JP2533669B2 - Chlorine demand meter - Google Patents

Chlorine demand meter

Info

Publication number
JP2533669B2
JP2533669B2 JP2108094A JP10809490A JP2533669B2 JP 2533669 B2 JP2533669 B2 JP 2533669B2 JP 2108094 A JP2108094 A JP 2108094A JP 10809490 A JP10809490 A JP 10809490A JP 2533669 B2 JP2533669 B2 JP 2533669B2
Authority
JP
Japan
Prior art keywords
chlorine
sample water
reaction
free chlorine
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2108094A
Other languages
Japanese (ja)
Other versions
JPH046454A (en
Inventor
聡 西方
康裕 篠原
義 高田
才 酒井
豊明 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKOSUMOSU DENKI KK
Fuji Electric Co Ltd
Original Assignee
SHINKOSUMOSU DENKI KK
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKOSUMOSU DENKI KK, Fuji Electric Co Ltd filed Critical SHINKOSUMOSU DENKI KK
Priority to JP2108094A priority Critical patent/JP2533669B2/en
Publication of JPH046454A publication Critical patent/JPH046454A/en
Application granted granted Critical
Publication of JP2533669B2 publication Critical patent/JP2533669B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は浄水場等における塩素注入量決定のための
塩素要求量計に係り、特に結合塩素の影響を受けないで
遊離塩素量を精度良く測定できる塩素要求量計に関す
る。
TECHNICAL FIELD The present invention relates to a chlorine demand meter for determining a chlorine injection amount in a water purification plant or the like, and in particular, accurately determines the amount of free chlorine without being affected by bound chlorine. It relates to a chlorine demand meter that can be measured.

〔従来の技術〕[Conventional technology]

一般に、塩素処理は不連続点塩素処理法が用いられて
いる。この不連続点塩素処理法を第2図を用いて説明す
る。第4図は水中に塩素を注入したときの塩素濃度の変
化を示すものであり、試料水中の塩素濃度と塩素注入量
との関係を示す線図である。図中特性線Aは純水に塩素
を注入した場合であり、注入量がそのまま遊離塩素にな
る。特性線Bは水中に有機あるいはアンモニア以外の無
機の比較的塩素で酸化されやすい物質が含まれる場合で
あり、注入量の一部が酸化で消費され残りが遊離塩素に
なる。
In general, discontinuous point chlorination method is used for chlorination. This discontinuous point chlorine treatment method will be described with reference to FIG. FIG. 4 shows changes in chlorine concentration when chlorine is injected into water, and is a diagram showing the relationship between the chlorine concentration in sample water and the chlorine injection amount. Characteristic line A in the figure is the case where chlorine is injected into pure water, and the injection amount becomes free chlorine as it is. Characteristic line B is the case where the water contains an organic or inorganic substance other than ammonia which is relatively easily oxidized by chlorine, and a part of the injection amount is consumed by the oxidation and the rest becomes free chlorine.

一方、特性線Cは水中にアンモニア性窒素が含まれて
いる場合である。p点まではモノクロラミン(NH2C
l)、ダイクロラミン(NHCl2)といった結合塩素が生成
するが、p点を過ぎると次式の反応により結合塩素は消
費され、塩素濃度は減少する。
On the other hand, the characteristic line C is a case where ammonia nitrogen is contained in water. Monochloramine (NH 2 C up to point p
Combined chlorine such as l) and dichloramine (NHCl 2 ) is produced, but after the point p, the combined chlorine is consumed by the reaction of the following formula and the chlorine concentration decreases.

NH2Cl+NHCl2→N2+3HCl ……(1) NH2Cl+NHCl2+HClO→N2O+4HCl ……(2) さらに不連続点と呼ばれるq点を過ぎると、塩素注入
に従い遊離塩素(HClO)が増加していく。このような不
連続点塩素処理法は、殺菌が確実であることから一般に
浄水処理で採用されている。このとき設定遊離塩素濃度
になるまでの塩素注入量を塩素要求量という。
NH 2 Cl + NHCl 2 → N 2 + 3HCl …… (1) NH 2 Cl + NHCl 2 + HClO → N 2 O + 4HCl …… (2) After passing q point called discontinuity, free chlorine (HClO) increases with chlorine injection. To go. Such discontinuous point chlorine treatment method is generally adopted in water purification treatment because it is surely sterilized. At this time, the chlorine injection amount until the set free chlorine concentration is reached is called the chlorine demand amount.

