JP4630108B2 - Galvanic cell oxygen sensor - Google Patents

Galvanic cell oxygen sensor Download PDF

Info

Publication number
JP4630108B2
JP4630108B2 JP2005103175A JP2005103175A JP4630108B2 JP 4630108 B2 JP4630108 B2 JP 4630108B2 JP 2005103175 A JP2005103175 A JP 2005103175A JP 2005103175 A JP2005103175 A JP 2005103175A JP 4630108 B2 JP4630108 B2 JP 4630108B2
Authority
JP
Japan
Prior art keywords
positive electrode
oxygen
galvanic cell
oxygen sensor
cell type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005103175A
Other languages
Japanese (ja)
Other versions
JP2006284312A (en
Inventor
秀和 今林
喜吉 榎本
康司 浦崎
昭彦 副島
雅司 堀内
博 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2005103175A priority Critical patent/JP4630108B2/en
Publication of JP2006284312A publication Critical patent/JP2006284312A/en
Application granted granted Critical
Publication of JP4630108B2 publication Critical patent/JP4630108B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

容器内に、金属を含む正極と、負極と、前記正極及び負極と接触する電解液とを備え、前記正極の一方の面に前記電解液を透過しない酸素透過膜を重ねて設けたガルバニ電池式酸素センサに関する。   A galvanic cell type comprising a positive electrode containing a metal, a negative electrode, and an electrolyte solution in contact with the positive electrode and the negative electrode, and an oxygen permeable film that does not transmit the electrolyte solution is provided on one surface of the positive electrode. The present invention relates to an oxygen sensor.

一般に、ガルバニ電池式酸素センサは、酸素の存在によって正負極間で酸化還元反応を起こさせ酸素濃度を測定するものである。具体的には、外部から酸素が酸素透過膜を透過してセンサ内に入ってくると、酸素は電解液に溶解される。そして、電解液に溶解された酸素は、正極上に移動して還元され、電解液を介して負極を酸化する。これにより、正極から負極に酸素量に応じた電流が流れ、この電流をセンサ出力電圧として測定することによって、酸素濃度が分かる。   In general, a galvanic cell type oxygen sensor measures an oxygen concentration by causing an oxidation-reduction reaction between positive and negative electrodes in the presence of oxygen. Specifically, when oxygen passes from the outside through the oxygen permeable membrane and enters the sensor, oxygen is dissolved in the electrolytic solution. The oxygen dissolved in the electrolytic solution moves onto the positive electrode and is reduced, and oxidizes the negative electrode through the electrolytic solution. Thereby, a current corresponding to the amount of oxygen flows from the positive electrode to the negative electrode, and the oxygen concentration can be determined by measuring this current as a sensor output voltage.

このようなガルバニ電池式酸素センサでは、正極として金属片を使用し、正極と酸素透過膜との設置間隔を一定に保ち、正極と酸素透過膜との間に一定の厚みを有する電解液層を形成させる。しかし、外圧の変化等によって電解液層の厚みを一定に保つことは困難であり、センサ出力が不安定になる等の問題が生じていた。   In such a galvanic cell type oxygen sensor, a metal piece is used as the positive electrode, the installation interval between the positive electrode and the oxygen permeable membrane is kept constant, and an electrolyte layer having a constant thickness is provided between the positive electrode and the oxygen permeable membrane. Let it form. However, it is difficult to keep the thickness of the electrolyte layer constant due to a change in external pressure or the like, causing problems such as unstable sensor output.

上記問題に対しては、酸素透過膜の一方の面に正極を一体に接合したもの(例えば、特許文献1参照)が検討されている。具体的には、酸素透過膜の一方の面に金をスパッタリングすることによって膜を設ける。これによれば、酸素透過膜と正極とは一体化されているため、外圧の変化に対してもセンサ出力が変化することはない。   In order to solve the above problem, a structure in which a positive electrode is integrally bonded to one surface of an oxygen permeable membrane (for example, see Patent Document 1) has been studied. Specifically, a film is provided by sputtering gold on one surface of the oxygen permeable film. According to this, since the oxygen permeable membrane and the positive electrode are integrated, the sensor output does not change even when the external pressure changes.

特開平6−109694号公報JP-A-6-109694

しかし、酸素透過膜の一方の面に金をスパッタリングによって膜を形成して酸素透過膜と正極とを一体化したガルバニ電池式酸素センサでは、センサを使用している間に酸素透過膜から金のスパッタリングによって形成された膜が剥がれる場合があった。このため、酸素透過膜と金のスパッタリングによって形成された膜との間に電解液が入り込み、センサ出力が不安定になるという問題があった。   However, in a galvanic cell type oxygen sensor in which a film is formed by sputtering gold on one surface of the oxygen permeable membrane and the oxygen permeable membrane and the positive electrode are integrated, the oxygen permeable membrane is in contact with the gold while the sensor is in use. A film formed by sputtering may be peeled off. For this reason, there was a problem that the electrolyte solution entered between the oxygen permeable film and the film formed by sputtering of gold, resulting in unstable sensor output.

また、上記ガルバニ電池式酸素センサでは、酸素透過膜を透過してきた酸素は、金のスパッタリングによって形成された膜の孔にしみ込んだ電解液に溶解され、膜の孔の中で反応する。このため、酸素と反応する面積が小さくなり、酸素を還元する速度、すなわち酸素に対する応答速度が遅くなる虞もあった。   Further, in the galvanic cell type oxygen sensor, oxygen that has permeated through the oxygen permeable membrane is dissolved in the electrolyte solution soaked in the pores of the membrane formed by gold sputtering and reacts in the pores of the membrane. For this reason, the area which reacts with oxygen becomes small, and there is a possibility that the speed of reducing oxygen, that is, the response speed to oxygen becomes slow.

さらに、酸素透過膜に金のスパッタリングをする工程が別途必要になるため、コスト面においても高くなるという問題があった。   Furthermore, since a step of sputtering gold on the oxygen permeable membrane is required separately, there is a problem that the cost is increased.

