JPS6179137A - Measuring method of water concentration in oil - Google Patents

Measuring method of water concentration in oil

Info

Publication number
JPS6179137A
JPS6179137A JP20114484A JP20114484A JPS6179137A JP S6179137 A JPS6179137 A JP S6179137A JP 20114484 A JP20114484 A JP 20114484A JP 20114484 A JP20114484 A JP 20114484A JP S6179137 A JPS6179137 A JP S6179137A
Authority
JP
Japan
Prior art keywords
oil
heating element
pressure
pump
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20114484A
Other languages
Japanese (ja)
Other versions
JPH0519095B2 (en
Inventor
Eisuke Nasu
那須 英輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
DKK Corp
Original Assignee
DKK Corp
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK Corp, Denki Kagaku Kogyo KK filed Critical DKK Corp
Priority to JP20114484A priority Critical patent/JPS6179137A/en
Publication of JPS6179137A publication Critical patent/JPS6179137A/en
Publication of JPH0519095B2 publication Critical patent/JPH0519095B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2847Water in oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/14Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference
    • G01N7/16Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference by heating the material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To prevent a heating body from breaking by heating nearby oil by the heating body up to the boiling point of water and forming air bubbles of vapor while the pressure in a measurement cell is held negative. CONSTITUTION:The oil to be detected which is put in a sample container 18 is placed in a uniform state by a stirring machine 19 and sucked up by a pump 10 through a suction conduit 9 to fill the measurement cell 7, a float switch 20 detects the liquid level when it enters its detection range, and a solenoid valve 13 is closed when the liquid level rises up to a specific position. Then, the pump 10 is held in operation continuously while the valve 13 is closed and solenoid valves 21 and 15 are opened, and a pressure reduction stage is entered. Further, a switch 22 detects the pressure between the valves 13 and 21, and when specific negative pressure is obtained, the valve 21 is closed and the pump 10 is stopped. Then, the heating body 2 is turned on and water concentration is measured, and then when the measuring operation is finished, the valve 15 is operated to link a coupling conduit 11 with an atmosphere open conduit 23 and the valves 13 and 21 are opened to discharge the detected oil from the cell 7 and switch 20 into the container 18.

Description

【発明の詳細な説明】 の1 分野 本発明は、測定セル内の被検油中に加熱体を浸漬し、上
記加熱体により加熱体近傍の油を水の沸点以上に加熱し
て油と加熱体との接触面に水蒸気の気泡を発生させると
共に、上記水蒸気の気泡をセンサで検出することにより
油中の水分11度を測定する方法に関する。
Detailed Description of the Invention Field 1 The present invention involves immersing a heating element in the oil to be tested in a measurement cell, and heating the oil near the heating element with the heating element to a temperature higher than the boiling point of water. The present invention relates to a method of measuring 11 degrees of moisture in oil by generating water vapor bubbles on a surface that comes into contact with the body and detecting the water vapor bubbles with a sensor.

先1東U 従来から、油中の水分濃度を測定する方法としてカール
フィッシャー法があるが、この方法によると、特別の試
薬を必要とし、滴定に時間と学問を要する上に、連続測
定ができない等の問題があった。そこで、近年、油中の
水分が加熱によって蒸発して油中で気泡となることを利
用して、気泡の生成量あるいは気泡の生成による温度変
化等の油液の状態量の変化等を測定することにより、油
中の水分11度を簡易に測定する方法が提案されている
(特願昭57−105437号及び特願昭57−111
997号)。
Previously, the Karl Fischer method has been used to measure the water concentration in oil, but this method requires special reagents, requires time and science for titration, and cannot be measured continuously. There were other problems. Therefore, in recent years, by taking advantage of the fact that water in oil evaporates due to heating and forms bubbles in the oil, measurements have been made to measure changes in the state quantities of oil liquid, such as the amount of bubbles generated or changes in temperature due to bubble generation. Accordingly, a method for easily measuring 11 degrees of moisture in oil has been proposed (Japanese Patent Application No. 57-105437 and Japanese Patent Application No. 111-1982).
No. 997).