このような塩素要求量を自動的に測定する装置とし
て、従来、第8図に示すような塩素要求量計が知られて
いる。
As a device for automatically measuring such a chlorine demand, a chlorine demand meter as shown in FIG. 8 is conventionally known.

第8図において、塩素発生器1で試薬タンク2内の塩
化ナトリウム溶液を電気分解して塩素を発生させる。反
応槽3ではこの塩素と試料水とが混合され、UVランプ4
からの紫外線照射により塩素消費反応が促進され、さら
にポーラログラフ式遊離塩素検出器5により試料水中の
遊離塩素が検出される。増幅器6で遊離塩素検出器5の
信号を増幅して調節器7に送り、調節器7では遊離塩素
検出器5で検出した遊離塩素濃度が設定濃度になるよう
に塩素発生器1の電解電流を調節する。このときの電解
電流が塩素要求量に比例することを利用して塩素要求量
が測定されるものである。
In FIG. 8, the chlorine generator 1 electrolyzes the sodium chloride solution in the reagent tank 2 to generate chlorine. In the reaction tank 3, this chlorine and sample water are mixed, and the UV lamp 4
The chlorine consumption reaction is promoted by the irradiation of ultraviolet rays from the above, and the polarographic free chlorine detector 5 further detects free chlorine in the sample water. The amplifier 6 amplifies the signal of the free chlorine detector 5 and sends it to the controller 7, which adjusts the electrolytic current of the chlorine generator 1 so that the free chlorine concentration detected by the free chlorine detector 5 becomes a set concentration. Adjust. The chlorine demand is measured by utilizing the fact that the electrolytic current at this time is proportional to the chlorine demand.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら従来の塩素要求量計においては遊離塩素
の検出にポーラログラフ式遊離塩素検出器を用いている
ために結合塩素の影響を受け遊離塩素を精度良く測定で
きないという問題があった。ポーラログラフ式遊離塩素
検出器は電極間に適当な電圧を印加し遊離塩素を還元し
てその還元電流から遊離塩素量を測定するものである
が、遊離塩素と結合塩素の還元電圧が近いため感度は低
いものの結合塩素をも検出するからである。結合塩素を
検出すると不連続点qに至る前の塩素注入量であっても
塩素要求量と判定してしまう場合がある。
However, in the conventional chlorine demand meter, since a polarographic free chlorine detector is used to detect free chlorine, there is a problem that free chlorine cannot be accurately measured due to the influence of bound chlorine. The polarographic free chlorine detector applies an appropriate voltage between the electrodes to reduce the amount of free chlorine and measures the amount of free chlorine from its reduction current. This is because the bound chlorine, which is low, is also detected. When the combined chlorine is detected, the chlorine injection amount before the discontinuity point q may be determined as the required chlorine amount.

特に最近は河川,湖沼等の環境水の汚染が進み、アン
モニア濃度が高くなっていることから結合塩素の生成量
が多い。このため結合塩素に妨害されて遊離塩素を正確
に測定できず、殺菌が十分に行われているかどうかが把
握できないという事態が生じ、大きな問題になってい
る。
Particularly in recent years, pollution of environmental water such as rivers and lakes has increased, and the concentration of ammonia has increased, so that the amount of bound chlorine produced is large. For this reason, there is a situation in which free chlorine cannot be accurately measured due to interference with bound chlorine, and it is impossible to determine whether or not sterilization is sufficiently performed, which is a serious problem.

またこの検出器は試料水中に浸漬されていることか
ら、電極表面が次第に汚染され、頻繁に洗浄しなければ
ならないという問題もあった。
Further, since this detector is immersed in the sample water, there is a problem that the electrode surface is gradually contaminated and must be cleaned frequently.

この発明は上述の点に鑑みてなされ、その目的は遊離
塩素検出器を改良することにより、結合塩素は検出せ
ず、遊離塩素を精度良く測定できる塩素要求量計を提供
することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a chlorine demand meter capable of accurately measuring free chlorine without detecting bound chlorine by improving a free chlorine detector.