本発明は、上記課題に鑑みてなされたものであり、センサ出力が安定しており、酸素に対する応答速度が速いガルバニ電池式酸素センサを提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a galvanic cell type oxygen sensor having a stable sensor output and a high response speed to oxygen.

上記目的を達成するための本発明に係るガルバニ電池式酸素センサの第1特徴構成は、容器内に、金属を含む正極と、負極と、前記正極及び負極と接触する電解液とを備え、前記正極の一方の面に前記電解液を透過しない酸素透過膜を重ねて設けたガルバニ電池式酸素センサであって、前記正極は、金属箔であると共に、前記電解液が透過可能な連通孔を有し、前記一方の面の側で酸素と反応可能に設けてある点にある。 A first characteristic configuration of a galvanic cell type oxygen sensor according to the present invention for achieving the above object includes a positive electrode including a metal, a negative electrode, and an electrolytic solution in contact with the positive electrode and the negative electrode in a container, A galvanic cell type oxygen sensor in which an oxygen permeable membrane that does not transmit the electrolyte solution is stacked on one surface of the positive electrode, wherein the positive electrode is a metal foil and has a communication hole through which the electrolyte solution can pass. However, it is provided so as to be capable of reacting with oxygen on the one surface side.

つまり、この構成によれば、電解液が透過可能な連通孔を有する金属箔の正極に、酸素透過膜を重ねて設けてあるため、正極と酸素透過膜とを密着させた上で正極と酸素透過膜との間に電解液を滲み出させることができる。そして、外部から酸素透過膜を透過してきた酸素は、正極と酸素透過膜との間に滲み出た電解液に溶解し、直ちに正極の酸素透過膜と密着している側の面で反応する。
また、金属箔は、内部に微細な亀裂やピンホールを有するため、電解液を適度に透過させることができる。
したがって、正極と酸素透過膜を略密着させた状態を保ったまま、その界面に電解液を存在させることができ、センサ出力を安定にすることができる。そして、正極における酸素との反応面積が大きくなるため、酸素ガスに対する応答速度を速くすることができる。
That is, according to this configuration, since the oxygen permeable film is provided so as to overlap the positive electrode of the metal foil having a communicating hole through which the electrolyte can permeate, the positive electrode and the oxygen permeable film are brought into close contact with each other. The electrolyte solution can be oozed out between the permeable membrane. The oxygen that has permeated the oxygen permeable membrane from the outside is dissolved in the electrolyte that has oozed between the positive electrode and the oxygen permeable membrane, and immediately reacts on the surface of the positive electrode that is in close contact with the oxygen permeable membrane.
Moreover, since metal foil has a micro crack and a pinhole inside, it can permeate | transmit electrolyte solution moderately.
Therefore, the electrolyte solution can be present at the interface while maintaining the state where the positive electrode and the oxygen permeable membrane are substantially in close contact with each other, and the sensor output can be stabilized. And since the reaction area with oxygen in a positive electrode becomes large, the response speed with respect to oxygen gas can be made quick.

本発明に係るガルバニ電池式酸素センサの第特徴構成は、前記酸素透過膜は、前記正極を重ねた側の面に親水処理を施してある点にある。 The second characteristic configuration of the galvanic cell type oxygen sensor according to the present invention is that the oxygen permeable membrane is subjected to a hydrophilic treatment on the surface on which the positive electrode is superimposed.

つまり、この構成によれば、酸素透過膜のぬれ性が良くなり、正極を透過した電解液を正極と酸素透過膜との界面に広がらせることができる。   That is, according to this configuration, the wettability of the oxygen permeable membrane is improved, and the electrolytic solution that has permeated the positive electrode can be spread at the interface between the positive electrode and the oxygen permeable membrane.

本発明に係るガルバニ電池式酸素センサの第特徴構成は、前記容器は、金属製の容器本体と、当該容器本体と絶縁された金属製の蓋部とを備え、前記正極が前記容器本体に接続し、前記負極が前記蓋部に接続してある点にある。 According to a third characteristic configuration of the galvanic cell type oxygen sensor according to the present invention, the container includes a metal container main body and a metal lid portion insulated from the container main body, and the positive electrode is attached to the container main body. The negative electrode is connected to the lid portion.

つまり、この構成によれば、容器本体及び蓋部が正極及び負極の役割を果たすため、センサ内部から正極及び負極に接続するリード線を設ける必要がなくなる。このため、センサの構造を簡略化することができる。   That is, according to this configuration, since the container body and the lid part serve as a positive electrode and a negative electrode, it is not necessary to provide lead wires connected to the positive electrode and the negative electrode from the inside of the sensor. For this reason, the structure of the sensor can be simplified.

本発明に係るガルバニ電池式酸素センサの第特徴構成は、前記正極は、前記容器本体の内面と当接する当接部を有し、前記正極の他方の面に重ねて設けた集電体を介して前記容器本体と接続してある点にある。 According to a fourth characteristic configuration of the galvanic cell oxygen sensor according to the present invention, the positive electrode has a contact portion that contacts the inner surface of the container body, and a current collector provided to overlap the other surface of the positive electrode. It is in the point connected with the said container main body through.

つまり、この構成によれば、集電体を介して、正極と容器本体とを確実に接続することができる。   That is, according to this structure, a positive electrode and a container main body can be reliably connected via a collector.

本発明に係るガルバニ電池式酸素センサは、容器内に、金属を含む正極と、負極と、前記正極及び負極と接触する電解液とを備え、前記正極の一方の面に前記電解液を透過しない酸素透過膜を重ねて設けたガルバニ電池式酸素センサであって、前記正極は、金属箔であると共に、前記電解液が透過可能な連通孔を有し、前記一方の面の側で酸素と反応可能に設けてあるものである。これにより、正極と酸素透過膜を略密着させた状態を保ったまま、その界面に電解液を存在させることができるため、正極において、気相(酸素ガス)、液相(電解液)、固相(電極)の三相界面を容易に形成させることができ、センサ出力を安定にすることができる。そして、正極における酸素との反応面積が大きくなるため、酸素ガスに対する応答速度を速くすることができる。 The galvanic cell type oxygen sensor according to the present invention includes a positive electrode containing a metal, a negative electrode, and an electrolytic solution in contact with the positive electrode and the negative electrode in a container, and does not transmit the electrolytic solution to one surface of the positive electrode. A galvanic cell type oxygen sensor provided with an oxygen permeable membrane in an overlapping manner, wherein the positive electrode is a metal foil and has a communication hole through which the electrolyte can permeate, and reacts with oxygen on the one surface side. This is possible. As a result, the electrolyte can be present at the interface while keeping the positive electrode and the oxygen permeable membrane substantially in close contact with each other. Therefore, in the positive electrode, the gas phase (oxygen gas), liquid phase (electrolyte), solid A three-phase interface of phases (electrodes) can be easily formed, and sensor output can be stabilized. And since the reaction area with oxygen in a positive electrode becomes large, the response speed with respect to oxygen gas can be made quick.

