JPH01239446A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPH01239446A
JPH01239446A JP63064778A JP6477888A JPH01239446A JP H01239446 A JPH01239446 A JP H01239446A JP 63064778 A JP63064778 A JP 63064778A JP 6477888 A JP6477888 A JP 6477888A JP H01239446 A JPH01239446 A JP H01239446A
Authority
JP
Japan
Prior art keywords
gas
membrane
permeable membrane
sensor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63064778A
Other languages
Japanese (ja)
Other versions
JPH0623721B2 (en
Inventor
Jinkichi Miyai
宮井 迅吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
DKK Corp
Original Assignee
DKK Corp
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK Corp, Denki Kagaku Kogyo KK filed Critical DKK Corp
Priority to JP63064778A priority Critical patent/JPH0623721B2/en
Publication of JPH01239446A publication Critical patent/JPH01239446A/en
Publication of JPH0623721B2 publication Critical patent/JPH0623721B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To freely adjust sensitivity and to provide the higher stability and the stabler signal output by forming a gas permeable membrane of a porous hydrophobic membrane uniformly dispersed with a conductive material and using this gas permeable membrane as a detecting electrode. CONSTITUTION:The aperture of a gas sensor body 1 is closed by the flat plate- shaped porous hydrophobic membrane 2 dispersed with the conductive material. The gas sensor is formed by using this porous membrane 2 as the detecting electrode and the gas permeable membrane and the gas sensor is formed by providing a counter electrode 3 and an electrolyte 4 in the body 1. A metallic wire 7 is brought into contact with the plural points of the surface of the porous membrane 2 with which gas comes into contact and led out to eliminate the influence of internal resistance. The gas permeable membrane 2 is adequate for detecting the specific gas in a naturally diffused sample gas if said membrane is made into a flat plate structure. In addition, the flat plate area is increased and the sensitivity is enhanced. The higher sensitivity and stabler signal output of the sensor are thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、試料中の特定ガス成分を電解液の存在下にお
いて検知極表面で電気化学的に反応させて検知するガス
センサーに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas sensor that detects a specific gas component in a sample by electrochemically reacting it on the surface of a sensing electrode in the presence of an electrolyte.

〔従来の技術〕[Conventional technology]

環境大気中や作業環境中の有毒ガスを検出しようとする
場合、最もよく用いられているのは有毒ガスの電気化学
的な活性を利用するいわゆる電気化学的なガスセンサー
である。
When attempting to detect toxic gases in the ambient air or work environment, the most commonly used are so-called electrochemical gas sensors that utilize the electrochemical activity of toxic gases.

一般に電気化学的なガスセンサーは、第11図に示すよ
うにセンサー本体a内を疎水性のガス透過膜すで外界と
仕切り、本体a内部に検知極C1対極d及び電解液eを
収容したものである。
Generally, an electrochemical gas sensor has a sensor body a partitioned off from the outside world by a hydrophobic gas-permeable membrane, and a sensing electrode C1, a counter electrode d, and an electrolytic solution e housed inside the body a, as shown in Figure 11. It is.

そして還元性のガスは、電極材料や電解液が関与して検
知極側で G−+G’+e なる反応により電解酸化されるのが通常であり、酸化性
のガスの場合にはやはり電極材料や電解液が関与して検
知極側で G+e−+G’ なる電解還元反応がおきるのが通常である。
Reducing gases are usually electrolytically oxidized by the reaction G-+G'+e on the sensing electrode side with the involvement of electrode materials and electrolyte, and in the case of oxidizing gases, electrode materials and electrolyte Normally, an electrolyte is involved and an electrolytic reduction reaction of G+e-+G' occurs on the sensing electrode side.

このとき、当然のことながら対極では電極材料や電解液
が関与して、検知極とは逆の電気化学反応が起こり、そ
の結果電気化学反応による電流が信号として観測される
At this time, as a matter of course, the electrode material and electrolyte are involved at the counter electrode, and an electrochemical reaction opposite to that at the sensing electrode occurs, and as a result, a current due to the electrochemical reaction is observed as a signal.

このようにして測定可能な有毒ガスには、例えば酸化性
ガスとしてはCQ2.O,、SO2,NO3゜F2.B
r2などがあり、還元性ガスとしてはC02H2S、N
H3,PH,、AsHl、N2H4などがある。
Poisonous gases that can be measured in this way include, for example, CQ2. O,, SO2, NO3°F2. B
r2, etc., and reducing gases include C02H2S, N
Examples include H3, PH, AsHl, N2H4, etc.