〔課題を解決するための手段〕[Means for solving the problem]

上述の目的はこの発明によれば反応槽3と、In2O3
主成分とする金属酸化物半導体式ガスセンサ11と、塩素
発生器1とを有し、反応槽は反応部12と抽出部13とにわ
かれ、ここに反応部は紫外線を照射して遊離塩素を試料
水中の溶存物質と反応させるものであり、抽出部は反応
部における溶存物質との反応後に残った遊離塩素をキャ
リアガス中に移行抽出するものであり、 In2O3を主成分とする金属酸化物半導体式ガスセンサ
は前記キャリアガスに移行した遊離塩素量を検出し、 塩素発生器は帰還制御のアクチュエータであり、電解
反応により塩素を発生し、反応槽内の試料水の遊離塩素
量を所定値に維持するもので、この際塩素発生の電解電
流と試料水の流量とから塩素要求量が算出されるように
塩素要求量計を構成することにより達成される。
According to the present invention, the above-mentioned object has a reaction tank 3, a metal oxide semiconductor gas sensor 11 containing In 2 O 3 as a main component, and a chlorine generator 1. The reaction tank comprises a reaction section 12 and an extraction section. 13, the reaction part irradiates ultraviolet rays to react free chlorine with the dissolved substances in the sample water, and the extraction part removes the free chlorine remaining in the carrier gas after the reaction with the dissolved substances in the reaction part. The metal oxide semiconductor gas sensor containing In 2 O 3 as the main component detects the amount of free chlorine transferred to the carrier gas, and the chlorine generator is an actuator for feedback control, and the electrolytic reaction To generate chlorine to maintain the free chlorine content of the sample water in the reaction tank at a specified value. At this time, the chlorine requirement is calculated so that the chlorine requirement can be calculated from the electrolytic current for chlorine generation and the flow rate of the sample water. Achieved by configuring a meter .

試料水中の遊離塩素をキャリアガス中に移行させる方
法としては、 多孔質チューブを試料水中に浸漬し、このチューブの
中にキャリアガスを通じるチュービング法、 試料水上部の気相部で接触させるヘッドスペース法、 試料水中に気体を吹き込むバブリング法、 などがある。
As a method of transferring free chlorine in the sample water into the carrier gas, a tubing method in which a porous tube is immersed in the sample water and the carrier gas is passed through this tube, a head space where the gas phase part above the sample water contacts Method, a bubbling method in which a gas is blown into the sample water.

半導体式ガスセンサは、電位絶縁性基板の表面にIn2O
3を主成分とする金属酸化物半導体薄膜を形成したもの
で、この半導体薄膜の抵抗変化によりガス成分の検出が
行われる。
The semiconductor gas sensor uses In 2 O on the surface of the potential insulating substrate.
A metal oxide semiconductor thin film containing 3 as a main component is formed, and the gas component is detected by the resistance change of the semiconductor thin film.

試料水中の次亜塩素酸,結合塩素はともにキャリアガ
スとの接触によりキャリアガス中に移行する。In2O3
主成分とする金属酸化物半導体式ガスセンサは結合塩素
には応答しない。試料水からキャリアガス中に移行した
次亜塩素酸は、そのままの形であるいは分解した状態で
In2O3を主成分とする金属酸化物半導体式ガスセンサの
抵抗を変化させるものと推定される。
Both hypochlorous acid and bound chlorine in the sample water move into the carrier gas upon contact with the carrier gas. The metal oxide semiconductor gas sensor based on In 2 O 3 does not respond to bound chlorine. The hypochlorous acid transferred from the sample water into the carrier gas can be used as it is or in the decomposed state.
It is presumed that the resistance of the metal oxide semiconductor type gas sensor containing In 2 O 3 as a main component is changed.

〔作用〕[Action]