この内、前者の特願昭57−105437号の方法は、
第2図に示すように、加熱体2を油槽1内の油中に浸漬
せしめて設け、この加熱体近傍の油を水の沸点以上に加
熱することにより、油と加熱体2の接触面に水蒸気の気
泡Aを発生させ、この気泡Aの発生音や気泡による光の
透過量の変化、油の誘電率の変化等を油中に浸漬したセ
ンサ3で観測し、計測機溝4でこのデータを水分濃度に
換′算して出力する方法であり、一方、後者の特願昭5
7−111997号の方法は、第3図に示すように、フ
ィラメント5を内蔵する加熱体2に突起部6又は凹部を
形成し、この加熱体2を所定の傾斜角θで油中に浸漬せ
しめ、加熱体2を水の沸点以上に加熱して、突起部6又
は凹部から発生する水蒸気の気泡がその気化熱で油液の
温度を変化せしめる量をフィラメント5の抵抗値変化で
計測するiA置である。これらにより、油の含水層又は
水分濃度を簡易に、しかも連続的に測定することが可能
となったが、これらの方法又は装置は、センサや加熱体
が油槽内に設けられているため、外力や応力で油槽が揺
れたりすると油の液面が変動し、これにより気泡が発生
したと同じ信号がセンサで検知されて、油中の水分濃度
の正確な測定ができなかった。特に金属の焼入れを行な
う焼入油が貯留される焼入浴にあっては、金属の出し入
れの際に焼入浴が揺れ動くことが多く、又、冷却効率の
向上のため焼入油が撹拌されており、その、振動によっ
ても油の液面が変動するため、正確な測定がほとんどで
きなかった。
Among these, the former method of Japanese Patent Application No. 57-105437 is as follows:
As shown in FIG. 2, the heating element 2 is immersed in oil in the oil tank 1, and by heating the oil near the heating element to a temperature higher than the boiling point of water, the contact surface between the oil and the heating element 2 is heated. Water vapor bubbles A are generated, and the sound produced by the bubbles A, changes in the amount of light transmitted by the bubbles, changes in the dielectric constant of the oil, etc. are observed with a sensor 3 immersed in the oil, and the measurement device groove 4 measures the data. This method converts the water concentration into water concentration and outputs it.
As shown in FIG. 3, the method of No. 7-111997 involves forming a protrusion 6 or a recess in a heating body 2 containing a filament 5, and immersing this heating body 2 in oil at a predetermined inclination angle θ. , an iA setting in which the heating element 2 is heated to a temperature higher than the boiling point of water, and the amount by which water vapor bubbles generated from the projections 6 or recesses change the temperature of the oil liquid due to the heat of vaporization is measured by the change in the resistance value of the filament 5. It is. These methods have made it possible to easily and continuously measure the water-containing layer or water concentration of oil, but these methods and devices require sensors and heating elements to be installed inside the oil tank, so they are not subject to external forces. When the oil tank shakes due to pressure or pressure, the oil level fluctuates, and the sensor detects the same signal as when air bubbles are generated, making it impossible to accurately measure the water concentration in the oil. In particular, in quenching baths that store quenching oil for quenching metals, the quenching bath often shakes when metals are put in and taken out, and the quenching oil is often stirred to improve cooling efficiency. However, since the oil level fluctuates due to vibration, accurate measurements were almost impossible.