以下、本発明に係るガルバニ電池式酸素センサの一実施形態について、図面を参照して説明する。本実施形態に係るガルバニ電池式酸素センサは、図1に示すように、直径が13mm、厚みが6mmの所謂ボタン型電池形状の容器1を有している。   Hereinafter, an embodiment of a galvanic cell type oxygen sensor according to the present invention will be described with reference to the drawings. As shown in FIG. 1, the galvanic cell type oxygen sensor according to this embodiment has a so-called button-type battery-shaped container 1 having a diameter of 13 mm and a thickness of 6 mm.

容器1は、ステンレス製であり、容器本体1aと蓋部1bとを備えている。容器本体1aには、酸素が容器1の内部に導入できるように、底部の中心部分に2mm径の孔部1cが設けられている。また、蓋部1bの中心部分には、蓋部1bを容器本体1aに取り付けた後に電解液10を注入できるように1mm径の注入口1dが設けられている。尚、容器本体1a及び蓋部1bの材質は、ステンレスに限らず、その他の金属や樹脂を適用することができるが、後述するように容器本体1a、蓋部1bを電極として適用する場合には、金属製であることが好ましく、また金属製であれば樹脂製のものに比べて、内部の電解液10の蒸発を防ぐこともできる。   The container 1 is made of stainless steel and includes a container body 1a and a lid 1b. The container main body 1a is provided with a hole 1c having a diameter of 2 mm at the center of the bottom so that oxygen can be introduced into the container 1. In addition, a 1 mm diameter inlet 1d is provided at the center of the lid 1b so that the electrolytic solution 10 can be injected after the lid 1b is attached to the container body 1a. The material of the container main body 1a and the lid 1b is not limited to stainless steel, but other metals and resins can be applied. However, when the container main body 1a and the lid 1b are applied as electrodes as will be described later. It is preferable that it is made of metal, and if it is made of metal, evaporation of the electrolytic solution 10 inside can be prevented as compared with resin.

容器本体1aの底部には、中心部分に2.5mm径の開口部を有するポリエチレン製のシールフィルム2が、その開口部が容器本体1aの孔部1cに合うように設けられており、シールフィルム2の上には、酸素を選択的に透過する、厚み25μmの酸素透過膜3、厚み1μmの金属箔の正極4、厚みが0.05mmである輪状の集電体8が順に積層されている。さらに正極4の上面の中央部には、4mm径の不織布状のセパレータ5、押圧部材6、2mm径の開口部を有する9mm径、厚み0.5mmの鉛板である負極7が順に積層され、集電体8の上面にはガスケット9が設けられている。これらは、蓋部1bを取り付けることにより押圧され、互いに密着するように構成されている。尚、蓋部1bは、容器本体1aに被せた後、かしめることによって取り付けることができ、さらには、例えばかしめた後、容器本体1aと蓋部1bとの間にUV接着剤(図示しない)を塗布し、強度を高めることもできる。 At the bottom of the container body 1a, a polyethylene sealing film 2 having a 2.5 mm diameter opening at the center is provided so that the opening fits the hole 1c of the container body 1a. An oxygen-permeable membrane 3 having a thickness of 25 μm, a positive electrode 4 made of a metal foil having a thickness of 1 μm, and a ring-shaped current collector 8 having a thickness of 0.05 mm are laminated in this order on 2. . Furthermore, a negative electrode 7 which is a 9 mm diameter, 0.5 mm thick lead plate having a 4 mm diameter non-woven separator 5, a pressing member 6, and a 2 mm diameter opening is sequentially laminated at the center of the upper surface of the positive electrode 4, A gasket 9 is provided on the upper surface of the current collector 8. These are configured to be pressed and attached to each other by attaching the lid 1b. The lid 1b can be attached by caulking after covering the container main body 1a. Furthermore, after caulking, for example, a UV adhesive (not shown) is provided between the container main body 1a and the lid 1b. Can be applied to increase the strength.

また、容器1の内部には電解液10が満たされており、電解液10が常に正極4及び負極7と接触している状態に保たれている。電解液10は蓋部1bを取り付けた後、蓋部1bの注入口1dから注入することにより、容器1の内部に電解液10を満たすことができる。尚、電解液10を注入した後の注入口1dには、蓋部1bと同様の材質の1.1mm径の封入球11が圧入され容器1内は密封されている。さらに、密封度を高めるために、封入球11の上にUV接着剤(図示しない)を塗布し、封入球11を被覆させることもできる。   Further, the inside of the container 1 is filled with the electrolytic solution 10, and the electrolytic solution 10 is always kept in contact with the positive electrode 4 and the negative electrode 7. The electrolytic solution 10 can be filled in the container 1 by injecting the electrolytic solution 10 from the inlet 1d of the lid portion 1b after the lid portion 1b is attached. In addition, a 1.1 mm diameter sealed ball 11 made of the same material as that of the lid portion 1b is press-fitted into the injection port 1d after the electrolyte solution 10 is injected, and the inside of the container 1 is sealed. Furthermore, in order to increase the sealing degree, a UV adhesive (not shown) may be applied on the encapsulating sphere 11 to cover the encapsulating sphere 11.