In2O3を主成分とする金属酸化物半導体式ガスセンサ
は結合塩素に応答しない。In2O3を主成分とする金属酸
化物半導体式ガスセンサはキャリアガス中の遊離塩素と
接触するので、電極表面が汚染されることがない。
The metal oxide semiconductor gas sensor based on In 2 O 3 does not respond to bound chlorine. Since the metal oxide semiconductor gas sensor containing In 2 O 3 as a main component comes into contact with free chlorine in the carrier gas, the electrode surface is not contaminated.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に基いて説明する。第1
図はこの発明の実意例に係る塩素要求量計を示す構成図
である。従来の塩素要求量計とはポーラログラフ式の遊
離塩素検出器5に替えて、抽出部13とIn2O3を主成分と
する金属酸化物半導体式ガスセンサ11とが設けられてい
る点が異なる。抽出部13は試料水中の遊離塩素をキャリ
アガス中に移行させる。ディフューザ10よりキャリアガ
スがバブルされ気液平衡により試料水中の遊離塩素(HC
lO)が気相中に移行する。
Next, an embodiment of the present invention will be described with reference to the drawings. First
FIG. 1 is a block diagram showing a chlorine demand meter according to a practical example of the present invention. It differs from the conventional chlorine demand meter in that the polarographic free chlorine detector 5 is replaced with an extraction unit 13 and a metal oxide semiconductor gas sensor 11 containing In 2 O 3 as a main component. The extraction unit 13 transfers free chlorine in the sample water into the carrier gas. Carrier gas is bubbled from the diffuser 10 and free chlorine (HC
lO) moves into the gas phase.

第7図は試料水中におけるHClO存在割合(%)の試料
水pH依存性を示す線図である。試料水中にあっては遊離
塩素である次悪塩素酸は次のような解離平衡の状態にあ
る。即ち、 HClOH++ClO- ……(3) この次亜塩素酸HClOは式(4)に示すように塩素と水の
反応によって生成するものである。
FIG. 7 is a diagram showing the pH dependence of the HClO existence ratio (%) in the sample water. Hypochlorous acid, which is free chlorine in sample water, is in the following dissociation equilibrium state. That is, HClOH + + ClO (3) This hypochlorous acid HClO is produced by the reaction of chlorine and water as shown in equation (4).

Cl2+H2CHClO+HCl ……(4) 式(3)の次亜塩素酸HClOと次亜塩素酸イオンClO-
は試料水のpHによって存在割合を異にする。例えば試料
水のpHが酸性側(pHが7より小さい領域)にあるとHClO
が大部分を占め、ClO-イオンは少なくなる。逆にアルカ
リ側(pHが7より大きい領域)ではClO-イオンの割合が
多くなり、HClOは少なくなる。気液平衡によって試料水
よりキャリアガスに移行するのは次亜塩素酸HClOであ
る。次亜塩素酸イオンClO-は気相中に移行することがで
きない。試料水からの遊離塩素の抽出に際してはpHが一
定であることが必要である。
Cl 2 + H 2 CHClO + HCl (4) The existence ratios of the hypochlorite HClO and the hypochlorite ion ClO − in the formula (3) differ depending on the pH of the sample water. For example, if the pH of the sample water is on the acidic side (region where the pH is less than 7), HClO
Occupies the majority, and less ClO ions. On the other hand, on the alkaline side (region where the pH is greater than 7), the ratio of ClO ions increases and the amount of HClO decreases. It is HClO hypochlorite that is transferred from the sample water to the carrier gas by vapor-liquid equilibrium. Hypochlorite ion ClO - can not migrate into the gas phase. It is necessary that the pH be constant when extracting free chlorine from sample water.

第6図はIn2O3を主成分とする金属酸化物半導体式ガ
スセンサを示し、第6図(a)は斜視図、第6図(b)
は断面図である。In2O3を主成分とする金属酸化物半導
体式ガスセンサは電気絶縁性基板、例えばアルミナ基板
21,アルミナ基板21の表面に蒸着により形成されたIn2O3
を主成分とする金属酸化物半導体薄膜22,半導体薄膜22
の抵抗変化を測定するPt膜電極23,アルミナ基板21の裏
面に形成された気相中の水分、油脂分による感度の経時
的劣化を避けるための白金膜ヒータ24により構成されて
いる。
FIG. 6 shows a metal oxide semiconductor gas sensor containing In 2 O 3 as a main component, FIG. 6 (a) is a perspective view, and FIG. 6 (b).
Is a sectional view. A metal oxide semiconductor type gas sensor whose main component is In 2 O 3 is an electrically insulating substrate such as an alumina substrate.
21, In 2 O 3 formed on the surface of alumina substrate 21 by vapor deposition
Metal oxide semiconductor thin film 22 mainly composed of, semiconductor thin film 22
It is composed of a Pt film electrode 23 for measuring the change in resistance of the platinum film heater 24 and a platinum film heater 24 formed on the back surface of the alumina substrate 21 for avoiding deterioration of sensitivity with time due to water and oil in the gas phase.