もちろん、特定のガスの電気化学的反応を起させるため
には検知極や対極材料を適切に選ぶ必要があり、電解液
も選択される。また、電気化学反応の駆動力となる両極
間の電位差については両極間の材料の差に基づく標準ポ
テンシャルの差を利用するガルバニックな方法と、外部
から印加電圧をかけるポーラログラフイックな方法とが
あるが、電気化学的に本質的な差異はない。
Of course, in order to cause an electrochemical reaction of a specific gas, it is necessary to appropriately select the materials of the sensing electrode and counter electrode, and also the electrolyte. Regarding the potential difference between the two electrodes, which is the driving force for electrochemical reactions, there are two methods: a galvanic method that uses the difference in standard potential based on the difference in the materials between the two electrodes, and a polarographic method that applies an externally applied voltage. , there is no essential electrochemical difference.

このような電気化学的なガスセンサーは有毒ガスの検知
に用いられるだけではなく、酸素ガス等の他の電気化学
的活性を有するガスの検出にも用いられている。
Such electrochemical gas sensors are used not only to detect toxic gases, but also to detect other electrochemically active gases such as oxygen gas.

〔発明が解決しようとする課題〕 このような電気化学的なガスセンサーを構成するために
は、−船釣には第11図に示したように電解液、検知極
及び対極が不可欠であり、更にこれらを外界と仕切り、
電解液内にガス成分を透過4人させるためのガス透過膜
も不可欠である。
[Problems to be Solved by the Invention] In order to construct such an electrochemical gas sensor, an electrolyte, a sensing electrode, and a counter electrode are essential for boat fishing, as shown in Figure 11. Furthermore, these are separated from the outside world,
A gas permeable membrane is also essential to allow gas components to permeate into the electrolyte.

電解液、検知極及び対極材料は目的のガスに電気化学的
な反応を起させるのに適切に選択されるが、ガス透過膜
は電解液を内部にとじ込め、かつ外界のガスを内部に導
入させる目的なので疎水性の多孔質膜が選ばれるのが通
常であり、材質はポリテトラフルオロエチレンなどが好
適である。
The electrolyte, sensing electrode, and counter electrode materials are appropriately selected to cause an electrochemical reaction in the target gas, and the gas-permeable membrane is a material that traps the electrolyte inside while allowing outside gas to enter. For this purpose, a hydrophobic porous membrane is usually selected, and the material is preferably polytetrafluoroethylene or the like.

このように構成されるガスセンサーは比較的安価に作成
されるために広く実用に供しているが、実用的には次の
ような問題点がある。
Gas sensors configured in this manner are widely used in practice because they are manufactured at relatively low cost, but they have the following practical problems.

第1に検知極とガス透過膜との密着性が常に一定ではな
く、経時変化なども生ずるので、電気化学反応の安定性
に微妙に影響して信号が不安定になり易いことが挙げら
れる。これは検知極とガス透過膜との立体的な位置関係
が微視的には一定しておらず不安定であることに起因し
ている。特にガス透過膜は、μオーダーの薄い有機膜で
あるために経時変化を伴いやすい。
First, the adhesion between the sensing electrode and the gas permeable membrane is not always constant and changes over time, which subtly affects the stability of the electrochemical reaction and tends to make the signal unstable. This is due to the fact that the three-dimensional positional relationship between the sensing electrode and the gas permeable membrane is microscopically inconsistent and unstable. In particular, a gas permeable membrane is a thin organic membrane on the order of μ and is therefore susceptible to changes over time.

第2に検知極面積は、電解電流値の大きさや感度に直接
影響する重要な要素であるが、表面が平面構造をとるた
めに、実用的には4〜15nnφ程度にとどまり、その
結果感度に限界が生ずる。
Second, the detection electrode area is an important element that directly affects the electrolytic current value and sensitivity, but since the surface has a planar structure, it is practically limited to about 4 to 15 nnφ, and as a result, the sensitivity decreases. Limits arise.

こうした問題点を解決するための手段として、従来第1
2図に示すように本体a内をガス透過膜すで外界と仕切
り、本体a内に対極d及び電解液eを配置すると共に、
ガス透過膜すの内側に蒸着などの方法で検知極薄膜Cを
平面状に生成せしめるなどの方法が知られているが、こ
の場合にも■電極薄膜があまり厚くなると連続膜になる
ためにガス不透過性となり、ガスの電気化学反応を行な
わせることができない、■電極薄膜をガスが透過してく
る程度に薄くすると、期待する程度に電極の表面積(ガ
スが接する面積)を広げることはできない。更にこの場
合は、電極の外部へのリードアウトが難しくなる、など
の問題点があり、膜厚の制御は極めて微妙となる。
Conventionally, the first method to solve these problems was
As shown in Figure 2, a gas permeable membrane is used to partition the inside of the main body a from the outside world, and a counter electrode d and an electrolyte e are placed inside the main body a.
A method is known in which an ultra-thin sensing film C is formed in a flat shape by vapor deposition on the inside of a gas-permeable membrane, but in this case also ■ If the electrode thin film becomes too thick, it will become a continuous film and the gas It becomes impermeable, making it impossible for gas electrochemical reactions to occur.■If the electrode thin film is made thin enough for gas to pass through, the surface area of the electrode (the area in contact with gas) cannot be expanded to the extent expected. . Furthermore, in this case, there is a problem that it becomes difficult to read out the electrode to the outside, and the control of the film thickness becomes extremely delicate.