これに対し、被検油中に浸漬されてその近傍の油を水の
沸点以上に加熱する加熱体と、被検油中に浸漬されて加
熱体から発生する水蒸気の気泡を測定するセンサと、こ
のセンサからの信号を水分濃度に換算して出力する計測
機構とを具備する装置において、油の液面が変動しても
その影響に左右されずに正確な、測定値を得ることがで
き、しかも連続的に測定することを可能にするため、被
検油の油槽外部に測定セルを設けると共に、この測定セ
ル内に上記加熱体及びセンサを装着し、更に上記油槽か
ら被検油を測定セル内に吸引して充満、封入せしめる吸
引機構を設けたものが提案された。
On the other hand, a heating element is immersed in the oil to be tested and heats the oil in the vicinity to a temperature higher than the boiling point of water, and a sensor is immersed in the oil to be tested to measure water vapor bubbles generated from the heating element. In a device equipped with a measurement mechanism that converts the signal from this sensor into water concentration and outputs it, it is possible to obtain accurate measured values without being affected by fluctuations in the oil level. Moreover, in order to enable continuous measurement, a measurement cell is provided outside the oil tank for the oil to be tested, the heating element and sensor are installed inside this measurement cell, and the oil to be tested is fed from the oil tank to the measurement cell. A device was proposed that was equipped with a suction mechanism that filled and sealed the inside of the container.

即ち、第4図は上述した油槽の外部に測定セルが設けら
れた装置の一例を示すもので、本装置においては油槽1
とは別個に測定セルフが設けられている。この測定セル
フは油槽1の上方に配設されており、内部には水の沸点
以上に油を加熱する加熱体2と、この加熱体2の加熱に
よって発生する水蒸気の気泡を測定するセンサ3とが装
着されている。加熱体2はガラス、金属等の材質からな
るホルダ2a内にフィラメント2bが設けられて形成さ
れており、フィラメント2bにより例えば110℃前後
に加熱され、その近傍の油を水の沸点以上に加熱し、油
中に含まれる水を蒸発せしめて水蒸気とし、油中に気泡
を発生させるものであり、一方、前記センサ3は、この
加熱体2に対向して設けられて水蒸気の気泡を測定する
ものである。この測定は、気泡の発生音を検知する方法
でもよく、気泡による光の透過量の変化や散乱を検知し
てもよく、気泡の発生による油の誘電率の変化を検知し
てもよく、それぞれの測定方法に応じて、例えば発生音
の測定には受音素子が、光学的測定には光電素子が使用
されるように、適宜測定素子を選択することができる。
That is, FIG. 4 shows an example of a device in which a measurement cell is provided outside the oil tank described above.
A measurement self is provided separately. This measuring self is placed above the oil tank 1, and inside it is equipped with a heating element 2 that heats the oil above the boiling point of water, and a sensor 3 that measures water vapor bubbles generated by heating the heating element 2. is installed. The heating body 2 is formed by installing a filament 2b in a holder 2a made of a material such as glass or metal, and is heated by the filament 2b to about 110°C, for example, and heats oil in the vicinity to a temperature higher than the boiling point of water. , the water contained in the oil is evaporated into water vapor and air bubbles are generated in the oil, and the sensor 3 is provided opposite to the heating element 2 to measure the air bubbles of water vapor. It is. This measurement may be performed by detecting the sound of bubbles, by detecting changes in the amount of light transmitted or scattered by the bubbles, or by detecting changes in the dielectric constant of the oil due to the generation of bubbles. Depending on the measuring method, the measuring element can be selected as appropriate, for example, a sound receiving element is used for measuring the generated sound, and a photoelectric element is used for optical measurement.

そして、このようにセンサ3で検知された信号は計測機
構4内に送られて、水分濃度への換算がなされ、プリン
トアウト、デジタル表示等の適宜の出力手段で表示がな
される。
The signal thus detected by the sensor 3 is sent into the measuring mechanism 4, converted into water concentration, and displayed on an appropriate output means such as a printout or digital display.

