検
出器(5)の特性に合わせて選定できる。検出器(5)
は、キャリアガス中の気化性成分を安定かつ迅速、精曜
良く測定できるものであれば市販のガス分析計あるいは
ガス検知器に使われているもの、例えば水素炎イオン化
検出器、熱伝導度検出器、赤外線式検出器、金属酸化膜
半導体式検出器、接触燃焼式検出器等々の中から価格・
精度等を基に選定することができる。それらの中でも精
度及び安定性の面から判断すると水素炎イオン比検出器
、価格及び手軽さの面から判断すると金属酸化膜V−導
体式検出器、接触燃焼式検出器が有力である。ギA・リ
アガス送気部(2)は前記のキャリアガスを多孔質チュ
ーブに安定して一定流量で供給・送気できるものでなけ
ればならない。ガスクロマトグラフ等に使われている定
流駄弁、定圧弁等を組み合わせて使うことにより良い結
果が得られ乙。
As the carrier gas, an inert gas such as nitrogen or air can be selected depending on the characteristics of the detector (5). Detector (5)
is a commercially available gas analyzer or gas detector that can measure volatile components in carrier gas stably, quickly, and accurately, such as a hydrogen flame ionization detector or a thermal conductivity detector. Choose from a wide range of price/infrared detectors, metal oxide film semiconductor detectors, catalytic combustion detectors, etc.
It can be selected based on accuracy etc. Among them, hydrogen flame ion ratio detectors are most popular in terms of accuracy and stability, metal oxide film V-conductor type detectors, and catalytic combustion type detectors are most popular in terms of cost and ease of use. The gear A rear gas supply section (2) must be able to stably supply and supply the carrier gas to the porous tube at a constant flow rate. Good results can be obtained by using a combination of constant flow valves, constant pressure valves, etc. used in gas chromatographs.

以上のごとく本発明による液中の成分の測定方法及び装
置を用いることによって、従来、測定や分析に多数の手
順と長時間接していた糖類や塩類の測定が極めて容易か
つ迅速に行える様になった。
As described above, by using the method and device for measuring components in a liquid according to the present invention, it has become possible to measure sugars and salts extremely easily and quickly, which conventionally required many procedures and long periods of time for measurement and analysis. Ta.

特に本測定方法及び装置を使用することによる多大な効
果は、液中の気化性成分(例えばエタノール)の測定が
同時に並行して要求される場合や、従来チューブ法を用
いて液中の気化性成分譲1度の測定を実施して来たとこ
ろに新たに糖や塩濃度の測定が必要になった場合に発揮
される。これらの場合には、液中の気化性成分濃度の測
定に使11]シていた、チューブ法を用いた測定装置に
若干の付加的な装置や手順を加えるだけで容易にかつ迅
速に、あるいは連続的に、液中の糖類あるいは塩類の濃
度を知ることができる。
In particular, the use of this measurement method and device has a great effect when the measurement of vaporizable components (e.g. ethanol) in a liquid is required at the same time, or when the conventional tube method is used to measure vaporizable components in a liquid. This function comes into play when a new measurement of sugar or salt concentration is required after a single measurement of ingredients has already been carried out. In these cases, it is possible to easily and quickly measure the concentration of vaporizable components in the liquid by simply adding some additional equipment or procedures to the measuring device using the tube method, which has been used for measuring the concentration of vaporized components in the liquid. Continuously determines the concentration of sugars or salts in the liquid.

次に実施例を記載して本発明を説明する。Next, the present invention will be explained with reference to Examples.