そして、このような構成により、特に酸素透過膜3と正極4とを密着させる共に、正極4は集電体8を介して容器本体1aと接続でき、負極7は蓋部1bと接続させることができる。これにより、正極4及び負極7に直接接続するリード線を設ける必要が無くなり、リード線と容器1との隙間等から電解液10が漏れる虞もなくなる。そして、容器本体1a及び蓋部1bが正極4及び負極7の役割を果たすため、例えば、酸素濃度計等の既知の回路に本実施形態のガルバニ電池式酸素センサをそのまま嵌め込む等により、容器本体1a及び蓋部1bを回路に接触させて適用することができ、測定装置を簡略化することも可能となる。   With such a configuration, in particular, the oxygen permeable membrane 3 and the positive electrode 4 are brought into close contact with each other, the positive electrode 4 can be connected to the container body 1a through the current collector 8, and the negative electrode 7 can be connected to the lid portion 1b. it can. As a result, there is no need to provide lead wires that are directly connected to the positive electrode 4 and the negative electrode 7, and there is no possibility that the electrolyte solution 10 leaks from the gap between the lead wires and the container 1 or the like. And since the container main body 1a and the cover part 1b play the role of the positive electrode 4 and the negative electrode 7, for example, the galvanic cell type oxygen sensor of this embodiment is directly fitted in a known circuit such as an oximeter, etc. 1a and the cover part 1b can be applied in contact with the circuit, and the measurement apparatus can be simplified.

正極4は金属箔であるため、酸素透過膜3に重ねて設けることにより、正極4と酸素透過膜3とを密着させることができる。正極4としては、金箔、白金箔、銀箔、銅箔等を用いることができる。これらの金属箔は、例えば、図2(a)に示す金箔や図2(b)に示す白金箔のように、0.1〜10μm程度の亀裂やピンホール等の連通孔を複数有しており電解液10を適度に透過させることができる。このため、電解液10を、密着した正極4と酸素透過膜3との間にしみ出させることができ、外部から酸素透過膜3を透過した酸素を、正極4の酸素透過膜3側の面において還元することができる。すなわち、正極4と酸素透過膜3とを重ねて設けることにより、連通孔を通して電解液10を適度に透過させることができるため、酸素透過膜3を透過した酸素と共に、固相、液相、気相の三相界面を容易に形成させることができる。このため、酸素との反応面積が広がり、センサの応答速度を速くすることができる。そして、正極4と酸素透過膜3とを略密着状態に保ったまま電解液10を介在させることができ、電解液10が必要以上に入り込んだりして正極4と酸素透過膜3との距離が大きく変化することがなく、センサ出力を安定に保つことができる。
また、正極4は、金属箔の他にも、膜状であると共に電解液10が透過可能な連通孔を有し、酸素透過膜3の側で酸素と反応可能なものであれば適用でき、例えば、膜状基材の上に金等の金属をスパッタリングにより薄膜を形成させた後、膜状基材を部分的に除去したもの等を使用することもできる。
Since the positive electrode 4 is a metal foil , the positive electrode 4 and the oxygen permeable film 3 can be brought into close contact with each other by being provided over the oxygen permeable film 3. As the positive electrode 4, a gold foil, a platinum foil, a silver foil, a copper foil, or the like can be used. These metal foils have, for example, a plurality of communication holes such as cracks and pinholes of about 0.1 to 10 μm, such as gold foils shown in FIG. 2A and platinum foils shown in FIG. The cage electrolyte 10 can be permeated appropriately. For this reason, the electrolyte solution 10 can be oozed out between the positive electrode 4 and the oxygen permeable membrane 3 that are in close contact with each other, and oxygen that has permeated the oxygen permeable membrane 3 from the outside is removed from the surface of the positive electrode 4 on the oxygen permeable membrane 3 side. Can be reduced. That is, by providing the positive electrode 4 and the oxygen permeable film 3 in an overlapping manner, the electrolyte solution 10 can be appropriately permeated through the communication hole, so that the solid phase, the liquid phase, the gas, together with the oxygen that has permeated the oxygen permeable film 3. A three-phase interface of phases can be easily formed. For this reason, the reaction area with oxygen spreads, and the response speed of the sensor can be increased. Then, the electrolytic solution 10 can be interposed while the positive electrode 4 and the oxygen permeable membrane 3 are kept in a substantially close contact state, and the electrolytic solution 10 enters more than necessary, and the distance between the positive electrode 4 and the oxygen permeable membrane 3 is increased. The sensor output can be kept stable without greatly changing.
In addition to the metal foil, the positive electrode 4 can be applied as long as it is in the form of a film and has a communication hole through which the electrolytic solution 10 can pass and can react with oxygen on the oxygen permeable membrane 3 side. For example, it is also possible to use a film obtained by forming a thin film by sputtering a metal such as gold on the film substrate and then partially removing the film substrate.

酸素透過膜3は、酸素を選択的に透過し、電解液10を透過しない外部と容器1の内部とを仕切る隔膜である。酸素透過膜3の材質は、電解液10を透過せず、酸素透過性能を有するものであれば、特に限定されず、例えば4フッ化エチレン6フッ化プロピレン共重合樹脂(FEP)等、従来公知のものが適用可能である。また、本実施形態における酸素透過膜3の正極4側の面には親水処理が施してある。これにより、正極4から滲み出る電解液10との親和性が良くなり、正極4と酸素透過膜3との界面に電解液10が存在し易くなる。   The oxygen permeable membrane 3 is a diaphragm that selectively permeates oxygen and separates the outside from the electrolyte solution 10 from the inside of the container 1. The material of the oxygen permeable membrane 3 is not particularly limited as long as it does not transmit the electrolytic solution 10 and has oxygen permeation performance. Are applicable. Further, the surface of the oxygen permeable membrane 3 on the positive electrode 4 side in the present embodiment is subjected to a hydrophilic treatment. As a result, the affinity with the electrolytic solution 10 that oozes out from the positive electrode 4 is improved, and the electrolytic solution 10 is likely to exist at the interface between the positive electrode 4 and the oxygen permeable membrane 3.