このIn2O3を主成分とする金属酸化物半導体式ガスセ
ンサでの遊離残留塩素の測定は、次のように行なわれ
る。反応槽3内の塩素と混合後、反応促進のため紫外線
照射され塩素消費反応が終了した試料水にキャリアガス
をディフューザー10から吹き込む。遊離塩素は揮発性で
あるから、このキャリアガス中に揮散する。このときガ
ス中の遊離塩素は試料水中の濃度に比例している。キャ
リアガスは次いでIn2O3を主成分とする金属酸化物半導
体式ガスセンサで遊離塩素が検出される。
The measurement of free residual chlorine by the metal oxide semiconductor type gas sensor containing In 2 O 3 as a main component is performed as follows. After mixing with chlorine in the reaction tank 3, the carrier gas is blown from the diffuser 10 into the sample water that has been irradiated with ultraviolet rays to accelerate the reaction and the chlorine consumption reaction has ended. Since free chlorine is volatile, it is volatilized in this carrier gas. At this time, the free chlorine in the gas is proportional to the concentration in the sample water. Free chlorine is then detected in the carrier gas by a metal oxide semiconductor gas sensor whose main component is In 2 O 3 .

In2O3を主成分とする金属酸化物半導体式ガスセンサ
では、遊離塩素は金属酸化物半導体薄膜に吸着され、こ
の半導体薄膜の抵抗を変化させる。抵抗変化の度合は遊
離塩素濃度に比例するから、キャリアガス中の押しボタ
ン濃度、ひいては試料水中の遊離塩素濃度が測定され
る。
In a metal oxide semiconductor type gas sensor containing In 2 O 3 as a main component, free chlorine is adsorbed on the metal oxide semiconductor thin film and changes the resistance of this semiconductor thin film. Since the degree of resistance change is proportional to the free chlorine concentration, the push button concentration in the carrier gas, and thus the free chlorine concentration in the sample water, can be measured.

第5図は試料水中の遊離塩素濃度(mg/l)とIn2O3
主成分とする金属酸化物半導体式ガスセンサのセンサ出
力との検量関係を示す線図である。センサ出力の対数は
遊離塩素濃度の対数に比例することがわかる。またこの
In2O3を主成分とする金属酸化物半導体式ガスセンサは
結合残留塩素は検出せず、モノクロラミン:4.9mg/l、ダ
イクロラミン:7mg/lのいずれにもセンサは応答しなかっ
た。
FIG. 5 is a diagram showing the calibration relationship between the free chlorine concentration (mg / l) in the sample water and the sensor output of the metal oxide semiconductor gas sensor whose main component is In 2 O 3 . It can be seen that the logarithm of the sensor output is proportional to the logarithm of the free chlorine concentration. Again this
The metal oxide semiconductor type gas sensor containing In 2 O 3 as a main component did not detect the residual residual chlorine, and the sensor did not respond to both monochloramine: 4.9 mg / l and dichloramine: 7 mg / l.

In2O3を主成分とする金属酸化物半導体式ガスセンサ
の出力は増幅器6で増幅され、調節器7で設定値との差
が零になるよう塩素発生器1の電解電流が調節される。
電解電流値を時間あたりの塩素発生量Mに変換したあ
と、このMを反応槽3を流れる試料水の流量Nで除して
M/Nを求めればこれが試料水の単位量あたりの塩素要求
量となる。バブリング方式の塩素要求量計は感度,応答
ともに優れるという特長がある。
The output of the metal oxide semiconductor gas sensor containing In 2 O 3 as a main component is amplified by the amplifier 6, and the electrolytic current of the chlorine generator 1 is adjusted by the controller 7 so that the difference from the set value becomes zero.
After converting the electrolysis current value into the chlorine generation amount M per hour, this M is divided by the flow rate N of the sample water flowing through the reaction tank 3.
When M / N is calculated, this is the chlorine demand per unit amount of sample water. The bubbling type chlorine demand meter is characterized by its excellent sensitivity and response.