本発明は、上記事情に鑑みなされたもので、感度が高く
、かつ出力の安定性に優れたガスセンサーを提供するこ
とを目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a gas sensor with high sensitivity and excellent output stability.

〔課題を解決するための手段及び作用〕本発明者は、広
範な用途を持つ従来の電気化学的なガスセンサーのもつ
問題点を解決する目的でガスセンサーのガス透過膜とし
て使用可能な疎水性の多孔質膜を検討した結果、この中
に導電性の材料を均一に分散せしめ、一定の導電性を与
え、かつ多孔質性も失わないようにすることによって、
この多孔質膜そのものを検知極として構成することがで
き、これによりセンサーの高感度化及び出力安定化を達
成し得ることを見い出し、本発明をなすに至った。
[Means and effects for solving the problem] The present inventor has developed a hydrophobic membrane that can be used as a gas permeable membrane for gas sensors in order to solve the problems of conventional electrochemical gas sensors that have a wide range of applications. As a result of studying the porous membrane of
The present inventors have discovered that this porous membrane itself can be configured as a sensing electrode, thereby achieving higher sensitivity and output stabilization of the sensor, and have accomplished the present invention.

従って、本発明は、検知極と、対極と、ガス透過膜と、
これら検知極、対極及びガス透過膜にそれぞれ接する電
解液とを有し、上記ガス透過膜を透過した試料中の目的
ガス成分が上記検知極に接したときの電気化学的反応か
ら該目的ガス成分の検出を行なうガスセンサーにおいて
、上記ガス透過膜を導電性物質を均一に分散した疎水性
多孔質膜にて形成すると共に、このガス透過膜を検知極
として構成したものである。
Therefore, the present invention includes a sensing electrode, a counter electrode, a gas permeable membrane,
It has a sensing electrode, a counter electrode, and an electrolyte in contact with the gas permeable membrane, and when the target gas component in the sample that has passed through the gas permeable membrane comes into contact with the sensing electrode, the target gas component is detected by an electrochemical reaction. In this gas sensor, the gas permeable membrane is formed of a hydrophobic porous membrane in which a conductive substance is uniformly dispersed, and the gas permeable membrane is configured as a sensing electrode.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明のガスセンサーは、上述したようにガス透過膜を
導電性物質を均一に分散した疎水性多孔質膜にて形成す
ると共に、このガス透過膜を検知極として構成したもの
である。
In the gas sensor of the present invention, as described above, the gas permeable membrane is formed of a hydrophobic porous membrane in which a conductive substance is uniformly dispersed, and this gas permeable membrane is configured as a sensing electrode.

この場合、多孔質膜を導電性にするのに用いる導電性物
質の種類に制限はなく、金属を用いることもできるが、
特に好適な材料としては炭素が挙げられる。炭素は電気
化学的に不活性で汎用の電極材料であるだけでなく、分
散せしめたとき炭素微粒子が連続的なつながりをもって
いなくとも、一定の導電性を有し集電体となるからであ
る。
In this case, there are no restrictions on the type of conductive substance used to make the porous membrane conductive, and metals can also be used.
A particularly suitable material is carbon. This is because carbon is not only electrochemically inert and a general-purpose electrode material, but when dispersed, carbon particles have a certain conductivity and act as a current collector even if they are not continuously connected. .

また、導電性物質を分散する疎水性多孔質膜の種類も限
定されないが、ポリテトラフルオロエチレンからなるも
のを用いることが好適である。
Furthermore, the type of hydrophobic porous membrane in which the conductive substance is dispersed is not limited, but it is preferable to use one made of polytetrafluoroethylene.

更に、疎水性多孔質膜の平均孔径は0.05〜1−程度
、多孔質膜への導電性物質の分散量は体積抵抗率が0.
5〜数Ω/an程度となるような量にすることが好まし
い。
Furthermore, the average pore diameter of the hydrophobic porous membrane is about 0.05 to 1-1, and the amount of conductive material dispersed in the porous membrane has a volume resistivity of 0.
It is preferable to set the amount to about 5 to several Ω/an.

本発明のガスセンサーは、導電性を有する疎水性多孔質
膜をガス透過膜兼検知極として用いるものであり、その
構造は特に制限されるものではないが、例えば第1図に
示すようにセンサー本体1の開口部を導電性物質を分散
した平板状疎水性多孔質膜2で閉塞し、この多孔質膜2
を検知極及びガス透過膜とすると共に、本体1内に対極
3及び電解液4を配置した構成や、第2図に示すように
センサー本体1内に導電性物質を分散した疎水性多孔質
膜からなるチューブ5をジヨイント6.6を用いて配設
し、このチューブ5を検知極及びガス透過膜とすると共
に、本体1内のチューブ5外方に対極3及び電解液4を
配置し、チューブ5の中空部を試料の通路とする構成等
が好適に採用される。この場合、第1図のように導電性
ガス透過膜を平板構造で用いると、自然拡散してくるサ
ンプル気体中の特定をガスを検知するのに好適である。
The gas sensor of the present invention uses a conductive hydrophobic porous membrane as a gas permeable membrane and a sensing electrode, and its structure is not particularly limited, but for example, as shown in FIG. The opening of the main body 1 is closed with a flat hydrophobic porous membrane 2 in which a conductive substance is dispersed.
is used as a sensing electrode and a gas permeable membrane, and a counter electrode 3 and an electrolyte 4 are arranged inside the sensor body 1, or a hydrophobic porous membrane in which a conductive substance is dispersed inside the sensor body 1 as shown in FIG. A tube 5 made of A configuration in which the hollow portion of No. 5 is used as a passage for the sample is preferably adopted. In this case, if a conductive gas permeable membrane is used in a flat plate structure as shown in FIG. 1, it is suitable for detecting a specific gas in naturally diffusing sample gas.

感度を向上させるのはこの平板面積を大きくすることに
よって可能となる。また、導電性ガス透過膜をチューブ
状に成型し、第2図のように構成することによってサン
プル気体中のセンサーにすることができる。導電性のガ
ス透過膜チューブの内部に吸引ポンプなどによってサン
プル気体を吸引することにより、特定ガスを検知する。
Sensitivity can be improved by increasing the area of this plate. Further, by molding the conductive gas permeable membrane into a tube shape and configuring it as shown in FIG. 2, it can be used as a sensor for sample gas. The specific gas is detected by sucking the sample gas into the conductive gas-permeable membrane tube using a suction pump or the like.

この場合、膜の表面積を拡げ、感度を増加させることは
チューブの長さを任意に選ぶことにより容易に可能とな
る。
In this case, expanding the surface area of the membrane and increasing the sensitivity can be easily achieved by arbitrarily selecting the length of the tube.

なお、導電性物質を分散した疎水性多孔質膜は一般に1
■当り数Ωの抵抗を有する場合もあり、検知極の表面積
を広げる目的で第1図のように大広径の平板膜としたり
、第2図のようにチューブ状に成型し、これらから金属
線をリードアウトする場合、この導電性多孔質膜そのも
のの内部抵抗は数Ωになり、電気化学的反応によって生
じた電極を電流として取り出すのに支障が生ずる。そこ
で、第1,2図に示すようにこの導電性多孔質膜のガス
の接触する面の複数の点にあまねく金属線7を接触させ
てリードアウトし、内部抵抗の影晋を受けないようにす
ることが望ましい。
Note that the hydrophobic porous membrane in which a conductive substance is dispersed is generally 1
■It may have a resistance of several Ω per electrode, and in order to increase the surface area of the sensing electrode, it is made into a large diameter flat plate film as shown in Figure 1, or formed into a tube shape as shown in Figure 2, and from these metal wires are formed. When leading out the conductive porous membrane, the internal resistance of the conductive porous membrane itself is several ohms, which poses a problem in extracting the electrode generated by the electrochemical reaction as a current. Therefore, as shown in Figures 1 and 2, metal wires 7 are brought into contact with multiple points on the surface of the conductive porous membrane that is in contact with the gas to provide lead-outs so as not to be affected by the internal resistance. It is desirable to do so.

また、導電性の疎水性多孔質膜の電解液に接触する面に
は一定の厚みで親水性処理を施すことが好ましく、これ
しこより電解液の介在を伴う電気化学的反応を確実に行
なわせることができる。この場合、電極反応はこの親水
性処理された部位で起るが、反対側面の一定の厚みの部
分は疎水性であるため、電解液が保持されて漏れ出るこ
とはない。
In addition, it is preferable to apply hydrophilic treatment to a certain thickness on the surface of the conductive hydrophobic porous membrane that comes into contact with the electrolyte, thereby ensuring that the electrochemical reaction involving the electrolyte takes place. be able to. In this case, the electrode reaction takes place in this hydrophilically treated area, but since the portion of a certain thickness on the opposite side is hydrophobic, the electrolyte is retained and does not leak out.