また、シールフィルム2は、必ずしも設ける必要がないが、設けることにより容器本体1及び酸素透過膜3と密着させることができるため、容器本体1の孔部10から入った酸素が、容器本体1と酸素透過膜3との間を拡散することなく、最短距離で酸素透過膜3に導くことができる。   In addition, the seal film 2 is not necessarily provided. However, since the seal film 2 can be brought into close contact with the container main body 1 and the oxygen permeable membrane 3, oxygen contained in the hole 10 of the container main body 1 Without being diffused between the oxygen permeable membrane 3, it can be guided to the oxygen permeable membrane 3 with the shortest distance.

セパレータ5は、電解液10を保持できるものであり、必ずしも設ける必要はないが、正極4の容器本体1aの孔部1cに相当する位置に配置することにより、正極4が酸素と反応する位置に電解液10が常に存在できるようにしてある。本実施形態では不織布状のものを使用しているが、電解液10を保持することができればよく、例えば、スポンジ状のものであってもよい。また、セパレータ5の材質は特に限定されず、例えば、表面をフッ素化処理したフッ素化オレフィン等、従来公知のものが任意に選択可能であり、形状、大きさ等についても特に限定されない。   The separator 5 can hold the electrolytic solution 10 and is not necessarily provided. However, the separator 5 is disposed at a position corresponding to the hole 1c of the container body 1a of the positive electrode 4 so that the positive electrode 4 reacts with oxygen. The electrolyte solution 10 can always exist. In the present embodiment, a non-woven fabric is used, but it is sufficient that the electrolytic solution 10 can be held, and for example, a sponge-like material may be used. Moreover, the material of the separator 5 is not specifically limited, For example, conventionally well-known things, such as a fluorinated olefin by which the surface was fluorinated, can be selected arbitrarily, and a shape, a magnitude | size, etc. are not specifically limited.

押圧部材6は、蓋部1bを取付けた際に、容器本体1a、シールフィルム2、酸素透過膜3、正極4を押圧して密着させると共に、負極7と蓋部1bとを密着させるためのものであり、その形状は特に限定されない。また、本実施形態では、電解液10が正極4側と負極7側とを行き来可能にするため、押圧部材6の中央部付近に4つの孔が設けてあるが、これに限らず、電解液10のイオンが行き来できるようにして、正極4と負極7との間に電流が流れるように構成してあればよい。材質は電解液10の種類に応じて選択され、例えば、酸性水溶液の場合にはポリカーボネート、塩基性水溶液の場合にはポリアクリルを使用することができる。   The pressing member 6 is used to press and bring the container body 1a, the seal film 2, the oxygen permeable membrane 3 and the positive electrode 4 into close contact with each other when the cover 1b is attached, and to make the negative electrode 7 and the cover 1b in close contact with each other. The shape is not particularly limited. In the present embodiment, four holes are provided in the vicinity of the central portion of the pressing member 6 so that the electrolytic solution 10 can be moved back and forth between the positive electrode 4 side and the negative electrode 7 side. What is necessary is just to comprise so that an electric current may flow between the positive electrode 4 and the negative electrode 7 so that ten ions can come and go. The material is selected according to the type of the electrolytic solution 10. For example, polycarbonate can be used in the case of an acidic aqueous solution, and polyacryl can be used in the case of a basic aqueous solution.

負極7は、蓋部1dの注入口から電解液10を注入する際に、妨げにならないように開口部が設けてある。また、負極7の端部は押圧部材6に外嵌可能に設けられており、センサ組み立ての際、及びセンサの使用の際、負極7が位置ずれしないようにしてある。尚、負極7の形状は、位置が固定され、かつ蓋部1bと接触できるにようにできれば、特に限定されるものではない。また、負極7の材質は、従来公知の負極材料が使用でき、特に本実施形態のように鉛等の卑金属を含むものが好ましく適用できる。卑金属としては、鉛の他、亜鉛、アルミニウム等が例示される。   The negative electrode 7 is provided with an opening so as not to obstruct the electrolyte 10 when the electrolyte 10 is injected from the inlet of the lid 1d. Further, the end of the negative electrode 7 is provided so as to be externally fitted to the pressing member 6, so that the negative electrode 7 is not displaced when the sensor is assembled and when the sensor is used. The shape of the negative electrode 7 is not particularly limited as long as the position is fixed and the negative electrode 7 can come into contact with the lid portion 1b. As the material of the negative electrode 7, a conventionally known negative electrode material can be used, and in particular, a material containing a base metal such as lead as in this embodiment can be preferably applied. Examples of the base metal include zinc, aluminum and the like in addition to lead.

集電体8は、正極4と容器本体1aとを接続するためのもので、ステンレスによって構成してある。また、集電体8は、正極4と電解液10との接触を妨げないように中空に設けてある。さらに、集電体8は、容器本体1aとより確実に接触できるように、容器本体1aの内面に当接する当接部8aが設けられている。尚、本実施形態では、当接部8aを一つ設ける構成としたが、これに限らず、例えば、複数の当接部8aを設けたり、当接部8aを異なる形状に設けてもよく、また、当接部8aを必ずしも設ける必要はない。また、集電体8の材質は、正極4と容器本体1aとを電気的に接続させることができればよく、ステンレスに限らず、その他の導電体を適用することができる。集電体8の形状については、本実施形態では中空の輪状に設けた例を示したが、複数の開口部を設ける等、正極4と電解液10との接触を妨げず、正極4と容器本体1aとを確実に接続させることができるものであれば、特に限定はされない。   The current collector 8 is for connecting the positive electrode 4 and the container body 1a and is made of stainless steel. The current collector 8 is provided in a hollow so as not to prevent the contact between the positive electrode 4 and the electrolytic solution 10. Further, the current collector 8 is provided with an abutting portion 8a that abuts against the inner surface of the container main body 1a so that the current collector 8 can contact the container main body 1a more reliably. In addition, in this embodiment, although it was set as the structure which provides the one contact part 8a, it is not restricted to this, For example, you may provide the some contact part 8a, or the contact part 8a in a different shape, Further, the contact portion 8a is not necessarily provided. Moreover, the material of the electrical power collector 8 should just be able to electrically connect the positive electrode 4 and the container main body 1a, and not only stainless steel but another conductor can be applied. As for the shape of the current collector 8, an example in which the current collector 8 is provided in a hollow ring shape has been shown. However, the positive electrode 4 and the container are not obstructed by preventing contact between the positive electrode 4 and the electrolytic solution 10, such as providing a plurality of openings. If it can connect with the main body 1a reliably, there will be no limitation in particular.