第2図はこの発明の異なる実施例に係る塩素要求量計
を示す構成図である。第1図とはキャリアガス中に遊離
塩素を移行させる抽出部にヘッドスペース法をもちいて
いる点が異なる。抽出部13の試料水中の遊離塩素は水面
から気相部に拡散してくるので、第1図に示した装置と
同様に試料水中の遊離塩素が測定される。ヘッドスペー
ス方式の塩素要求量計は感度,応答性とともに中程度に
できる特長がある。
FIG. 2 is a block diagram showing a chlorine demand meter according to another embodiment of the present invention. It differs from FIG. 1 in that the headspace method is used in the extraction section for transferring free chlorine into the carrier gas. Since the free chlorine in the sample water of the extraction unit 13 diffuses from the water surface to the gas phase, the free chlorine in the sample water is measured as in the device shown in FIG. The headspace type chlorine demand meter has the features that it can be adjusted to a medium level, with sensitivity and responsiveness.

第3図はこの発明のさらに異なる実施例に係る塩素要
求量計を示す構成図である。第1図,第2図とは抽出部
13にチューブ14を用いる点が異なっている。チューブ14
は例えば多孔質のフッ素樹脂製であり、キャリアガスが
チューブを通流するときに試料水中の遊離塩素が多孔質
チューブの微気孔を透過し、キャリアガス中に拡散して
くる。チューブとしては例えば最大孔径2.0μm,気孔率5
0%,内径2mm,肉厚0.4mm,長さ600mmである。チュービン
グ方式の塩素要求量計は微気孔の調整によって感度を変
化させ得る利点を有している。
FIG. 3 is a block diagram showing a chlorine demand meter according to a further different embodiment of the present invention. What is Fig. 1 and Fig. 2?
The difference is that tube 13 is used for tube 13. Tube 14
Is made of, for example, a porous fluororesin, and when the carrier gas flows through the tube, free chlorine in the sample water permeates the micropores of the porous tube and diffuses into the carrier gas. As a tube, for example, maximum pore diameter 2.0 μm, porosity 5
0%, inner diameter 2 mm, wall thickness 0.4 mm, length 600 mm. The tubing type chlorine demand meter has an advantage that the sensitivity can be changed by adjusting the fine pores.

〔発明の効果〕〔The invention's effect〕

この発明によれば、反応槽と、In2O3を主成分とする
金属酸化物半導体式ガスセンサと、塩素発生器とを有
し、 反応槽は反応部と抽出部とにわかれ、ここに反応部は
紫外線を照射して遊離塩素を試料水中の溶存物質と反応
させるものであり、抽出部は反応部における溶存物質と
の反応後に残った遊離塩素をキャリアガス中に移行抽出
するものであり、 In2O3を主成分とする金属酸化物半導体式ガスセンサ
は前記キャリアガスに移行した遊離塩素量を検出し、 塩素発生器は帰還制御のアクチュエータであり、電解
反応により塩素を発生し、反応槽内の試料水の遊離塩素
量を所定値に維持するもので、この際塩素発生の電解電
流と試料水の流量とから塩素要求量が算出されるのでキ
ャリアガス中に移行した遊離塩素と結合塩素のうち遊離
塩素のみがIn2O3を主成分とする金属酸化物半導体式ガ
スセンサにより検知されることとなり、遊離塩素を精度
良く測定できる塩素要求量計が得られる。またIn2O3
主成分とする金属酸化物半導体式ガスセンサはキャリア
ガス中の遊離塩素に応答するのでセンサ表面が汚染され
ることがなく信頼性に優れる塩素要求量計が得られる。
According to this invention, it has a reaction tank, a metal oxide semiconductor type gas sensor containing In 2 O 3 as a main component, and a chlorine generator, and the reaction tank is divided into a reaction section and an extraction section, and the reaction section The part is for irradiating ultraviolet rays to react free chlorine with the dissolved substance in the sample water, and the extraction part is for moving and extracting the free chlorine remaining after the reaction with the dissolved substance in the reaction part into the carrier gas, The metal oxide semiconductor type gas sensor whose main component is In 2 O 3 detects the amount of free chlorine transferred to the carrier gas, and the chlorine generator is a feedback control actuator, which generates chlorine by electrolytic reaction, The amount of free chlorine in the sample water inside is maintained at a specified value. At this time, the chlorine demand is calculated from the electrolytic current for chlorine generation and the flow rate of the sample water. Only free chlorine Is detected by a metal oxide semiconductor gas sensor containing In 2 O 3 as a main component, and a chlorine demand meter capable of accurately measuring free chlorine can be obtained. Further, since the metal oxide semiconductor gas sensor containing In 2 O 3 as a main component responds to free chlorine in the carrier gas, a chlorine demand meter with excellent reliability can be obtained without contaminating the sensor surface.

【図面の簡単な説明】 第1図はこの発明の実施例に係る塩素要求量計を示す構
成図、第2図はこの発明の異なる実施例に係る塩素要求
量計を示す構成図、第3図はこの発明のさらに異なる実
施例に係る塩素要求量計を示す構成図、第4図は試料水
中の塩素濃度と塩素注入量との関係を示す線図、第5図
はバブリング方式の塩素要求量計につき、試料水の遊離
塩素濃度とセンサ出力との検量関係を示す線図、第6図
はIn2O3を主成分とする金属酸化物半導体式ガスセンサ
を示し、第6図(a)は斜視図、第6図(b)は断面
図、第7図は試料水のHClO存在割合と試料水pHとの関係
を示す線図、第8図は従来の塩素要求量計を示す構成図
である。 1:塩素発生器、2:試薬タンク、4:UVランプ、5:遊離塩素
検出器、6:増幅器、7:調節器、8:電源、10:ディフュー
ザー、11:In2O3を主成分とする金属酸化物半導体式ガス
センサ、21:アルミナ基板、22:半導体薄膜、23:Pt膜電
極、24:Pt膜ヒータ、12:反応部、13:抽出部。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram showing a chlorine demand meter according to an embodiment of the present invention, and FIG. 2 is a configuration diagram showing a chlorine demand meter according to another embodiment of the present invention. FIG. 4 is a block diagram showing a chlorine demand meter according to still another embodiment of the present invention, FIG. 4 is a diagram showing the relationship between chlorine concentration in sample water and chlorine injection amount, and FIG. 5 is a bubbling type chlorine demand. Fig. 6 is a diagram showing the calibration relationship between the free chlorine concentration of the sample water and the sensor output for the meter, Fig. 6 shows the metal oxide semiconductor type gas sensor containing In 2 O 3 as the main component, and Fig. 6 (a). Is a perspective view, FIG. 6 (b) is a cross-sectional view, FIG. 7 is a diagram showing the relationship between the proportion of HClO present in sample water and pH of sample water, and FIG. 8 is a configuration diagram showing a conventional chlorine demand meter. Is. 1: Chlorine generator, 2: Reagent tank, 4: UV lamp, 5: Free chlorine detector, 6: Amplifier, 7: Controller, 8: Power supply, 10: Diffuser, 11: In 2 O 3 as main components Metal oxide semiconductor gas sensor, 21: alumina substrate, 22: semiconductor thin film, 23: Pt film electrode, 24: Pt film heater, 12: reaction part, 13: extraction part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠原 康裕 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 高田 義 大阪府大阪市淀川区三津屋中2丁目5番 4号 新コスモス電機株式会社内 (72)発明者 酒井 才 大阪府大阪市淀川区三津屋中2丁目5番 4号 新コスモス電機株式会社内 (72)発明者 青木 豊明 大阪府枚方市楠葉野田3丁目37番32号 (56)参考文献 特開 平3−140855(JP,A) 特開 平2−248851(JP,A) 特開 平3−41360(JP,A) 特開 平2−285260(JP,A) 実開 平3−81554(JP,U) 特公 昭53−3277(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Shinohara 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. (72) Inventor Yoshitaka Takada 2-5, Mitsuyanaka, Yodogawa-ku, Osaka-shi, Osaka No. 4 Inside New Cosmos Electric Co., Ltd. (72) Inventor Sakai Satoshi 2-5-4 Mitsuyachu, Yodogawa-ku, Osaka-shi, Osaka Prefecture Inside New Cosmos Electric Co., Ltd. (72) Toyoaki Aoki, Kusunoda Noda, Hirakata-shi, Osaka 37-32 (56) Reference JP-A-3-140855 (JP, A) JP-A-2-248851 (JP, A) JP-A-3-41360 (JP, A) JP-A-2-285260 ( JP, A) Actual Kaihei 3-81554 (JP, U) Japanese Patent Sho 53-3277 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】反応槽と、In2O3を主成分とする金属酸化
物半導体式ガスセンサと、塩素発生器とを有し、 該反応槽は反応部と抽出部とにわかれ、ここに反応部は
紫外線を照射して遊離塩素を試料水中の溶存物質と反応
させるものであり、抽出部は反応部における溶存物質と
の反応後に残った遊離塩素をキャリアガス中に移行抽出
するものであり、 前記In2O3を主成分とする金属酸化物半導体式ガスセン
サは前記キャリアガスに移行した遊離塩素量を検出し、 前記塩素発生器は帰還制御のアクチュエータであり、電
解反応により塩素を発生し、反応槽内の試料水の遊離塩
素量を所定値に維持するもので、この際塩素発生の電解
電流と試料水の流量とから塩素要求量が算出されること
を特徴とする塩素要求量計。
1. A reaction tank, a metal oxide semiconductor type gas sensor containing In 2 O 3 as a main component, and a chlorine generator. The reaction tank is divided into a reaction section and an extraction section. The part is for irradiating ultraviolet rays to react free chlorine with the dissolved substance in the sample water, and the extraction part is for moving and extracting the free chlorine remaining after the reaction with the dissolved substance in the reaction part into the carrier gas, The metal oxide semiconductor gas sensor containing In 2 O 3 as a main component detects the amount of free chlorine transferred to the carrier gas, the chlorine generator is a feedback control actuator, and generates chlorine by an electrolytic reaction. A chlorine demand meter for maintaining the free chlorine amount of sample water in a reaction tank at a predetermined value, wherein the chlorine demand amount is calculated from the electrolytic current of chlorine generation and the flow rate of sample water.
JP2108094A 1990-04-24 1990-04-24 Chlorine demand meter Expired - Lifetime JP2533669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2108094A JP2533669B2 (en) 1990-04-24 1990-04-24 Chlorine demand meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2108094A JP2533669B2 (en) 1990-04-24 1990-04-24 Chlorine demand meter

Publications (2)

Publication Number Publication Date
JPH046454A JPH046454A (en) 1992-01-10
JP2533669B2 true JP2533669B2 (en) 1996-09-11

Family

ID=14475721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2108094A Expired - Lifetime JP2533669B2 (en) 1990-04-24 1990-04-24 Chlorine demand meter

Country Status (1)

Country Link
JP (1) JP2533669B2 (en)

Also Published As

Publication number Publication date
JPH046454A (en) 1992-01-10

Similar Documents

Publication Publication Date Title
US5902751A (en) Method and apparatus for the measurement of dissolved carbon
Kopanica et al. Determination of traces of arsenic (III) by anodic stripping voltammetry in solutions, natural waters and biological material
US5798271A (en) Apparatus for the measurement of dissolved carbon in deionized water
US4176032A (en) Chlorine dioxide analyzer
US8080142B2 (en) Impurity detection device and method
JPH05196597A (en) Gas detector
CA2872236C (en) Methods and apparatus for measuring the total organic content of aqueous streams
Okumura et al. Simple miniaturized amperometric flow cell for monitoring residual chlorine in tap water
CA2228337A1 (en) Method and apparatus for the measurement of dissolved carbon
US5316648A (en) Electrochemical measuring cell for detecting gases and vapors
JP2533669B2 (en) Chlorine demand meter
JP4175002B2 (en) Oxidation / reducing agent injection rate control method
US20070227908A1 (en) Electrochemical cell sensor
Quentel et al. Voltammetric study of the copper-1, 10-phenanthroline complex
JPH0782004B2 (en) Measuring device for free chlorine in sample water
JPH0782003B2 (en) Measuring device for free chlorine in sample water
JP2004271234A (en) Controlled potential electrolytic acidic gas detector
JPH0778478B2 (en) Method for measuring free chlorine in sample water
JP2002310974A (en) Acidic air detector
Dormond-herrera et al. Voltammetric Membrane Chlorine Dioxide Electrode
JPH0782005B2 (en) Free chlorine measuring device
JPH0769299B2 (en) Chlorine dioxide measuring device
JPH04337457A (en) Water quality analyzer
Luitjens et al. Coulometric determination of the flow rate of small masses of substances II. Application to on-line measurement of the EOX-parameter: II. Application to on-line measurement of the EOX-parameter
JPH05113425A (en) Polarographic ozone sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 14

EXPY Cancellation because of completion of term