更に、ガス透過膜を導電化するための炭素材料そのもの
は一般に優れた検知極となるが、必要に応じて、他の材
料をこの膜の電解液側に薄膜として積層することによっ
てより効果を上げることができる。例えば触媒活性をも
つ金、白金、銀、パラジウムなどが有効である。
Furthermore, the carbon material itself that makes the gas permeable membrane conductive generally serves as an excellent sensing electrode, but if necessary, other materials can be laminated as a thin film on the electrolyte side of the membrane to make it even more effective. be able to. For example, gold, platinum, silver, palladium, etc., which have catalytic activity, are effective.

また、一般にガス透過膜を儂えたガスセンサーは、気体
中の特定ガスの検出だけでなく液体中に溶は込んだガス
の検出にも用いられる。例えば、隔膜式の残留塩素電極
、隔膜式の溶存酸素電極。
Additionally, gas sensors equipped with gas permeable membranes are generally used not only to detect specific gases in gases, but also to detect gases dissolved in liquids. For example, a diaphragm-type residual chlorine electrode and a diaphragm-type dissolved oxygen electrode.

溶存オゾン電極などが実用的にはよく普及している。Dissolved ozone electrodes are widely used in practical applications.

本発明は、ガスの電気化学的な反応に基づく検出に関し
ており、当然、液体中のガス検出にも適用し得る。本発
明においてはセンサーを構成する要素を外界と仕切るガ
ス透過膜自身が集電体となっているために、この構成要
素をそのまま液体に浸漬させると検出にもなって発生し
た電流の外部への漏洩や逆に液体サンプル中の外部から
の電流のピックアップなどのコンタミネーションが生ず
る。
The present invention relates to detection based on electrochemical reactions of gases, and can of course also be applied to gas detection in liquids. In the present invention, the gas-permeable membrane itself that separates the sensor components from the outside world serves as a current collector, so if the components are immersed in the liquid, the current generated during detection will also flow to the outside. Contamination can occur, such as leakage or conversely the pickup of external currents in the liquid sample.

そこで、液体中のガス検出を行なう際は、第3゜4図の
ように導電性のガス透過膜2の液体サンプルに接触する
側に、外界との電気的な絶縁を行ない、なおかつ液体サ
ンプル中のガスの検出系への透過を可能とするため、疎
水性のガス透過膜8を配置する。この場合、リードアウ
ト用の金属導線7が2枚のガス透過膜2,8の間に配置
する。本発明センサーはこのような液体測定用に外部に
疎水性ガス透過膜を配置したものも包含するものである
Therefore, when detecting gas in a liquid, it is necessary to electrically insulate the side of the conductive gas permeable membrane 2 that contacts the liquid sample from the outside world as shown in Figure 3-4. A hydrophobic gas permeable membrane 8 is arranged to allow the gases to pass through the detection system. In this case, a lead-out metal conducting wire 7 is placed between the two gas permeable membranes 2 and 8. The sensor of the present invention also includes a sensor in which a hydrophobic gas permeable membrane is disposed on the outside for such liquid measurement.

以上のような導電性ガスの透過膜を用いるガスセンサー
を長期に使用した場合、電気化学反応や蒸発による電解
液の減少は避けられない。電解液の補充部を備えたガス
センサーの構成は、例えば第5図のようにチューブ状の
ガス透過膜を用いることにより、容易に作成することが
可能である。
When a gas sensor using a conductive gas permeable membrane as described above is used for a long period of time, it is inevitable that the electrolyte will decrease due to electrochemical reactions and evaporation. The configuration of a gas sensor equipped with an electrolyte replenisher can be easily created by using a tubular gas permeable membrane, for example, as shown in FIG.

即ち、第5図において1はセンサー本体、5はチューブ
状のガス透過膜、3は対極、4は電解液、6.6はジヨ
イント、7は金属線、8は本体1上方に設けられ、その
内部が本体1内と連絡管9を介して連通ずる電解液リザ
ーバ、1oは連絡管9に設けられた開閉コック、11は
リザーバ8の補充口であり、本装置においては本体1内
の電解液4が減少したときに開閉コック10を開くこと
によりリザーバ8内の電解液4′を本体1内に補充でき
るものである。
That is, in FIG. 5, 1 is the sensor main body, 5 is a tube-shaped gas permeable membrane, 3 is a counter electrode, 4 is an electrolytic solution, 6.6 is a joint, 7 is a metal wire, and 8 is provided above the main body 1. An electrolytic solution reservoir inside communicates with the inside of the main body 1 via a communication pipe 9, 1o is an opening/closing cock provided in the communication pipe 9, and 11 is a replenishment port for the reservoir 8. In this device, the electrolytic solution in the main body 1 By opening the opening/closing cock 10 when the electrolytic solution 4' in the reservoir 8 decreases, the electrolytic solution 4' in the reservoir 8 can be replenished into the main body 1.

〔発明の効果〕〔Effect of the invention〕

このように導電性のガス透過膜を用いたガスセンサーは
高感度化及び倍量出力の安定化を実現できるのみならず
、感度を自由に調整することが容易であり、ガスセンサ
ーを内蔵した装置の組み上げも容易となり、実用的価値
が大きい。
In this way, a gas sensor using a conductive gas permeable membrane can not only achieve high sensitivity and stabilize twice the output, but also can easily adjust the sensitivity freely, making it possible to easily adjust the sensitivity of a device with a built-in gas sensor. It is also easy to assemble, and has great practical value.

このガスセンサーは直接ないし間接的に電気化学的な反
応を示すすべてのガスに応用が可能であり、用途も広範
である。
This gas sensor can be applied to all gases that directly or indirectly exhibit electrochemical reactions, and has a wide range of uses.

次に実施例を示し、本発明を具体的に説明するが、本発
明は下記実施例に限定されるものではない。
EXAMPLES Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to the following Examples.

〔実施例〕〔Example〕

下記■〜■にガスセンサーをそれぞれ作製し、測定を行
なった。
Gas sensors were prepared and measured in the following items 1 to 2.

■塩素ガスセンサー 検知極に炭素、対極に銀、電解液に塩化カリウムを選ぶ
ことにより、ガルバニックなCQ2ないしHOCQセン
サーをなし得ることが知られている。
(2) Chlorine gas sensor It is known that a galvanic CQ2 or HOCQ sensor can be created by selecting carbon for the detection electrode, silver for the counter electrode, and potassium chloride for the electrolyte.

この反応は 検知極上で  HOCL)e−+1/2H,+○cp−
H”+ e−→1 / 2 H2 対極で    Ag−e−→Ag+ Ag”+CQ−→AgCfl Ag”+OCQ、−→AgC11/ 202なる反応で
進行する。
This reaction is carried out at the detection pole as follows: HOCL)e-+1/2H, +○cp-
H"+ e-→1/2 H2 At the opposite electrode, the reaction proceeds as follows: Ag-e-→Ag+ Ag"+CQ-→AgCfl Ag"+OCQ, -→AgC11/202.

内径2φ、膜厚1t、最大孔径0.36μ以下の炭素が
分散された導電性のチューブ状疎水性ガス透過膜(コア
デックス社製)を検知極として第2図の如きガスセンサ
ーを構成した。なお、対極は銀、電解液は塩化カリウム
溶液を用いた。なお、検知極の長さは30〜150m程
度の範囲で任意に選ぶことができる。小径のポンプでサ
ンプルガスを吸引すると、検知管ではlppm以下のT
(○CQガスに高感度で応答する。この様子を第6図に
示す。
A gas sensor as shown in FIG. 2 was constructed using a conductive tubular hydrophobic gas permeable membrane (manufactured by Coredex Co., Ltd.) in which carbon was dispersed, having an inner diameter of 2φ, a membrane thickness of 1 t, and a maximum pore diameter of 0.36 μm or less as a detection electrode. Note that silver was used as the counter electrode, and potassium chloride solution was used as the electrolyte. Note that the length of the detection pole can be arbitrarily selected within a range of about 30 to 150 m. When the sample gas is sucked with a small diameter pump, the T of the detection tube is less than lppm.
(Responses to CQ gas with high sensitivity. This situation is shown in Figure 6.

■硫化水素ガスセンサー 検知極に■と同様のもの、対極に銀、電解液に塩化カリ
ウム溶液を選び、第2図の如きセンサーを構成した。検
知極側に例えば0.7v程度印加しておくと、検知極側
でH2Sなどの還元性ガスは酸化される。
(2) Hydrogen sulfide gas sensor A sensor similar to (2) was selected for the detection electrode, silver for the counter electrode, and potassium chloride solution for the electrolyte to construct a sensor as shown in Figure 2. When a voltage of, for example, about 0.7 V is applied to the sensing electrode side, reducing gas such as H2S is oxidized on the sensing electrode side.

第7図のように両極間に印加電圧をかけて用いたところ
、10pbbレベルのガスに対して第8図の如く、高感
度に応答することがわかる。
When used by applying a voltage between the two electrodes as shown in FIG. 7, it can be seen that it responds with high sensitivity to gas at the 10 pbb level as shown in FIG. 8.

■酸素ガスセンサー 検知極に■と同様のもの、対極に鉛、電解液に苛性アル
カリを選び、第2図の如きガルバニックな隔膜式02セ
ンサーを構成した。
(2) Oxygen gas sensor A galvanic diaphragm type 02 sensor as shown in Fig. 2 was constructed by selecting the same electrode as (2) for the detection electrode, lead for the counter electrode, and caustic alkali for the electrolyte.

従来、検知極に8φ程度の金ないし白金平板の電極を用
いる方式の隔膜式02センサーはガス透過膜に多孔質膜
を用いて酸素透過性を増加せしめた場合でも数十堝オー
ダーの電流しか得られない。
Conventionally, the diaphragm type 02 sensor, which uses a gold or platinum flat plate electrode with a diameter of about 8 mm as the detection electrode, can only obtain a current of the order of a few tens of cubic meters even when a porous membrane is used as the gas permeable membrane to increase oxygen permeability. I can't.

本方式では、2φ、1しの多孔質膜チューブを10印用
いることによって大気酸素に対して第9図にみるように
2mA以上の出力を出している。
In this system, by using 10 porous membrane tubes with a diameter of 2 and a diameter of 1, an output of 2 mA or more is produced with respect to atmospheric oxygen, as shown in Fig. 9.

しかし、電極とガス透過膜が一体化しているために、ポ
ンプでサンプルガスを引っ張っているにもかかわらず、
動圧の影響を受けず極めて安定している。
However, because the electrode and gas permeable membrane are integrated, even though the sample gas is pulled by the pump,
Extremely stable, unaffected by dynamic pressure.

■液体中の残留塩素センサー 液体中のガスセンサーとして、第3図に示した如き構成
の残留塩素センサーを製作した。この場合、導電性ガス
透過膜2としては外径10φm。
■Residual chlorine sensor in liquid As a gas sensor in liquid, a residual chlorine sensor having the configuration shown in Fig. 3 was manufactured. In this case, the conductive gas permeable membrane 2 has an outer diameter of 10 φm.

厚さ0.4tmmの炭素分散導電性疎水膜、対極3とし
ては銀電極、内部液4としては塩化カリウム水溶液、セ
ンサーとサンプル液とを絶縁するための疎水性ガス透過
膜8としてはミクロ孔径0.1−のボリテ1−ラフルオ
ロエチレン膜を用いた。
A carbon-dispersed conductive hydrophobic membrane with a thickness of 0.4 tmm, a silver electrode as the counter electrode 3, a potassium chloride aqueous solution as the internal liquid 4, and a hydrophobic gas permeable membrane 8 for insulating the sensor and the sample liquid with a micropore diameter of 0 A volite 1-lafluoroethylene membrane of .1- was used.

5ρρmの残留塩素のサンプルをpH4に調整した際の
信号の様子を第10図に示す。金を材質とする検知極径
4φの従来の残留塩素センサーが同じ1度のサンプルに
対して約0.5pAの出力信号であるのに比へて、数倍
の高感度化が達成されていることが確認できる。
FIG. 10 shows the state of the signal when a sample with residual chlorine of 5 ρρm was adjusted to pH 4. Compared to a conventional residual chlorine sensor made of gold with a detection pole diameter of 4φ, which outputs a signal of approximately 0.5 pA for the same sample, several times higher sensitivity has been achieved. This can be confirmed.

以上■〜■の結果より、高感度化と出力安定化は明瞭に
達成されていることが認められる。
From the results of (1) to (2) above, it is recognized that high sensitivity and output stabilization have been clearly achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図はそれぞれ本発明のガスセンサーの一
実施例を示す断面図、第6図は本発明塩素ガスセンサー
の出力を示すグラフ、第7図は第2図のセンサーに印加
電圧をかけた本発明硫化水素ガスセンサーを示す断面図
、第8図は同硫化水素ガスセンサーの出力を示すグラフ
、第9図は本発明酸素ガスセンサーの出力を示すグラフ
、第10図は本発明残留塩素センサーの出力を示すグラ
フ、第11図及び第12図はそれぞれ従来のガスセンサ
ーの一例を示す概略図である。 出願人  電気化学計器 株式会社 代理人  弁理士  小 島 隆 同 第1図   第2図 第3図    第4図 第6図 第7図 第8図 b el)C
Figures 1 to 5 are cross-sectional views showing one embodiment of the gas sensor of the present invention, Figure 6 is a graph showing the output of the chlorine gas sensor of the present invention, and Figure 7 is the voltage applied to the sensor of Figure 2. 8 is a graph showing the output of the hydrogen sulfide gas sensor of the present invention, FIG. 9 is a graph showing the output of the oxygen gas sensor of the present invention, and FIG. 10 is a graph showing the output of the oxygen gas sensor of the present invention. Graphs showing the output of the residual chlorine sensor, FIGS. 11 and 12, are schematic diagrams each showing an example of a conventional gas sensor. Applicant: Electrochemical Meter Co., Ltd. Agent: Patent Attorney: Takashi Kojima Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 b el)C

Claims (1)

【特許請求の範囲】[Claims] 1、検知極と、対極と、ガス透過膜と、これら検知極、
対極及びガス透過膜にそれぞれ接する電解液とを有し、
上記ガス透過膜を透過した試料中の目的ガス成分が上記
検知極に接したときの電気化学的反応から該目的ガス成
分の検出を行なうガスセンサーにおいて、上記ガス透過
膜を導電性物質を均一に分散した疎水性多孔質膜にて形
成すると共に、このガス透過膜を検知極として構成して
なることを特徴とするガスセンサー。
1. A sensing electrode, a counter electrode, a gas permeable membrane, and these sensing electrodes,
It has an electrolyte in contact with a counter electrode and a gas permeable membrane, respectively,
In a gas sensor that detects a target gas component in a sample that has passed through the gas permeable membrane through an electrochemical reaction when it comes into contact with the detection electrode, the gas permeable membrane is coated with a conductive substance uniformly. A gas sensor characterized in that it is formed of a dispersed hydrophobic porous membrane and that this gas permeable membrane is configured as a detection electrode.
JP63064778A 1988-03-18 1988-03-18 Gas sensor Expired - Lifetime JPH0623721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63064778A JPH0623721B2 (en) 1988-03-18 1988-03-18 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63064778A JPH0623721B2 (en) 1988-03-18 1988-03-18 Gas sensor

Publications (2)

Publication Number Publication Date
JPH01239446A true JPH01239446A (en) 1989-09-25
JPH0623721B2 JPH0623721B2 (en) 1994-03-30

Family

ID=13268007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63064778A Expired - Lifetime JPH0623721B2 (en) 1988-03-18 1988-03-18 Gas sensor

Country Status (1)

Country Link
JP (1) JPH0623721B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234561A (en) * 2005-02-24 2006-09-07 Riken Keiki Co Ltd Diaphragm for working electrode of electrochemical gas sensor
JP2006250694A (en) * 2005-03-10 2006-09-21 Riken Keiki Co Ltd Electrochemical gas sensor for oxygen detection
JP2006284312A (en) * 2005-03-31 2006-10-19 New Cosmos Electric Corp Galvanic cell type oxygen sensor
JP2006349526A (en) * 2005-06-16 2006-12-28 Choichi Furuya Electrochemical diborane sensor
JP2013170957A (en) * 2012-02-22 2013-09-02 Fis Inc Electrochemical gas sensor element and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234561A (en) * 2005-02-24 2006-09-07 Riken Keiki Co Ltd Diaphragm for working electrode of electrochemical gas sensor
JP4562131B2 (en) * 2005-02-24 2010-10-13 理研計器株式会社 Separator for working electrode of electrochemical gas sensor for detecting nitrogen dioxide (NO2), nitric oxide (NO), sulfur dioxide (SO2)
JP2006250694A (en) * 2005-03-10 2006-09-21 Riken Keiki Co Ltd Electrochemical gas sensor for oxygen detection
JP4628148B2 (en) * 2005-03-10 2011-02-09 理研計器株式会社 Electrochemical gas sensor for oxygen detection
JP2006284312A (en) * 2005-03-31 2006-10-19 New Cosmos Electric Corp Galvanic cell type oxygen sensor
JP4630108B2 (en) * 2005-03-31 2011-02-09 新コスモス電機株式会社 Galvanic cell oxygen sensor
JP2006349526A (en) * 2005-06-16 2006-12-28 Choichi Furuya Electrochemical diborane sensor
JP2013170957A (en) * 2012-02-22 2013-09-02 Fis Inc Electrochemical gas sensor element and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0623721B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
US5078854A (en) Polarographic chemical sensor with external reference electrode
US4377446A (en) Carbon dioxide measurement
WO2015060328A1 (en) Potentiostatic electrolytic gas sensor
US5106482A (en) High speed oxygen sensor
US20040188252A1 (en) Reference electrode assembly
JPH01239446A (en) Gas sensor
US5906726A (en) Electrochemical sensor approximating dose-response behavior and method of use thereof
JP6426336B2 (en) Constant potential electrolysis type gas sensor
US20070227908A1 (en) Electrochemical cell sensor
JP2000511640A (en) Polarographic sensor
JP2001289816A (en) Controlled potential electrolysis type gas sensor
US4973395A (en) Humidified high sensitivity oxygen detector
US3394069A (en) Electrochemical gas sensor
JP2003075394A (en) Detector for oxidizing-gas
US8496795B2 (en) Electrochemical gas sensor with at least one punctiform measuring electrode
JP2954174B1 (en) Constant potential electrolytic gas sensor
JP6315983B2 (en) Constant potential electrolytic gas sensor
Nei Some milestones in the 50-year history of electrochemical oxygen sensor development
JP2001281204A (en) Diaphragm-type sensor
JPS6332363A (en) Hydrogen peroxide electrode
JP4137630B2 (en) Constant-potential electrolysis gas sensor
JP3650919B2 (en) Electrochemical sensor
JP2542281B2 (en) Electrochemical battery type sensor, electrode for the sensor and gas concentration sensing method
JPH0334824B2 (en)
JP3962583B2 (en) Electrochemical gas sensor