ガスケット9は、蓋部1bを取り付けることにより集電体8を押圧して、正極4と集電体8とを密着させると共に、容器本体1aと蓋部1bとを電気的に絶縁するものである。このため、ガスケット9の材質は、絶縁体である必要があり、例えば、ポリプロピレン等の樹脂を適用することができる。尚、ガスケット9の形状は、集電体8を押圧できると共に、容器本体1aと蓋部1bとを離間させることができれば、本実施形態の形状に限定されるものではなく、任意の形状のものを適用することができる。   The gasket 9 presses the current collector 8 by attaching the lid portion 1b so that the positive electrode 4 and the current collector 8 are in close contact with each other, and electrically insulates the container body 1a and the lid portion 1b. . For this reason, the material of the gasket 9 needs to be an insulator, and for example, a resin such as polypropylene can be applied. The shape of the gasket 9 is not limited to the shape of the present embodiment as long as the current collector 8 can be pressed and the container body 1a and the lid portion 1b can be separated from each other. Can be applied.

電解液10は、塩基性水溶液及び酸性水溶液のいずれも使用することができ、例えば、塩基性水溶液としてKOH水溶液、酸性水溶液としてCH3COOHとCH3COOKとの緩衝溶液のように、従来のガルバニ電池式酸素センサに適用できる電解液10を使用することができる。   The electrolytic solution 10 can use either a basic aqueous solution or an acidic aqueous solution. For example, a conventional galvanic cell type oxygen sensor such as a KOH aqueous solution as a basic aqueous solution and a buffer solution of CH3COOH and CH3COOK as an acidic aqueous solution can be used. It is possible to use an electrolytic solution 10 applicable to the above.

尚、その他の構成、機能については、従来公知のガルバニ電池式酸素センサと同様である。そして、本発明に係るガルバニ電池式酸素センサは、既知の回路等に組み込むことにより、酸素濃度計等に適用することができる。   Other configurations and functions are the same as those of a conventionally known galvanic cell type oxygen sensor. The galvanic cell type oxygen sensor according to the present invention can be applied to an oxygen concentration meter or the like by being incorporated in a known circuit or the like.

以下、実施例について説明する。
(実施例1)
本実施形態に係るガルバニ電池式酸素センサにおいて、電解液10に酸性水溶液として4モル/LのCH3COOHと4モル/LのCH3COOKとの緩衝溶液を使用し、正極4に金箔、銀箔、白金箔、銅箔をそれぞれ用いた場合について、正極と負極の間に1kΩの抵抗を取り付け、窒素ガス(酸素濃度0%)、酸素濃度9.24%のガス、空気(酸素濃度21%)のそれぞれの雰囲気下において回路上に流れる電流値をセンサ出力として測定した。
その結果、図3に示すとおり、酸素濃度の増加に対して直線的に出力値が増加し、いずれの金属箔においても電極材料として機能することが分かった。
また、電解液10に塩基性水溶液として3モル/LのKOH水溶液を用いた場合についても、同様に測定を行ったが、酸性水溶液を使用した場合と同様の結果が得られた。
Examples will be described below.
Example 1
In the galvanic cell type oxygen sensor according to the present embodiment, a buffer solution of 4 mol / L CH3COOH and 4 mol / L CH3COOK is used as an acidic aqueous solution for the electrolyte solution 10, and a gold foil, a silver foil, a platinum foil, When copper foil is used, a resistance of 1 kΩ is attached between the positive electrode and the negative electrode, and each atmosphere of nitrogen gas (oxygen concentration 0%), oxygen concentration 9.24% gas, and air (oxygen concentration 21%) Below, the value of the current flowing on the circuit was measured as the sensor output.
As a result, as shown in FIG. 3, it was found that the output value increased linearly with increasing oxygen concentration, and any metal foil functions as an electrode material.
Moreover, although the same measurement was performed when a 3 mol / L KOH aqueous solution was used as the basic aqueous solution for the electrolytic solution 10, the same result as that obtained when the acidic aqueous solution was used was obtained.

(実施例2)
実施例1で使用したガルバニ電池式酸素センサにおいて、正極4に金箔、銀箔、白金箔、銅箔をそれぞれ用いた場合について、雰囲気ガスを空気(酸素濃度21%)から窒素ガス(酸素濃度0%)に置換した際の酸素濃度が90%低下したことを検知するまでの応答時間を測定した。その結果、図4に示すように、いずれの場合もJISで定める酸素センサの90%応答時間である20秒(ひし形で表示)以内であることが分かった。
(Example 2)
In the galvanic cell type oxygen sensor used in Example 1, the atmosphere gas was changed from air (oxygen concentration 21%) to nitrogen gas (oxygen concentration 0%) when the positive electrode 4 was made of gold foil, silver foil, platinum foil, and copper foil. ) Was measured for the response time until it was detected that the oxygen concentration was reduced by 90%. As a result, as shown in FIG. 4, it was found that in any case, it was within 20 seconds (represented by diamonds), which is the 90% response time of the oxygen sensor defined by JIS.

(実施例3)
実施例1で使用したガルバニ電池式酸素センサにおいて、正極4に金箔を用いた場合について、雰囲気ガスを空気(酸素濃度21%)から酸素濃度9.24%のガスに置換した際に、酸素濃度が18%と検知するまでの応答時間を調べた。その結果、図5に示すように、JISで定める酸素センサの濃度が18%に低下した際の応答時間である5秒(ひし形で表示)よりも速いことが分かった。
(Example 3)
In the galvanic cell type oxygen sensor used in Example 1, when a gold foil was used for the positive electrode 4, the oxygen concentration was changed when the atmosphere gas was replaced with air having an oxygen concentration of 9.24% from air (oxygen concentration of 21%). The response time until 18% was detected was examined. As a result, as shown in FIG. 5, it was found that it was faster than 5 seconds (indicated by diamonds), which is the response time when the concentration of the oxygen sensor determined by JIS was reduced to 18%.