上記装置において8は吸引機構である。この吸引機#1
8は、下端が油11内に伸び上端が測定セルフに連結す
る吸入管路9と、測定セルフ上方に設けられるポンプ1
0と、このポンプ10と測定セルフ間に配設される連結
管路11と、ポンプ10から油槽1内に配設されるリタ
ーン管路12と、前記吸入管路9の中途部に設けられる
二方電磁弁からなる電磁弁13と、前記連結管路11の
中途部で測定セルフ側に設けられるレベルセンサ14と
、ポンプ10側に設けられる三方′Rm弁からなる電磁
弁15と、被検油を油槽に戻す際に測定セルフ内の圧力
を油槽内圧と等しくするためのバイパスライン16と、
ポンプ10.電磁弁13゜15及びレベルセンサ14を
制御する制御部17とを有し、ポンプ10の作動により
油槽1内の油を測定セルフに吸引して充填、封入するも
のである。
In the above device, 8 is a suction mechanism. This suction machine #1
8 is a suction pipe 9 whose lower end extends into the oil 11 and whose upper end is connected to the measuring self, and a pump 1 provided above the measuring self.
0, a connecting pipe 11 disposed between the pump 10 and the measuring self, a return pipe 12 disposed from the pump 10 into the oil tank 1, and a second pipe disposed midway through the suction pipe 9. A solenoid valve 13 consisting of a one-way solenoid valve, a level sensor 14 provided on the measurement self side in the middle of the connecting pipe 11, an electromagnetic valve 15 consisting of a three-way Rm valve provided on the pump 10 side, a bypass line 16 for equalizing the pressure inside the measuring self with the oil tank internal pressure when returning the oil to the oil tank;
Pump 10. It has a control section 17 that controls electromagnetic valves 13 and 15 and a level sensor 14, and when the pump 10 is operated, the oil in the oil tank 1 is sucked into the measuring cell and filled and sealed.

上記装置においては、油槽の外部に測定セルが設けられ
、この測定セル中に被検油が充満、封入されているから
、外力が加わっても正確な水分濃度の測定が可能となる
In the above device, a measurement cell is provided outside the oil tank, and since the measurement cell is filled and sealed with the oil to be tested, it is possible to accurately measure the water concentration even if an external force is applied.

シようとする問題点 しかしながら、上述した装置においては、加熱体表面を
水の沸点以上、即ち100℃以上というi1!ilに加
熱する必要があり、しかもこの場合油の冷却作用に抗し
て加熱体を加熱しなければならず、加熱体を所定温度に
加熱するのに大きいエネルギーを要する。従って、例え
ば加熱体としてフィラメント等を具備する電気加熱体を
用いた場合、加熱体に過電圧がかかり、加熱体が破損し
易いという問題がある。
However, in the above-mentioned apparatus, the temperature of the surface of the heating element is above the boiling point of water, that is, above 100°C. In this case, the heating element must be heated against the cooling effect of the oil, and a large amount of energy is required to heat the heating element to a predetermined temperature. Therefore, for example, when an electric heating element including a filament or the like is used as the heating element, there is a problem in that an overvoltage is applied to the heating element and the heating element is likely to be damaged.

また、被検油中の水分濃度を測定する場合、被検油をよ
く振盪、撹拌して均一にしてから行なうことが再現性良
く測定を行なうために好ましいが、このように被検油を
振盪、撹拌した場合は被検油中に気泡が含まれるため、
この気泡を除去した後に測定を行なうことが必要である
。しかし、上述した装置においては気泡を含んだ被検油
を測定セルに導入した場合、気泡が除去されるまでに長
時間を要するという問題がある。
In addition, when measuring the water concentration in the test oil, it is preferable to shake and stir the test oil well to make it homogeneous in order to perform measurements with good reproducibility. If the oil is stirred, air bubbles will be included in the oil to be tested.
It is necessary to perform the measurement after removing this bubble. However, in the above-described apparatus, there is a problem in that when test oil containing air bubbles is introduced into the measurement cell, it takes a long time until the air bubbles are removed.