実施例1 次の四つの非気化性物質について夫々水溶液中のa唯を
変化させ、その濃度と、チューブ法によって前記水溶液
中の気化性成分の濃度を一定にして測定した場合の該気
化性成分に対する感度の関係を求めた。被測定成分とし
て、非気化性物質でアルクルコース、食塩、グルタミン
酸ソーダー、及び糖蜜を用いた。糖蜜はパン酵母培養の
糖拭質の供給に用いるもので、そのベルトラン氏法糖濃
亀は33幅であった。前記成分をそれぞれ各種濃度aむ
水溶液を作成し、気化性成分としてエタノールを用い、
エタノール濃度が水溶液全量に対して一定濃度l容量係
上昇する様に添加混合した。
Example 1 The concentration of each of the following four non-volatile substances in an aqueous solution was varied, and the concentration of the volatile component in the aqueous solution was measured using the tube method while keeping the concentration of the volatile component constant. The relationship between sensitivity to As the components to be measured, non-vaporizable substances such as arculose, common salt, sodium glutamate, and molasses were used. The molasses was used to supply sugar syrup for the cultivation of baker's yeast, and the Bertrand's molasses was 33 mm wide. Prepare aqueous solutions containing various concentrations of each of the above components, use ethanol as the volatile component,
The ethanol was added and mixed so that the concentration of ethanol increased by a constant concentration of 1 volume relative to the total amount of the aqueous solution.

各溶液の温度をそれぞれ一定値20′Cに保ち、チュー
ブ法を用いて液中のエタノール濃度に対する測′・P出
力値を求めることによりエタノールに対する計1定感度
を算出した。
The temperature of each solution was maintained at a constant value of 20'C, and the total constant sensitivity to ethanol was calculated by determining the measured' and P output values for the ethanol concentration in the solution using the tube method.

チューブ法による液中気化性成分の測定に用いた装置は
次のとおりである。
The equipment used to measure vaporizable components in liquid by the tube method is as follows.

多孔質チューブとして多孔質四弗化エチレン樹脂製で微
孔径約0.45μm1開孔率約55係、内径3.0 m
m 1外径4.0朋、長さ約10cmのチューブを用い
た。検出器としては水素炎イオン化検出IBを、キャリ
アガスとして窒素ガスを用い、多孔質チューブを通過す
るキャリアガスの流量を約40tel1分に保った。キ
ャリアガス送気部はガスクロマトグラフのキャリアガス
流量制御部をそのまま使用した。キャリアガス送気及び
排出導管はステンレスパイプ(内径2.0玉、外径8.
 Ortrm )を使用し、排出導管はテープヒーター
と@嘲コントローラーによ、950 ’Cに制御した。
The porous tube is made of porous tetrafluoroethylene resin, has a micropore diameter of approximately 0.45 μm, a porosity of approximately 55, and an inner diameter of 3.0 m.
A tube with an outer diameter of 4.0 mm and a length of about 10 cm was used. A hydrogen flame ionization detection IB was used as a detector, nitrogen gas was used as a carrier gas, and the flow rate of the carrier gas passing through the porous tube was maintained at about 40 tel/min. The carrier gas flow control section of the gas chromatograph was used as the carrier gas supply section. The carrier gas supply and discharge conduit is a stainless steel pipe (inner diameter 2.0 mm, outer diameter 8.0 mm).
Ortrm), and the discharge conduit was controlled at 950'C by a tape heater and a controller.

以上の操作によって得られた溶液中の被測定成分である
非気化性物質濃度とエタノール濃度に対する測定量力感
Vの関係は図2の通りである。
FIG. 2 shows the relationship between the concentration of the non-vaporizable substance, which is the component to be measured, in the solution obtained by the above operations, and the ethanol concentration.

図2は非気化性物質濃度が0の時、すなわち溶液成分が
水とエタノールのみの場合のエタノールに対する測定感
度を1.0として前記四種類の成分をそれぞれ前記溶液
中に混入溶解することによって変化するエタノールに対
する測定感矛与前記非気化性物質濃度の関係として示し
である。
Figure 2 shows the change when the concentration of non-vaporizable substances is 0, that is, when the solution components are only water and ethanol, and the measurement sensitivity to ethanol is 1.0, and the four types of components are mixed and dissolved in the solution. The measurement sensitivity for ethanol is shown as a relationship between the concentration of the non-vaporizable substance.

実施例2 水中に未知量のグルコースを混入溶解し、全液址に対す
るエタノール濃度が1容ハ壬増加する様にエタノールを
添加し、被測定液を調整した。
Example 2 An unknown amount of glucose was mixed and dissolved in water, and ethanol was added so that the ethanol concentration relative to the total solution increased by 1 volume to prepare a liquid to be measured.

実施例IKおけるグルコース濃度とエタノール測定感度
の関係を求めたときの条件と同一条件にて被測定液中の
エタノール濃度出力に対する測定感度を求めた。チュー
ブ法による液中の気化性成分の爪11定装置は実施例1
において用いたものと同じものを使用した。
The measurement sensitivity for the ethanol concentration output in the liquid to be measured was determined under the same conditions as those used to determine the relationship between the glucose concentration and ethanol measurement sensitivity in Example IK. Example 1 is a device for determining vaporizable components in a liquid using the tube method.
The same one used in was used.

測定結果は、エタノール濃度出力に対する測定感度は1
.11であった。実施例1で求めたグルコース濃度とエ
タノール濃度に対する測定感度との関係曲線からグルコ
ース濃度を求めると10幅であった。被測定液を定量希
釈し、グルコースオキシターゼを用いて呈色反応させ、
500nmにおける吸光度を測定し、予め作成していた
吸光度とクルコース濃度の検量線より被検液中のグルコ
ースa唯を求めたところ10.5qbであり、両者の測
定値は良く一致した。
The measurement results show that the measurement sensitivity for the ethanol concentration output is 1.
.. It was 11. When the glucose concentration was determined from the relationship curve between the glucose concentration determined in Example 1 and the measurement sensitivity to the ethanol concentration, the range was 10. Quantitatively dilute the sample solution, perform a color reaction using glucose oxidase,
The absorbance at 500 nm was measured, and the amount of glucose a in the test solution was determined from a previously prepared calibration curve of absorbance and glucose concentration, which was 10.5 qb, and the two measured values were in good agreement.

【図面の簡単な説明】[Brief explanation of drawings]

図1は、本発明による測定装置の構成を示した説明用配
置図である。図2は、水中に溶解している、それぞれ非
気化性物質である食塩、グルタミン酸ソーター、糖蜜、
グIレコースの各濃度とチューブ法を用いたエタノール
濃度測定出力の感度比(非気化性物質の濃度Oのときの
感唯との比)との関係を表わすグラフである。 ■・・・多孔質チューブ、2・・・キャリアガス送気部
、3・・・キャリアガス送気導管、 4・・・キャリアガス排出導管、 5・・・検出器、     6・・・加熱装置、7・・
・被測定液、  ll・・・気化性成分供給値+& s
12・・・被測定液原液槽、 13・・・被測定液原液、14・・・測定液移送ポンプ
、16・・・測定容器、  17・・・温度調節器、1
8・・・排出弁、    19・・・廃液槽、20・・
・液温度検出端、21・・・撹拌混合装置、22・・・
排出ライン、 23・・・演算部、24・・・記憶装置
、  25・・・温度変換器、26・・・表示部、  
 27・・・出力部。
FIG. 1 is an explanatory layout diagram showing the configuration of a measuring device according to the present invention. Figure 2 shows salt, glutamate sorter, molasses, which are non-volatile substances dissolved in water, respectively.
2 is a graph showing the relationship between each concentration of glycose and the sensitivity ratio of the ethanol concentration measurement output using the tube method (ratio to the sensitivity when the concentration of the non-vaporizable substance is O). ■... Porous tube, 2... Carrier gas supply section, 3... Carrier gas supply conduit, 4... Carrier gas discharge conduit, 5... Detector, 6... Heating device ,7...
・Measurement liquid, ll...vaporizable component supply value + & s
12... Measurement liquid stock solution tank, 13... Measurement liquid stock solution, 14... Measurement liquid transfer pump, 16... Measurement container, 17... Temperature controller, 1
8...Discharge valve, 19...Waste liquid tank, 20...
・Liquid temperature detection end, 21... Stirring mixer, 22...
Discharge line, 23... Arithmetic unit, 24... Storage device, 25... Temperature converter, 26... Display unit,
27...Output section.

Claims (9)

【特許請求の範囲】[Claims] (1)気化性成分を実質的に一種類含む溶液中に、非気
化は物質あるいはその混合物を溶解しない液及び、種々
の既知量を溶解した溶液の該気化性成分の蒸気圧を測定
し、該非気fヒ訃物質あるいはその混合物の濃度と該気
化性成分の蒸気圧との関係を予め求めておき、これをも
とにして、被測定液中の前記気化性成分の蒸気圧の測定
値から被測定液中の前記非気rヒ姓物質あるいはその混
合物の濃度を測定することを特徴とする液中濃度測定法
(1) Measure the vapor pressure of the vaporizable component in a solution containing substantially one type of vaporizable component, a solution that does not dissolve the substance or a mixture thereof, and a solution in which various known amounts are dissolved; The relationship between the concentration of the non-gaseous substance or its mixture and the vapor pressure of the vaporizable component is determined in advance, and based on this, the measured value of the vapor pressure of the vaporizable component in the liquid to be measured is determined. A method for measuring concentration in a liquid, comprising measuring the concentration of the non-aerobic substance or a mixture thereof in a liquid to be measured.
(2)溶液中の気化性成分の蒸気圧を測定する方法が、
被測定液に浸漬した撥液性と連続微気孔を有する多孔質
チューブにキャリアガスを送気し、チューブ壁をキャリ
アガス中に拡散して来た気化性成分蒸気を含むキャリア
ガスをガス成分検出器に導くチューブ式測定法を利用し
た方法である特許請求の範囲第1項記載の測定法。
(2) The method for measuring the vapor pressure of volatile components in a solution is
Carrier gas is supplied to a porous tube with liquid repellency and continuous micropores that is immersed in the liquid to be measured, and the gas components of the carrier gas containing volatile component vapors that have diffused into the carrier gas through the tube wall are detected. The measuring method according to claim 1, which is a method using a tube-type measuring method that is guided into a container.
(3)チューブ式測定法が撥液性と連続微気孔を有する
多孔質四弗化エチレン樹脂製チューブを用いた液中の気
化性成分濃度の測定法である特許請求の範囲第2項記載
の測定法。
(3) The tube-type measurement method is a method for measuring the concentration of vaporizable components in a liquid using a tube made of porous tetrafluoroethylene resin having liquid repellency and continuous micropores. Measurement method.
(4)  気化性成分がエタノール、その他のアルコー
ル類である特許請求の範囲第1項記載の測定法。
(4) The measuring method according to claim 1, wherein the volatile component is ethanol or other alcohol.
(5)被測定液が微生物の培養液である特許請求の範囲
第1項記載の測定法。
(5) The measuring method according to claim 1, wherein the liquid to be measured is a culture liquid of microorganisms.
(6)被測定液が酒類まだは醤油である特許請求の範囲
第1項記載の測定法。
(6) The measuring method according to claim 1, wherein the liquid to be measured is an alcoholic beverage or soy sauce.
(7)非気化性物質あるいはその混合物が蔗糖。 糖蜜又はグルコースその他の糖類である特許請求の範囲
第1項記載の測定法。
(7) The non-vaporizable substance or mixture thereof is sucrose. The measuring method according to claim 1, wherein the measuring method is molasses, glucose or other saccharides.
(8)非気化性物質あるいはその混合物が食塩又はグル
タミン酸ソーダその他の塩類である特許請求の範囲第1
項記載の測定法。
(8) Claim 1 in which the non-vaporizable substance or mixture thereof is common salt, sodium glutamate, or other salts.
Measurement method described in section.
(9)撥液性と連続微気孔を有する多孔質チューブ1と
、該チューブにキャリアガス送気導管3を経てキャリア
ガスを送気するキャリアガス送気部2と、該チューブと
キャリアガス排出導管4を通過したキャリアガス中の気
1ヒ性戎分の濃度を検出する検出器5と、前記多孔質チ
ューブと被測定液7を収容する測定容器16と、測定容
器中の被測定液に一定量の気化性1戊分を供給する装置
11と、前記気化性成分を被測定液中に均一に混合せし
める混合装置21と、非気化性物質あるいはその混合物
の濃度に対する気化性戎分測定感噌を記憶する記憶装置
24と、前記検出器5からの(1′号から被測定液中の
気化性成分濃度に対応する感度を求め、該感度と前記記
憶装置中の記憶内容から前記非気化性物質あるいはその
混合物の濃度を演算する演算部23と、演算値を表示す
る表示部及びまたは演算値を出力する出力部27、とか
ら構成される液中の濃度測定装置。 (10多孔質チューブが多孔質四弗化エチレン樹脂であ
る特許請求の範囲第9項記載の測定装置。 (1])測定容器が温度調節器及び被測定液温度検出器
を設けたものである特許請求の範囲第9項記載の測定装
置。 u3  キャリアガス排出導管が加熱装置を設けたもの
である特許請求の範囲第9項記載の測定装置。 (13演算部が被測定液の温度変ずしの影響を打ち消す
温度補償演算機能を有する演算部である特許請求の範囲
第9項記載の測定装置。
(9) A porous tube 1 having liquid repellency and continuous micropores, a carrier gas supply section 2 for supplying carrier gas to the tube via a carrier gas supply conduit 3, and a carrier gas discharge conduit to the tube. a detector 5 for detecting the concentration of aerosols in the carrier gas that has passed through the carrier gas; a measurement container 16 that accommodates the porous tube and the liquid to be measured 7; a device 11 for supplying an amount of vaporizable component, a mixing device 21 for uniformly mixing the vaporizable component into the liquid to be measured, and a method for measuring the vaporizable component for the concentration of the non-vaporizable substance or its mixture. The sensitivity corresponding to the concentration of the vaporizable component in the liquid to be measured is determined from the detector 5 (1'), and the sensitivity corresponding to the concentration of the vaporizable component in the liquid to be measured is determined from An in-liquid concentration measuring device consisting of a calculation section 23 that calculates the concentration of a substance or a mixture thereof, and a display section that displays the calculated value and/or an output section 27 that outputs the calculated value. The measuring device according to claim 9, which is a porous tetrafluoroethylene resin. (1) Claim 9, wherein the measuring container is equipped with a temperature regulator and a temperature detector for the liquid to be measured. The measuring device according to claim 9. u3 The measuring device according to claim 9, wherein the carrier gas discharge conduit is provided with a heating device. The measuring device according to claim 9, which is a calculation section having a compensation calculation function.
JP5418582A 1982-03-31 1982-03-31 Method and apparatus for measuring concentration of substance in liquid Granted JPS58169049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5418582A JPS58169049A (en) 1982-03-31 1982-03-31 Method and apparatus for measuring concentration of substance in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5418582A JPS58169049A (en) 1982-03-31 1982-03-31 Method and apparatus for measuring concentration of substance in liquid

Publications (2)

Publication Number Publication Date
JPS58169049A true JPS58169049A (en) 1983-10-05
JPS623366B2 JPS623366B2 (en) 1987-01-24

Family

ID=12963482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5418582A Granted JPS58169049A (en) 1982-03-31 1982-03-31 Method and apparatus for measuring concentration of substance in liquid

Country Status (1)

Country Link
JP (1) JPS58169049A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179137A (en) * 1984-09-26 1986-04-22 Denki Kagaku Keiki Co Ltd Measuring method of water concentration in oil
JPH02285260A (en) * 1989-04-26 1990-11-22 Fuji Electric Co Ltd Apparatus for measuring free chlorine in sample water
JPH02285259A (en) * 1989-04-26 1990-11-22 Fuji Electric Co Ltd Apparatus for measuring free chlorine in sample water
JPH0341360A (en) * 1989-07-07 1991-02-21 Fuji Electric Co Ltd Apparatus for measuring free chlorine
US5191786A (en) * 1991-06-28 1993-03-09 Amoco Corporation Method for detecting the presence and concentration of relatively low molecular weight components in a liquid
US5206615A (en) * 1988-03-31 1993-04-27 W. L. Gore & Associates, Inc. Sensor for measuring solute concentration in an aqueous solution
CN102539276A (en) * 2011-09-28 2012-07-04 工业和信息化部电子第五研究所 Internal atmosphere analyzing method and test calibration part for nonstandard air pressure packaging component

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179137A (en) * 1984-09-26 1986-04-22 Denki Kagaku Keiki Co Ltd Measuring method of water concentration in oil
JPH0519095B2 (en) * 1984-09-26 1993-03-15 Denki Kagaku Keiki Kk
US5206615A (en) * 1988-03-31 1993-04-27 W. L. Gore & Associates, Inc. Sensor for measuring solute concentration in an aqueous solution
JPH02285260A (en) * 1989-04-26 1990-11-22 Fuji Electric Co Ltd Apparatus for measuring free chlorine in sample water
JPH02285259A (en) * 1989-04-26 1990-11-22 Fuji Electric Co Ltd Apparatus for measuring free chlorine in sample water
JPH0341360A (en) * 1989-07-07 1991-02-21 Fuji Electric Co Ltd Apparatus for measuring free chlorine
US5191786A (en) * 1991-06-28 1993-03-09 Amoco Corporation Method for detecting the presence and concentration of relatively low molecular weight components in a liquid
CN102539276A (en) * 2011-09-28 2012-07-04 工业和信息化部电子第五研究所 Internal atmosphere analyzing method and test calibration part for nonstandard air pressure packaging component

Also Published As

Publication number Publication date
JPS623366B2 (en) 1987-01-24

Similar Documents

Publication Publication Date Title
Kesner et al. Automatic Determination of Weak Organic Acids by Means of Partition Column Chromatography and Indicator Titration.
JPH03115840A (en) Method and apparatus for determining speed at which sample consumes of makes selected component of fluid medium
JPS58169049A (en) Method and apparatus for measuring concentration of substance in liquid
US4646562A (en) Method and apparatus for detecting relative dynamic liquid surface activity
Smith et al. Differential amperometric measurement of serum lactate dehydrogenase activity using Bindschedler's green
US4680271A (en) Process and apparatus for analysis
EP0805350B1 (en) An apparatus and method for the determination of substances in solution, suspension or emulsion by differential pH measurement
JPH0129260B2 (en)
JPH052306B2 (en)
Comberbach et al. Automatic on‐line fermentation headspace gas analysis using a computer‐controlled gas chromatograph
Herman et al. Serum carbon dioxide determination using a carbonate ion-selective membrane electrode
US3002894A (en) Method and device for controlling the growth of microbial cultures
ES2968103T3 (en) Online mass spectrometer for real-time detection of volatile components of the gas and liquid phase for process analysis
Matuszewski et al. Flow‐injection potentiometric determination of creatinine in urine using sub‐Nernstian linear response range
Gulberg et al. Amperometric systems for the determination of oxidase enzyme dependent reactions by continuous flow and flow injection analysis
CN113533708A (en) Diabetes screening device based on urine acetone detection
JPS6152425B2 (en)
Tzanavaras et al. Flow injection spectrophotometric determination of the antibiotic fosfomycin in pharmaceutical products and urine samples after on-line thermal-induced digestion
Hoober et al. Automatic continuous monitoring of enzymic activity in column effluent
Ferreira et al. A microporous membrane interface for the monitoring of dissolved gaseous and volatile compounds by on-line mass spectrometry
Oda et al. Determination of total 3α-hydroxy bile acids in serum by a bioluminescent flow-injection system using a hollow-fibre reactor
Abicht Controlled dynamic titrator
Thiers et al. Simple ultraviolet photometer
CN206192891U (en) Online real -time detection device of oxide always remains
Hongbo Atropinium scopolaminum integrated microconduits in a potentiometric analytical system