(実施例4)
実施例1で使用したガルバニ電池式酸素センサにおいて、正極4に金箔、銀箔、白金箔、銅箔をそれぞれ用いた場合について、二酸化炭素ガスの干渉性を調べるため、雰囲気ガスを空気(酸素濃度21%)から酸素濃度3.5%と二酸化炭素濃度10%とを混合した窒素ガスに置換し、さらに空気(酸素濃度21%)に置換した場合の応答、回復曲線を示した。その結果、図6に示すように、いずれの金属箔を使用した場合であっても、初期のセンサ出力値に回復することが分かった。
Example 4
In the galvanic cell type oxygen sensor used in Example 1, in the case where a gold foil, a silver foil, a platinum foil, and a copper foil were used for the positive electrode 4, the atmosphere gas was air (oxygen concentration 21 %) To a nitrogen gas mixed with an oxygen concentration of 3.5% and a carbon dioxide concentration of 10%, and further to air (oxygen concentration 21%), the response and recovery curves are shown. As a result, as shown in FIG. 6, it was found that even if any metal foil was used, the initial sensor output value was recovered.

(実施例5)
実施例1で使用したガルバニ電池式酸素センサにおいて、正極4に金箔、銀箔、白金箔、銅箔をそれぞれ用いた場合について、空気(酸素濃度21%)に対する出力値の経時変化を調べた。その結果、図7に示すようにいずれの場合も比較的安定な出力を維持しており、特に金箔及び白金箔を使用した場合に、より安定した出力を維持することが分かった。
(Example 5)
In the galvanic cell type oxygen sensor used in Example 1, the time-dependent change of the output value with respect to air (21% oxygen concentration) was examined in the case where a gold foil, a silver foil, a platinum foil, and a copper foil were used for the positive electrode 4, respectively. As a result, as shown in FIG. 7, it was found that a relatively stable output was maintained in each case, and more stable output was maintained particularly when a gold foil and a platinum foil were used.

〔別実施形態〕
上記実施形態では、正極4と負極7との間に、セパレータ5及び押圧部材6を設けたが、図8に示すように、セパレータ5及び押圧部材6の代わりに、スポンジ等の吸水材12を備えることとしてもよい。また、本実施形態では、吸水材12を用いることに伴い、負極7の形状を蓋部1bによって固定されるように円板状に設けてある。
この場合、予め電解液10を含ませた電解液保持材12を配置することにより、後から電解液10を注入する手間を省くことができる。このため、蓋部1bの注入口1d、及び封入球11も不要となり構成を簡略化することができる。尚、その他の構成は、上記実施形態と同様である。
また、吸水材12は、スポンジに限らず、吸水性能を有するものであれば適用でき、不織布等を適用することができる。
尚、本実施形態においては、吸水材12を1つの部材から構成する場合を例に示したが、2つ以上の吸水材12を、重ねて設けてもよい。
[Another embodiment]
In the above embodiment, the separator 5 and the pressing member 6 are provided between the positive electrode 4 and the negative electrode 7, but as shown in FIG. 8, a water absorbing material 12 such as a sponge is used instead of the separator 5 and the pressing member 6. It is good also as providing. Moreover, in this embodiment, with the use of the water absorbing material 12, the shape of the negative electrode 7 is provided in a disc shape so as to be fixed by the lid portion 1b.
In this case, it is possible to save the trouble of injecting the electrolytic solution 10 later by arranging the electrolytic solution holding material 12 containing the electrolytic solution 10 in advance. For this reason, the injection port 1d of the lid portion 1b and the enclosing ball 11 are not required, and the configuration can be simplified. Other configurations are the same as those in the above embodiment.
Moreover, the water absorbing material 12 is not limited to a sponge, and any material having water absorbing performance can be applied, and a nonwoven fabric or the like can be applied.
In addition, in this embodiment, although the case where the water absorbing material 12 was comprised from one member was shown as an example, you may provide two or more water absorbing materials 12 in piles.

本発明に係るガルバニ電池式酸素センサは、従来のガスセンサ、ガス警報器、ガス測定器等に適用することができる。   The galvanic cell type oxygen sensor according to the present invention can be applied to conventional gas sensors, gas alarms, gas measuring devices and the like.

本実施形態に係るガルバニ電池式酸素センサの概略図Schematic of galvanic cell type oxygen sensor according to this embodiment 金属箔の表面の状態を示す写真Photo showing the state of the surface of the metal foil 本実施形態に係るガルバニ電池式酸素センサの直線性を示すグラフThe graph which shows the linearity of the galvanic-cell-type oxygen sensor which concerns on this embodiment 窒素ガスに対する90%応答時間を示すグラフGraph showing 90% response time for nitrogen gas 酸素濃度18%に対する応答時間を示すグラフGraph showing response time for oxygen concentration 18% 二酸化炭素ガスに対する干渉性を示すグラフGraph showing coherence to carbon dioxide gas 空気(酸素濃度21%)に対する出力値の経時変化を示すグラフGraph showing change with time of output value for air (21% oxygen concentration) 別実施形態に係るガルバニ電池式酸素センサの概略図Schematic of galvanic cell type oxygen sensor according to another embodiment

1 容器
3 酸素透過膜
4 正極
7 負極
8 集電体
10 電解液
DESCRIPTION OF SYMBOLS 1 Container 3 Oxygen permeable film 4 Positive electrode 7 Negative electrode 8 Current collector 10 Electrolyte

Claims (4)