問題、−を °す 本発明は、上記事情に鑑みなされたもので、測定セル内
の被検油中に加熱体を浸漬し、上記加熱体により加熱体
近傍の油を水の沸点以上に加熱して油と加熱体との接触
面に水蒸気の気泡を発生させると共に、上記水蒸気の気
泡をセンサで検出することにより油中の水分濃度を測定
する方法において、加熱体を所定温度に加熱するのに必
要なエネルギー量を可及的に減少させ、従って加熱体と
してフィラメント等を具備する電気加熱体を用いた場合
でも加熱体に過電圧がかかることを防止して加熱体が破
損することを防止すると共に、tin、撹拌により気泡
を含んだ被検油中の気泡を速やかに除去するため、被検
油が入った測定セル内を減圧して負圧状態とし、この状
態において水蒸気の気泡を発生させてこれを検出するよ
うにしたものである。
The present invention was developed in view of the above circumstances, and involves immersing a heating element in the oil to be tested in a measurement cell, and using the heating element to heat the oil near the heating element to a temperature higher than the boiling point of water. In this method, the water concentration in the oil is measured by generating water vapor bubbles at the contact surface between the oil and the heating element and detecting the water vapor bubbles with a sensor. To reduce the amount of energy required for heating as much as possible, and thus prevent damage to the heating element by preventing overvoltage from being applied to the heating element even when an electric heating element equipped with a filament or the like is used as the heating element. At the same time, in order to quickly remove air bubbles in the test oil that contains air bubbles by tinting and stirring, the inside of the measurement cell containing the test oil is reduced to a negative pressure state, and in this state water vapor bubbles are generated. The system is designed to detect this.

1−」L 即ち、本発明においては、測定セル内を負圧にしたこと
によって水の沸点が下がるため、加熱体の加熱温度を下
げることができ、従って加熱体を所定温度に加熱するの
に必要なエネルギー量を小さくすることができる。この
ため、加熱体としてフィラメント等を具備する電気加熱
体を用いた場合、加熱体への供給電圧を少なくすること
ができて加熱体に過電圧がかかることを防止し得、これ
により加熱体の損傷を防止してその寿命を伸ばすことが
できる。更に、本発明においては、測定セル内が負圧に
なっているため、気泡を含んだ被検油を測定セル内に導
入した場合、気泡が短時間で脱気され、従って前処理と
して被検油をより振盪し、均一にしてから測定を行なう
ことができ、それ故測定の占用性が向上する。
1-''L That is, in the present invention, the boiling point of water is lowered by creating a negative pressure inside the measurement cell, so the heating temperature of the heating element can be lowered, and therefore it takes less time to heat the heating element to a predetermined temperature. The amount of energy required can be reduced. Therefore, when an electric heating element equipped with a filament or the like is used as the heating element, the voltage supplied to the heating element can be reduced and overvoltage can be prevented from being applied to the heating element, resulting in damage to the heating element. can be prevented and extend its lifespan. Furthermore, in the present invention, since the inside of the measurement cell is under negative pressure, when the test oil containing air bubbles is introduced into the measurement cell, the air bubbles are degassed in a short period of time, so that the test oil is removed as a pretreatment. The oil can be further shaken and homogenized before the measurement, thus improving the usability of the measurement.

次に実施例を示し、本発明を具体的に説明する。Next, examples will be shown to specifically explain the present invention.

支−克−i @1図は本発明測定方法の実施に用いる装置の一例を示
すものである。なお、第1図において第4図と同一構成
の部分は同一参照符号を付してその説明を省略する。
Support-i @1 Figure shows an example of an apparatus used to carry out the measuring method of the present invention. In FIG. 1, parts having the same configuration as those in FIG. 4 are given the same reference numerals, and the explanation thereof will be omitted.

第1図において18はサンプル容器であり、このサンプ
ル容器18に被検油が入れられていると共に、被検油中
には撹拌機19が挿入され、この撹拌8119によって
被検油が撹拌されるようになっている。また、本装置に
おいては連結管路11に上流側から順次フロートスイッ
チ20に方電磁弁21、三方電磁弁15が介装されてい
ると共に、フロートスイッチ20と三方電磁弁21との
間の連結管路11にはプレッシャースイッチ22が連結
されている。更に、上記三方電磁弁15には大気開放管
路23の一端が連通している。なお、本装置においては
、第4図に示す装置と異なりリターン管路及びバイパス
ラインは設けられていない。
In FIG. 1, 18 is a sample container, and the sample container 18 contains test oil, and a stirrer 19 is inserted into the test oil, and the test oil is stirred by this stirring 8119. It looks like this. In addition, in this device, a one-way solenoid valve 21 and a three-way solenoid valve 15 are installed in the connecting pipe line 11 in order from the upstream side to the float switch 20, and a connecting pipe between the float switch 20 and the three-way solenoid valve 21 is installed. A pressure switch 22 is connected to the line 11. Further, one end of an atmospheric release pipe 23 is connected to the three-way solenoid valve 15 . Note that in this device, unlike the device shown in FIG. 4, a return pipe line and a bypass line are not provided.

本装置を用いて被検油中の水分濃度を測定する場合、ま
ずサンプル容器18内の被検油を撹拌機19により撹拌
して被検油を均一状態にする。次に、ポンプ10の作動
によりサンプル容器18内の被検油を吸入管路9を通っ
て吸い上げ、被検油が測定セルフに充満した後フロート
スイッチ20に入った段階でフロートスイッチ20によ
り液面を検知し、液面が所定位置に達したら電磁弁18
を閉塞する。その後、この状態(電磁弁13が閉塞し、
21.15が開放した状態)でポンプ10の作動を続け
、減圧段階に入る。そして、プレッシャースイッチ22
により電磁弁13と21との間における圧力を検知し、
この間における圧力、即ち測定セルフ内の圧力が予めプ
レッシャースイッチにより設定した所定負圧になった時
点で’l磁弁21を閉塞し、ポンプ10の作動を止める
。その後、加熱体2を加熱して水分、11度の測定を行
なうものである。そして、測定終了後は三方’Ill弁
15を切り換えて連結管路11と大気開放管23とを連
通すると共に、11i磁弁13,21を開放し、測定セ
ルフ及びフロートスイッチ20内の被検油をサンプル容
器18内に吐出させるものである。
When measuring the water concentration in test oil using this device, first the test oil in the sample container 18 is stirred by the stirrer 19 to make the test oil uniform. Next, the test oil in the sample container 18 is sucked up through the suction pipe 9 by the operation of the pump 10, and after the test oil fills the measurement cell and enters the float switch 20, the float switch 20 is activated to raise the liquid level. is detected, and when the liquid level reaches a predetermined position, the solenoid valve 18
occlude. After that, this state (the solenoid valve 13 is closed,
21.15 is open), the pump 10 continues to operate and enters the depressurization phase. And pressure switch 22
detects the pressure between the solenoid valves 13 and 21,
When the pressure during this period, that is, the pressure inside the measuring cell, reaches a predetermined negative pressure set in advance by a pressure switch, the solenoid valve 21 is closed and the operation of the pump 10 is stopped. Thereafter, the heating element 2 is heated to measure moisture content at 11 degrees Celsius. After the measurement is completed, the three-way Ill valve 15 is switched to connect the connecting pipe 11 and the atmosphere release pipe 23, and the 11i solenoid valves 13 and 21 are opened. is discharged into the sample container 18.

上述した装置においては、測定セルフ内に被検油を充満
させた後、パルプ13をw1塞し、ポンプ10を作動さ
せて測定セルフ内を減圧するようにしたので、簡単な機
構で測定セルフ内を負圧にすることができる。
In the above-mentioned device, after filling the measuring cell with the oil to be tested, the pulp 13 is closed w1 and the pump 10 is operated to reduce the pressure inside the measuring cell. can be made negative pressure.

なお、上述した装置においては、ポンプ10の作動によ
り測定セルフ内を減圧するようにしたが他の減圧機構を
採用してもよく、また第4図に示す装置と同様にリター
ン管路及びパイパスラインを設けてもよく、更に制御部
17を設けたがマニュアル駆動するときは制御部17を
省いてもよく、加熱体の加熱も電力によらないで蒸気で
行なってもよく、その他の構成についても本発明の要旨
を逸脱しない範囲で種々変更して差支えない。
In the above-mentioned apparatus, the pressure inside the measuring cell is reduced by the operation of the pump 10, but other pressure reduction mechanisms may be adopted. Although a control section 17 is provided, the control section 17 may be omitted when driving manually, the heating element may be heated by steam instead of electric power, and other configurations may also be used. Various changes may be made without departing from the spirit of the invention.

また、測定セルフ内の負圧力は測定に好都合な任意の圧
力に設定することができる。この場合、測定は常に同一
圧力で行なうことが好ましく、これにより水の沸点を常
に同一にできて再現性よく測定を行なうことができる。
Further, the negative pressure within the measurement cell can be set to any pressure convenient for measurement. In this case, it is preferable to always perform the measurement at the same pressure, so that the boiling point of water can always be the same and the measurement can be performed with good reproducibility.

引U」l                 1以上説
明したように、本発明に係る油中の水分m度測定方法は
、測定セル内の被検油中に加熱体を浸漬し、上記加熱体
により加熱体近傍の油を水の沸点以上に加熱して油と加
熱体との接触面に水蒸気の気泡を発生させると共に、上
記水蒸気の気泡をセンサで検出することにより油中の水
分11度を測定する方法において、上記測定セル内を負
圧にした状態で水蒸気の気泡を発生させるようにしたこ
とにより、水の沸点を下げることができて加熱体を所定
温度に加熱するのに必要なエネルギーmを小さくするこ
とができる。従って、加熱体としてフィラメント等を具
備する電気加熱体を用いた場合に加熱体にかける電圧を
小さくすることができ、このため電気加熱体のIImを
防止してその寿命を長くすることができると共に、蒸気
により加熱する場合でも所定t!!度に加熱するまでの
時間を短縮できる。また、振盪、撹拌により気泡を含ん
だ被検油を測定セル内に導入しても気泡が速やかに除去
されるため、被検液を振盪、撹拌して均一にする前処理
を良好に行なうことができる。
As explained above, in the method for measuring the degree of moisture in oil according to the present invention, a heating element is immersed in the oil to be tested in a measurement cell, and the oil near the heating element is removed by the heating element. In the method of measuring 11 degrees of moisture in oil by heating water above the boiling point to generate water vapor bubbles on the contact surface between the oil and the heating element and detecting the water vapor bubbles with a sensor, the above measurement method is performed. By generating water vapor bubbles under negative pressure inside the cell, the boiling point of water can be lowered and the energy m required to heat the heating element to a specified temperature can be reduced. . Therefore, when an electric heating element equipped with a filament or the like is used as the heating element, the voltage applied to the heating element can be reduced, which prevents IIm of the electric heating element and extends its life. , even when heating with steam, the predetermined t! ! You can shorten the time it takes to heat up to a certain degree. In addition, even if the test oil containing air bubbles is introduced into the measurement cell by shaking or stirring, the air bubbles are quickly removed, so it is necessary to properly pre-process the test liquid by shaking and stirring to make it uniform. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明測定方法の実施に用いる装置の一例を示
す概略図、第2図及び第3図はそれぞれ従来の測定装置
を示す断面図、第4図は従来の測定装置を示す概略図で
ある。 2・・・加 熱 体、2b・・・フィラメント。 3・・・センサ、4・・・計測機構、7・・・測定セル
。 10・・・ポンプ、22・・・プレッシャースイッチ。
FIG. 1 is a schematic diagram showing an example of a device used to implement the measuring method of the present invention, FIGS. 2 and 3 are sectional views each showing a conventional measuring device, and FIG. 4 is a schematic diagram showing a conventional measuring device. It is. 2... Heating body, 2b... Filament. 3...Sensor, 4...Measuring mechanism, 7...Measuring cell. 10...Pump, 22...Pressure switch.

Claims (1)

【特許請求の範囲】 1、測定セル内の被検油中に加熱体を浸漬し、上記加熱
体により加熱体近傍の油を水の沸点以上に加熱して油と
加熱体との接触面に水蒸気の気泡を発生させると共に、
上記水蒸気の気泡をセンサで検出することにより油中の
水分濃度を測定する方法において、上記測定セル内を負
圧にした状態で水蒸気の気泡を発生させるようにしたこ
とを特徴とする油中の水分濃度測定方法。 2、被検油を振盪、撹拌して測定セルに導入するように
した特許請求の範囲第1項記載の測定方法。
[Claims] 1. A heating element is immersed in the oil to be tested in a measurement cell, and the heating element heats the oil near the heating element to a temperature higher than the boiling point of water to form a contact surface between the oil and the heating element. Along with generating water vapor bubbles,
The method for measuring the moisture concentration in oil by detecting water vapor bubbles with a sensor, characterized in that the water vapor bubbles are generated with negative pressure in the measurement cell. Moisture concentration measurement method. 2. The measuring method according to claim 1, wherein the oil to be tested is introduced into the measuring cell after being shaken and stirred.
JP20114484A 1984-09-26 1984-09-26 Measuring method of water concentration in oil Granted JPS6179137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20114484A JPS6179137A (en) 1984-09-26 1984-09-26 Measuring method of water concentration in oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20114484A JPS6179137A (en) 1984-09-26 1984-09-26 Measuring method of water concentration in oil

Publications (2)

Publication Number Publication Date
JPS6179137A true JPS6179137A (en) 1986-04-22
JPH0519095B2 JPH0519095B2 (en) 1993-03-15

Family

ID=16436125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20114484A Granted JPS6179137A (en) 1984-09-26 1984-09-26 Measuring method of water concentration in oil

Country Status (1)

Country Link
JP (1) JPS6179137A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932591A (en) * 2015-05-28 2015-09-23 大连海事大学 Automatic saturated vapor pressure measurer and measuring method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742954U (en) * 1980-08-22 1982-03-09
JPS58169049A (en) * 1982-03-31 1983-10-05 Kanegafuchi Chem Ind Co Ltd Method and apparatus for measuring concentration of substance in liquid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373631A (en) * 1976-12-11 1978-06-30 Hitachi Heating Appliance Co Ltd Door sealing device for high frequency heating apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742954U (en) * 1980-08-22 1982-03-09
JPS58169049A (en) * 1982-03-31 1983-10-05 Kanegafuchi Chem Ind Co Ltd Method and apparatus for measuring concentration of substance in liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932591A (en) * 2015-05-28 2015-09-23 大连海事大学 Automatic saturated vapor pressure measurer and measuring method thereof
CN104932591B (en) * 2015-05-28 2017-03-01 大连海事大学 Full-automatic saturated vapour pressure determinator and its assay method

Also Published As

Publication number Publication date
JPH0519095B2 (en) 1993-03-15

Similar Documents

Publication Publication Date Title
US5491408A (en) Device for detecting the change of viscosity of a liquid electrolyte by depolarization effect
US5017875A (en) Disposable sensor
CA2211000A1 (en) Seal integrity evaluation method
CN102435257B (en) Liquid level sensor and liquid level detection method thereof
US6308564B1 (en) Method and apparatus for determining the quantity and quality of a fluid
JPS6179137A (en) Measuring method of water concentration in oil
GB2335277A (en) Mounting sensor carrying wafer in water quality measuring apparatus
JP2610631B2 (en) Method and apparatus for determining boiling temperature
JPH0455739A (en) Apparatus for measuring swelling characteristic of solution of macromolecular substance
RU2022656C1 (en) Device for measuring discharge of floatation reagents in ore pulp
CN212391324U (en) Constant temperature heating sample digestion device
JPH0350980B2 (en)
CN220983455U (en) Battery gas production testing device
EP0052834A2 (en) Mechanical peroxide sensor based on pressure measurement
CN209927670U (en) Device for measuring surface tension by maximum bubble pressure method
CN213240259U (en) Battery reliability test fixture
JPH03165802A (en) Soxhlet extractor
JP2793841B2 (en) Determination method of measurement end point in moisture measurement device
CN215985627U (en) Automatic interfacial tension tester
JP3078618U (en) Interfacial tension measuring device
SU630539A1 (en) Fluid-tightness testing apparatus
JPH03215738A (en) Internal defect detector of rubber and plastic material
JPS5841481Y2 (en) Flow type concentration measuring device
JPH0968510A (en) Method and device for measuring pour point
JP2005221399A (en) Conditioning unit for electrochemical sensor