容器内に、金属を含む正極と、負極と、前記正極及び負極と接触する電解液とを備え、前記正極の一方の面に前記電解液を透過しない酸素透過膜を重ねて設けたガルバニ電池式酸素センサであって、
前記正極は、金属箔であると共に、前記電解液が透過可能な連通孔を有し、前記一方の面の側で酸素と反応可能に設けてあるガルバニ電池式酸素センサ。
A galvanic cell type comprising a positive electrode containing a metal, a negative electrode, and an electrolyte solution in contact with the positive electrode and the negative electrode, and an oxygen permeable film that does not transmit the electrolyte solution is provided on one surface of the positive electrode. An oxygen sensor,
The galvanic cell type oxygen sensor, wherein the positive electrode is a metal foil and has a communication hole through which the electrolytic solution can pass, and is provided so as to be able to react with oxygen on the one surface side.
前記酸素透過膜は、前記正極を重ねた側の面に親水処理を施してある請求項1に記載のガルバニ電池式酸素センサ。 The galvanic cell type oxygen sensor according to claim 1, wherein the oxygen permeable membrane is subjected to a hydrophilic treatment on a surface on which the positive electrode is superimposed. 前記容器は、金属製の容器本体と、当該容器本体と絶縁された金属製の蓋部とを備え、前記正極が前記容器本体に接続し、前記負極が前記蓋部に接続してある請求項1または2に記載のガルバニ電池式酸素センサ。 The container includes a metal container body and a metal lid part insulated from the container body, wherein the positive electrode is connected to the container body, and the negative electrode is connected to the lid part. 3. A galvanic cell type oxygen sensor according to 1 or 2 . 前記正極は、前記容器本体の内面と当接する当接部を有し、前記正極の他方の面に重ねて設けた集電体を介して前記容器本体と接続してある請求項に記載のガルバニ電池式酸素センサ。 The positive electrode has an inner surface abutment portion abutting of the container body, said superimposed on the other surface of the positive electrode through a current collector provided according to claim 3 which is connected to the container body Galvanic cell oxygen sensor.
JP2005103175A 2005-03-31 2005-03-31 Galvanic cell oxygen sensor Expired - Fee Related JP4630108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005103175A JP4630108B2 (en) 2005-03-31 2005-03-31 Galvanic cell oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005103175A JP4630108B2 (en) 2005-03-31 2005-03-31 Galvanic cell oxygen sensor

Publications (2)

Publication Number Publication Date
JP2006284312A JP2006284312A (en) 2006-10-19
JP4630108B2 true JP4630108B2 (en) 2011-02-09

Family

ID=37406402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005103175A Expired - Fee Related JP4630108B2 (en) 2005-03-31 2005-03-31 Galvanic cell oxygen sensor

Country Status (1)

Country Link
JP (1) JP4630108B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2214008A3 (en) * 2009-01-08 2015-09-02 Life Safety Distribution AG Electrochemical gas sensor
US8888978B2 (en) * 2011-03-11 2014-11-18 Life Safety Distribution Ag Vented oxygen cell
DE102014205361A1 (en) * 2014-03-21 2015-09-24 Robert Bosch Gmbh Sensor device and method for producing a sensor device
JP6576054B2 (en) * 2015-03-06 2019-09-18 新コスモス電機株式会社 Constant potential electrolytic gas sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111952A (en) * 1983-11-22 1985-06-18 Riken Keiki Kk Galvanic cell type gas sensor
JPS6228657A (en) * 1985-07-30 1987-02-06 Pentel Kk Oxygen sensor
JPH01239446A (en) * 1988-03-18 1989-09-25 Denki Kagaku Keiki Co Ltd Gas sensor
JPH06109694A (en) * 1992-09-30 1994-04-22 Japan Storage Battery Co Ltd Galvanic cell type oxygen sensor
JPH0949823A (en) * 1995-08-07 1997-02-18 Japan Storage Battery Co Ltd Electrochemical gas sensor
JPH09127045A (en) * 1995-10-26 1997-05-16 Nok Corp Dissolved oxygen sensor
JP2003194771A (en) * 2001-12-26 2003-07-09 Shimadzu Corp Constant potential electrolytic gas sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111952A (en) * 1983-11-22 1985-06-18 Riken Keiki Kk Galvanic cell type gas sensor
JPS6228657A (en) * 1985-07-30 1987-02-06 Pentel Kk Oxygen sensor
JPH01239446A (en) * 1988-03-18 1989-09-25 Denki Kagaku Keiki Co Ltd Gas sensor
JPH06109694A (en) * 1992-09-30 1994-04-22 Japan Storage Battery Co Ltd Galvanic cell type oxygen sensor
JPH0949823A (en) * 1995-08-07 1997-02-18 Japan Storage Battery Co Ltd Electrochemical gas sensor
JPH09127045A (en) * 1995-10-26 1997-05-16 Nok Corp Dissolved oxygen sensor
JP2003194771A (en) * 2001-12-26 2003-07-09 Shimadzu Corp Constant potential electrolytic gas sensor

Also Published As

Publication number Publication date
JP2006284312A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
CA2309646C (en) A gas sensor
CA2515170C (en) Laminated membranes for diffusion limited gas sensors resistant to pressure variations
JP3706137B2 (en) Gas sensor
US8266795B2 (en) Methods of making an electrochemical gas sensor
US20060021873A1 (en) Electrochemical gas sensor and process for manufacturing same
JPH06300735A (en) Electrochemical noxious-gas sensor
US20180266984A1 (en) Electrochemical sensor and electronics on a ceramic substrate
GB1354042A (en) Polarographic sensor and membrane therefor
JP4630108B2 (en) Galvanic cell oxygen sensor
KR100895984B1 (en) Proton conductor gas sensor
JP3865114B2 (en) Electrochemical gas sensor
JP6332911B2 (en) Electrochemical gas sensor
US20190041351A1 (en) Mems electrochemical gas sensor
JP2017161457A (en) Electrochemical sensor
JP3164255B2 (en) Electrochemical gas detector
US6436258B1 (en) Galvanic-cell gas sensor
JP6212768B2 (en) Electrochemical gas sensor
KR200175157Y1 (en) Oxygen sensor
JP2016211958A (en) Electrochemical gas sensor
JP3042616B2 (en) Constant potential electrolytic gas sensor
JP4155562B2 (en) Electrochemical gas sensor
JP2002350384A (en) Oxygen sensor of galvanic cell type
GB2444137A (en) Electrochemical gas sensor having at least one measuring electrode in point form
JPH0570787B2 (en)
JP6473351B2 (en) Constant potential electrolytic gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4630108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees