JPH0340487B2 - - Google Patents

Info

Publication number
JPH0340487B2
JPH0340487B2 JP56084431A JP8443181A JPH0340487B2 JP H0340487 B2 JPH0340487 B2 JP H0340487B2 JP 56084431 A JP56084431 A JP 56084431A JP 8443181 A JP8443181 A JP 8443181A JP H0340487 B2 JPH0340487 B2 JP H0340487B2
Authority
JP
Japan
Prior art keywords
poles
magnetic
permanent magnet
cylindrical
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56084431A
Other languages
Japanese (ja)
Other versions
JPS57199205A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56084431A priority Critical patent/JPS57199205A/en
Publication of JPS57199205A publication Critical patent/JPS57199205A/en
Publication of JPH0340487B2 publication Critical patent/JPH0340487B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/021Construction of PM

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、主としてステツピングモーターのロ
ーター用等の磁石体に係り、特に表面多極異方性
が付与された円筒状永久磁石体に関するものであ
る。 表面に多極着磁を施すには、永久磁石の保磁力
が比較的高いこと、また可逆透磁率が1付近にあ
ることが必要なので、バリウムフエライト磁石、
ストロンチウムフエライト磁石などフエライト磁
石が用いられている。これらの永久磁石は化学量
論的にはMO・6Fe2O3(MはBa、Sr、Pbあるい
はこれらの混合物、場合によつてはCaなど他の
2価の金属を含むことがある)で示されるが、実
際的にはMOが若干過剰となつたMO・5〜
6Fe2O3となつている。 円筒状永久磁石体としては等方性フエライト磁
石、リング異方性フエライト磁石、フエライト磁
粉を合成ゴム、合成樹脂あるいは天然ゴム中に分
散させて作つたプラスチツクス磁石等がある。 等方性フエライト磁石は十分なる磁気特性が得
られていないのが実情である。また第1図に示す
リング異方性磁石11は、粒子の配列方向が矢印
Bのごとく半径方向であるが、焼結後の着磁は第
2図に示すごとくヨーク1およびコイル2からな
る着磁ヨークAにより焼結体3に多極着磁を行な
うので、粒子配列方向と磁力線(矢印C)の方向
とが異なる部分が生じる。そのためリング異方性
磁石11は有効な粒子配列とならない。 さらに第3図に示す前記の多極着磁方向と同一
方向(矢印C方向)に粒子を揃えた例としてプラ
スチツクス磁石12があるが、残留磁束密度が低
いため十分な磁束量が得られない。 磁気特性を上げるためには、上記のように多極
着磁方向と同一の方向にフエライト粒子を配向さ
せ、この配向度を上げることが考えられる。 そこで、本発明者らは、焼結フエライト磁石に
ついて、第3図に示したプラスチツクス磁石と同
様に多極着磁方向と同一方向にフエライト粒子を
揃え、磁気特性を上げようと検討したが、磁極数
が少ない場合には実用に供し得る円筒状永久磁石
が得られなかつた。 またより高い磁気特性を得るためには肉厚を増
大させることが考えられるが、肉厚を増大させる
と慣性力が増大するという問題がある。 本発明は高い表面磁束密度を有する多極表面着
磁磁石を提供することを目的とする。 さらに、本発明においては、ステツピングモー
ターに用いた場合、極めて高いホールデイングト
ルクを示す永久磁石を提供することを目的とす
る。 本発明の永久磁石はMO・nFe2O3(ここでMは
Ba、Sr、Pbの内の1種または2種以上、n=5
〜6)のマグネツト・プランバイト型結晶構造を
有する焼結円筒状永久磁石で、円筒部に12〜24極
の表面多極異方性が付与されているものである。 本発明における表面多極異方性とは永久磁石体
の同一面、例えば円筒外周面に異極性の磁極が存
在し、あるいは作り得て、磁石体中のその磁極間
を結ぶ線(通常は円弧)に沿つて磁気異方性をも
つたマグネツト・プランバイト結晶の磁化容易軸
が実質的にならんでいることを意味する。 なお、このような表面多極異方性を有する円筒
状永久磁石は、前記のように磁気特性を上げるた
めにフエライト粒子の配向度を上げると、磁極数
が少ない場合には(例えば4極)割れが発生する
という問題もある。 この割れの原因は、成形時に円筒外部から円弧
状の磁場を印加して磁極間にフエライト粒子のC
軸(マグネツト・プランバイト結晶の磁化容易
軸)方向の熱膨張係数とC軸と直角方向の熱膨張
係数の差および焼結による収縮率の差が大きいた
めに、成形時の磁場による配向度が大きくなれば
なる程、割れが生じるものと考えられる。 本発明はこの点をも考慮したものであり、
MO・nFe2O3(MはBa、Sr、Pbの内の1種また
は2種以上、n=5〜6)の組成を有する焼結さ
れた円筒状永久磁石体において、この磁石体の円
筒部の円周方向に数えて12〜24極の磁極がならぶ
ように表面多極異方性が付けられているととも
に、この異方性化による内部応力に打ち勝つのに
十分な、完全には異方性化していない部分を円筒
断面に有するに十分な数の磁極数をもつている円
筒状永久磁石体である。 すなわち、磁極数が少ない場合には、円筒状磁
石断面のほとんどの部分が表面多極異方性(極異
方性)となるので、焼結時に割れが生じる。しか
し、磁極数が多くなると磁極間の間隔が小さくな
るので、その間の異方性化された部分は円筒体の
厚さ全体に拡がつていかず、フエライト磁石のよ
うに透磁率がほぼ1の場合、磁極間距離のほぼ半
分の深さまでが完全に異方性化されるのみで、完
全には異方性化されていない部分が残り、この部
分が異方性化された部分の内部の内部応力を緩和
する。 本発明は上記のように12〜24極の磁極が円筒体
に付けられている場合に有効であり、ステツピン
グモーター用磁石のように外径が40mm以下で円筒
体外周にほぼ等間隔で12〜24極の磁極が付けられ
ている場合に特に有効である。 本発明において磁極数を12〜24極にした理由
は、10極以下の場合、例えば従来から使われてい
る8極のものではステツピングモーターなどのロ
ーターに使用した場合、モーター性能の点で十分
とはいえず、ステツプ角を小さくできない。24極
を超えると磁束密度のバラツキが大きくなり、実
用上使い得ないおそれがあるからである。 さらに本発明においては、有効な磁束量を得る
ための粒子配列を焼結前に行なつて表面多極異方
性を付与し、かつ高磁気特性と低慣性力が得られ
るような最適寸法にした円筒状永久磁石体および
その製造方法をも提供するものである。 一般にローター用円筒状多極永久磁石体は、高
磁気特性、低慣性力が要求される。しかし、第4
図に示すように磁石体の肉厚tの増加により、表
面磁束密度Boは増加するが低い慣性力Iが得ら
れず、また肉厚tの減少により表面磁束密度Bo
の低下をきたすものである。従つて前記磁石体は
表面磁束密度Boが低下せずに低慣性力のものが
得られるような最適寸法にすることが必要であ
る。 しかして、本発明を実施する場合の前記磁石体
の最適内外径比Tは、次式のごとく示される。 T=D1/D2=1−K1π/P(K1≧1.76) (D1:磁石内径、D2:磁石外径、P:着磁極数、
K1:定数) 前記の式において、内外径比Tは0<T<1.0
であり、1.0に近付く程肉厚tが薄くなつて表面
磁束密度Boが小さくなり、0に近付けば肉厚t
が厚くなつて円柱形状に近付き、慣性力Iが大と
なる欠点が生じる。 また前記の式の右項より、着磁極数Pが増加す
ると内外径比Tが増加して肉厚tが薄くなり、着
磁極数Pが減少すると肉厚tが増加する。よつて
着磁極数Pにも関連して磁気特性を低下させるこ
とのない最適内外径寸法すなわち内外径比Tが得
られるものである。 次に前記の式を導入した理由を述べる。 円筒状磁石体の外周に極数Pの表面着磁を行な
うと、各磁極間の外周に沿つた間隔(隣り合う異
極性の磁極の中心間の距離)はπD2/Pである。 そして磁束は、磁極間隔を近似直径とすると、
磁石表面から磁石内部に向かつて磁極間隔の半分
のK1倍の深さ〔(πD2/2P)×(K1)〕までのとこ
ろに分布している。この場合、磁束の90%以上は
磁石表面から磁石内部に向かつて磁極間隔の半分
の深さ(πD2/2P)までのところに集まつてい
る。ここでK1(定数)は後述のように実験的に決
定する。 円筒状永久磁石体においては、磁束密度の少な
い部分、すなわち、完全には異方性化されていな
い部分までを含んでいてもよいが、磁束の侵入し
ない部分〔K1(πD2/2P)より外側(磁石の中心
側)の部分〕は不要なので、有効な磁石内径は D1=D2−K1πD2/P となり、両辺をD2で割ると D1/D2=1−K1π/P となる。すなわち、最適内外径比Tは前記の式に
より示されるものである。 次にK1を実験的に求めた例を第5図により説
明する。第5図は外径D2=26mm、着磁極数P=
24極の場合、内径D1およびK1の変化に伴なう表
面磁束密度Boと慣性モーメントIの変化の状況
を示すものである。 図に示されるようにK1が1.0(磁石の半径方向厚
みが磁極間隔の半分)でBoが最高値の90%以上
となり、K1が1.76以上でBoが略飽和している。
さらに、ローター用磁石体として慣性力が低い程
よいということを考慮して1.76≦K1≦2.5とした。 本発明の円筒状永久磁石体は、上述のようにし
て最適寸法が決定された。 なお上記以外の条件で内径D1および定数K1
変化に伴う表面磁束密度Boと慣性モーメントI
の変化を求めたところ、第5図と略同様の結果が
得られた。これらのうち代表的な寸法および着磁
極数の場合の結果を第6図、第7図および第8図
に示す。第6図は外径D2=20mm、着磁極数P=
24極、第7図は外径D2=20mm、着磁極数P=12
極、第8図は外径D2=14mm、着磁極数P=12極
の場合の内径D1およびK1の変化に伴うBoとIの
変化をそれぞれ示す。 また本発明の円筒状永久磁石体は、主要組成の
ほかに保形性を有するための適量の添加物を含有
し、かつ磁場印加時に粒子の回転を可能とする水
分を14〜20%含有した成形体に磁場を付与し、磁
力線方向に粒子を配列させた後前記成形体を焼結
後着磁して得られるものである。 水分を14〜20%とした理由は、14%未満では成
形体が硬くなり、異方性化のための粒子の配向が
しにくくなつて磁気特性が十分出ず、また20%を
超えると成形体の保形性が顕著に低下して成形が
できなくなるからである。 以下、本発明の実験を説明する。 〔実験 1〕 水分を18%含有するSrフエライト(SrO・
5.6Fe2O3)粉末からなる原料を成形機により外径
33mm、内径23mm、長さ30mmの成形体を得て、第2
図に示すよな多数極用着磁ヨークA内に挿入し
3000Oe以上の磁場を付与した後、成形体3を24
時間乾燥後1200℃にて焼成した。さらに得られた
外径26mm、内径18mm、長さ20mmの焼成体3を、第
2図の着磁ヨークAと相似形の多数極用着磁ヨー
クにより着磁し、表面磁束密度Boを測定した。
この値と従来の等方性磁石、リング異方性磁石お
よびプラスチツクス磁石の値との比較を第1表に
示す。
The present invention mainly relates to a magnet for a rotor of a stepping motor, and more particularly to a cylindrical permanent magnet having surface multipolar anisotropy. In order to apply multipolar magnetization to the surface, it is necessary for the permanent magnet to have a relatively high coercive force and a reversible magnetic permeability of around 1, so barium ferrite magnets, barium ferrite magnets,
Ferrite magnets such as strontium ferrite magnets are used. The stoichiometry of these permanent magnets is MO.6Fe 2 O 3 (M is Ba, Sr, Pb or a mixture thereof, and may also include other divalent metals such as Ca). However, in reality, the MO is slightly excessive, MO・5~
6Fe 2 O 3 . Examples of cylindrical permanent magnets include isotropic ferrite magnets, ring anisotropic ferrite magnets, and plastic magnets made by dispersing ferrite magnetic powder in synthetic rubber, synthetic resin, or natural rubber. The reality is that isotropic ferrite magnets do not have sufficient magnetic properties. Furthermore, in the ring anisotropic magnet 11 shown in FIG. 1, the grain arrangement direction is radial as shown by arrow B, but after sintering, the magnetization is made up of a yoke 1 and a coil 2 as shown in FIG. Since the sintered body 3 is multipolarized by the magnetic yoke A, there are portions where the particle arrangement direction differs from the direction of the magnetic lines of force (arrow C). Therefore, the ring anisotropic magnet 11 does not have an effective particle arrangement. Furthermore, there is a plastic magnet 12 as an example in which the particles are aligned in the same direction as the multi-pole magnetization direction (direction of arrow C) shown in FIG. 3, but a sufficient amount of magnetic flux cannot be obtained because the residual magnetic flux density is low. . In order to improve the magnetic properties, it is conceivable to orient the ferrite particles in the same direction as the multipolar magnetization direction and increase the degree of orientation as described above. Therefore, the inventors of the present invention have considered improving the magnetic properties of sintered ferrite magnets by arranging ferrite particles in the same direction as the multipole magnetization direction, similar to the plastic magnet shown in Figure 3. When the number of magnetic poles is small, a cylindrical permanent magnet that can be put to practical use cannot be obtained. In addition, increasing the wall thickness may be considered in order to obtain higher magnetic properties, but there is a problem that increasing the wall thickness increases the inertial force. An object of the present invention is to provide a multipolar surface magnetized magnet having a high surface magnetic flux density. A further object of the present invention is to provide a permanent magnet that exhibits extremely high holding torque when used in a stepping motor. The permanent magnet of the present invention is MO・nFe 2 O 3 (where M is
One or more of Ba, Sr, Pb, n=5
~6) A sintered cylindrical permanent magnet having a magneto-plumbite type crystal structure, in which the cylindrical portion has surface multipolar anisotropy of 12 to 24 poles. In the present invention, surface multipolar anisotropy refers to magnetic poles of different polarity existing or can be created on the same surface of a permanent magnet body, for example, the outer peripheral surface of a cylinder, and a line (usually an arc) connecting the magnetic poles in the magnet body. ) means that the easy magnetization axes of magnetoplumbite crystals with magnetic anisotropy are substantially aligned. In addition, in a cylindrical permanent magnet having such surface multipolar anisotropy, if the degree of orientation of the ferrite particles is increased in order to improve the magnetic properties as described above, if the number of magnetic poles is small (for example, 4 poles). There is also the problem of cracking. The cause of this cracking is that an arc-shaped magnetic field is applied from outside the cylinder during molding, and the ferrite particles are formed between the magnetic poles.
Because there is a large difference between the coefficient of thermal expansion in the direction of the axis (the axis of easy magnetization of magneto-plumbite crystal) and the coefficient of thermal expansion in the direction perpendicular to the C-axis, and the difference in the shrinkage rate due to sintering, the degree of orientation due to the magnetic field during molding is It is thought that the larger the size, the more likely it is that cracks will occur. The present invention also takes this point into consideration,
In a sintered cylindrical permanent magnet body having a composition of MO・nFe 2 O 3 (M is one or more of Ba, Sr, and Pb, n = 5 to 6), the cylinder of this magnet body The surface has multipolar anisotropy so that 12 to 24 magnetic poles are arranged in the circumferential direction of the part, and the anisotropy is sufficient to overcome the internal stress caused by this anisotropy. It is a cylindrical permanent magnet having a sufficient number of magnetic poles to have a non-oriented portion in the cylindrical cross section. That is, when the number of magnetic poles is small, most of the cross section of the cylindrical magnet has surface multipolar anisotropy (polar anisotropy), which causes cracks during sintering. However, as the number of magnetic poles increases, the spacing between the magnetic poles becomes smaller, so the anisotropic part between them does not spread over the entire thickness of the cylinder, and the magnetic permeability is approximately 1, as in ferrite magnets. In this case, the depth of approximately half of the distance between the magnetic poles is completely anisotropic, and there remains a part that is not completely anisotropic, and this part is inside the anisotropic part. Relieve internal stress. The present invention is effective when 12 to 24 magnetic poles are attached to a cylindrical body as described above, and when the outer diameter is 40 mm or less and 12 to 24 magnetic poles are attached to the cylindrical body at approximately equal intervals like magnets for stepping motors. This is particularly effective when ~24 magnetic poles are attached. The reason why the number of magnetic poles is set to 12 to 24 in the present invention is that when the number of magnetic poles is 10 or less, for example, the conventional 8-pole type is insufficient in terms of motor performance when used in a rotor such as a stepping motor. However, the step angle cannot be reduced. This is because if the number of poles exceeds 24, the variation in magnetic flux density becomes large, and there is a possibility that it cannot be used practically. Furthermore, in the present invention, particles are arranged before sintering in order to obtain an effective amount of magnetic flux, imparting surface multipolar anisotropy, and optimal dimensions are obtained to obtain high magnetic properties and low inertial force. The present invention also provides a cylindrical permanent magnet body and a method for manufacturing the same. Generally, a cylindrical multipolar permanent magnet for a rotor is required to have high magnetic properties and low inertia. However, the fourth
As shown in the figure, as the wall thickness t of the magnet increases, the surface magnetic flux density Bo increases, but a low inertial force I cannot be obtained, and as the wall thickness t decreases, the surface magnetic flux density Bo
This results in a decrease in Therefore, it is necessary that the magnet body has an optimum size so that a low inertial force can be obtained without reducing the surface magnetic flux density Bo. Therefore, the optimum inner/outer diameter ratio T of the magnet body when carrying out the present invention is expressed by the following equation. T=D 1 /D 2 =1−K 1 π/P (K 1 ≧1.76) (D 1 : Magnet inner diameter, D 2 : Magnet outer diameter, P: Number of magnetized poles,
K1 : constant) In the above formula, the inner/outer diameter ratio T is 0<T<1.0
As it approaches 1.0, the wall thickness t becomes thinner and the surface magnetic flux density Bo becomes smaller, and as it approaches 0, the wall thickness t
becomes thicker and approaches a cylindrical shape, resulting in a disadvantage that the inertial force I becomes large. Further, from the right-hand term of the above equation, when the number P of magnetized poles increases, the inner/outer diameter ratio T increases and the wall thickness t becomes thinner, and when the number P of magnetized poles decreases, the wall thickness t increases. Therefore, in relation to the number of magnetized poles P, the optimum inner and outer diameter dimensions, that is, the inner and outer diameter ratio T, can be obtained without degrading the magnetic properties. Next, the reason for introducing the above formula will be explained. When the outer periphery of a cylindrical magnet is surface magnetized with a number of poles P, the distance between each magnetic pole along the outer periphery (the distance between the centers of adjacent magnetic poles of different polarity) is πD 2 /P. And the magnetic flux is, if the magnetic pole spacing is the approximate diameter,
It is distributed from the magnet surface toward the inside of the magnet to a depth of K 1 times half the magnetic pole spacing [(πD 2 /2P)×(K 1 )]. In this case, more than 90% of the magnetic flux is concentrated from the magnet surface toward the inside of the magnet to a depth (πD 2 /2P) that is half the magnetic pole spacing. Here, K 1 (constant) is determined experimentally as described later. A cylindrical permanent magnet may include a portion with low magnetic flux density, that is, a portion that is not completely anisotropic, but a portion into which magnetic flux does not penetrate [K 1 (πD 2 /2P) Since the outer part (toward the center of the magnet) is unnecessary, the effective inner diameter of the magnet is D 1 = D 2 −K 1 πD 2 /P, and dividing both sides by D 2 is D 1 /D 2 = 1−K. 1 π/P. That is, the optimum inner/outer diameter ratio T is shown by the above equation. Next, an example of experimentally determining K 1 will be explained with reference to FIG. Figure 5 shows outer diameter D 2 = 26 mm, number of magnetized poles P =
In the case of 24 poles, it shows how the surface magnetic flux density Bo and the moment of inertia I change as the inner diameters D 1 and K 1 change. As shown in the figure, when K 1 is 1.0 (the radial thickness of the magnet is half the magnetic pole spacing), Bo reaches 90% or more of its maximum value, and when K 1 is 1.76 or more, Bo is almost saturated.
Furthermore, considering that the lower the inertia force is, the better it is for a rotor magnet, 1.76≦K 1 ≦2.5 was set. The optimum dimensions of the cylindrical permanent magnet body of the present invention were determined as described above. In addition, under conditions other than the above, the surface magnetic flux density Bo and the moment of inertia I due to changes in the inner diameter D 1 and constant K 1
When the change in was determined, results substantially similar to those shown in FIG. 5 were obtained. Results for representative dimensions and numbers of magnetized poles are shown in FIGS. 6, 7, and 8. Figure 6 shows outer diameter D 2 = 20 mm, number of magnetized poles P =
24 poles, outer diameter D 2 = 20 mm in Figure 7, number of magnetized poles P = 12
Figure 8 shows the changes in Bo and I as the inner diameters D 1 and K 1 change, respectively, when the outer diameter D 2 =14 mm and the number of magnetized poles P = 12 poles. In addition to the main composition, the cylindrical permanent magnet body of the present invention contains an appropriate amount of additives for shape retention, and contains 14 to 20% water to enable the particles to rotate when a magnetic field is applied. It is obtained by applying a magnetic field to a molded body, arranging particles in the direction of lines of magnetic force, and then magnetizing the molded body after sintering. The reason for setting the moisture content to 14 to 20% is that if it is less than 14%, the molded product becomes hard and it becomes difficult to orient the particles for anisotropy, resulting in insufficient magnetic properties.If it exceeds 20%, molding becomes difficult. This is because the shape retention of the body is significantly reduced and molding becomes impossible. Hereinafter, experiments of the present invention will be explained. [Experiment 1] Sr ferrite (SrO・
5.6Fe 2 O 3
A molded body with a diameter of 33 mm, an inner diameter of 23 mm, and a length of 30 mm was obtained.
Insert it into the multi-pole magnetizing yoke A as shown in the figure.
After applying a magnetic field of 3000 Oe or more, the molded body 3 was
After drying for an hour, it was fired at 1200°C. Furthermore, the obtained fired body 3 with an outer diameter of 26 mm, an inner diameter of 18 mm, and a length of 20 mm was magnetized using a multi-pole magnetizing yoke similar to the magnetizing yoke A in Fig. 2, and the surface magnetic flux density Bo was measured. .
Table 1 shows a comparison of these values with those of conventional isotropic magnets, ring anisotropic magnets, and plastic magnets.

【表】 第1表に見られるように本発明による磁石体
は、従来法による磁石より表面磁束密度が約40%
向上したものである。なお本実験における円筒状
永久磁石体は、外径寸法が26mm、内径寸法が18
mm、長さが20mm、磁極数が24極であり、また第5
図からK1は1.76〜2.5の間にあるから、表面磁束
密度が低下せず低慣性力のものが得られる最適寸
法になつているものである。 この永久磁石をステツピングモーターのロータ
ーとした場合のホールデイングトルクを測定した
結果を第2表に示す。この測定の際、コイルへの
印加電圧をDC12Vとした。同表には、永久磁石
磁気特性をも示した。
[Table] As shown in Table 1, the magnet body according to the present invention has a surface magnetic flux density of about 40% compared to the conventional magnet.
This is an improvement. The cylindrical permanent magnet used in this experiment had an outer diameter of 26 mm and an inner diameter of 18 mm.
mm, the length is 20 mm, the number of magnetic poles is 24, and the fifth
As shown in the figure, K1 is between 1.76 and 2.5, which is the optimum size for obtaining a low inertial force without decreasing the surface magnetic flux density. Table 2 shows the results of measuring the holding torque when this permanent magnet was used as the rotor of a stepping motor. During this measurement, the voltage applied to the coil was 12V DC. The table also shows the magnetic properties of permanent magnets.

〔実験 2〕[Experiment 2]

成形体および焼成体の寸法ならびに磁極数を変
えた以外は実験例1と同様の条件で、4〜24極の
範囲の7種類の磁極数を有する円筒状永久磁石を
製造した。これらの永久磁石について目視で割れ
の発生状況を調査した。各磁極数について、K1
を変えた場合の割れの発生状況を第3表に示す。
Cylindrical permanent magnets having seven types of magnetic pole numbers ranging from 4 to 24 poles were manufactured under the same conditions as in Experimental Example 1, except that the dimensions of the compact and fired body and the number of magnetic poles were changed. These permanent magnets were visually inspected for crack occurrence. For each number of magnetic poles, K 1
Table 3 shows the occurrence of cracks when changing.

【表】【table】

【表】 第3表から、磁極数が12〜24極でかつK1が1.76
以上の場合においては、割れが発生しないことが
わかる。 また磁極数が12、16極であつても、K1が小さ
い場合には割れが発生することがある(P=8、
12、16で条件1の場合は割れが発生した)。そし
て磁極数が4極と6極の場合は、各条件とも総て
の試料に割れがみとめられた。 以上説明したごとく本発明の円筒状永久磁石体
は、焼結前に表面多極異方性が付与されて着磁方
向に粒子が配列しているため、高い表面磁束密度
を有する高磁気特性の焼結永久磁石体であり、さ
らに前記の式から上記高磁気特性を低下させない
最適寸法が与えられているので、従来の永久磁石
体より重量が低減して慣性力を低くなしえたもの
である。 また、割れの発生を防止することもでき、さら
に重量の低減により材料費を節約できる効果をも
有するものである。 なお以上の説明は、ステツピングモーターとし
て用いる場合を中心に説明したが、本発明の永久
磁石体を軸方向に長く作成した場合には、磁気ブ
ラシ現象の複写機等にも使用できるものとなる。
[Table] From Table 3, the number of magnetic poles is 12 to 24 and K 1 is 1.76.
It can be seen that cracks do not occur in the above cases. Furthermore, even if the number of magnetic poles is 12 or 16, cracks may occur if K 1 is small (P = 8,
12 and 16, cracking occurred under condition 1). When the number of magnetic poles was 4 and 6, cracks were observed in all samples under each condition. As explained above, the cylindrical permanent magnet of the present invention has surface multipolar anisotropy before sintering and particles are arranged in the magnetization direction, so it has high magnetic properties with high surface magnetic flux density. Since it is a sintered permanent magnet body, and the optimum dimensions that do not reduce the above-mentioned high magnetic properties are given by the above formula, it is lighter in weight and has a lower inertial force than conventional permanent magnet bodies. Furthermore, it is possible to prevent the occurrence of cracks, and furthermore, it has the effect of saving material costs by reducing the weight. The above explanation has focused on the case where it is used as a stepping motor, but if the permanent magnet body of the present invention is made long in the axial direction, it can also be used in a copying machine etc. with a magnetic brush phenomenon. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は円筒状永久磁石体の粒子の配列方向を
示す図、第2図は永久磁石、着磁ヨークの一部拡
大断面図、第3図は永久磁石の磁力線の方向を示
す図、第4図は永久磁石の肉厚と表面磁束密度、
慣性力との関係を示す説明図、第5図、第6図、
第7図、第8図は内径の変化に伴なう表面磁束密
度と慣性モーメントの変化の状況を示す図であ
る。 1:ヨーク、2:コイル、3:焼結体、A:着
磁ヨーク。
Fig. 1 is a diagram showing the arrangement direction of particles of a cylindrical permanent magnet body, Fig. 2 is a partially enlarged sectional view of the permanent magnet and magnetizing yoke, and Fig. 3 is a diagram showing the direction of the magnetic field lines of the permanent magnet. Figure 4 shows the wall thickness and surface magnetic flux density of the permanent magnet.
Explanatory diagrams showing the relationship with inertial force, Figures 5 and 6,
FIGS. 7 and 8 are diagrams showing how the surface magnetic flux density and moment of inertia change as the inner diameter changes. 1: Yoke, 2: Coil, 3: Sintered body, A: Magnetized yoke.

Claims (1)

【特許請求の範囲】 1 MO・nFe2O3(MはBa、Sr、Pbの内の1種
または2種以上、n=5〜6)の組成を有する焼
結された円筒状永久磁石体において、該磁石体の
円筒部に12〜24極の表面多極異方性が付与され、
かつ、該円筒部の内径(D1)と外径(D2)との
比が、着磁極数をP、1.76〜2.5の定数をK1とし
たとき、次式で示されることを特徴とする円筒状
永久磁石体。 D1/D2=1−K1π/P 2 実質的にMO・nFe2O3(MはBa、Sr、Pbの
内の1種または2種以上、n=5〜6)からな
り、水分を14〜20%含む円筒状成形体の外周面
に、磁場を印加して12〜24極の表面多極異方性を
付与した後、焼結し次いで着磁することにより、
円筒部の内径(D1)と外径(D2)との比が、着
磁極数をP、1.76〜2.5の定数をK1としたとき、
次式で示される永久磁石体を得ることを特徴とす
る円筒状永久磁石体の製造方法。 D1/D2=1−K1π/P
[Claims] A sintered cylindrical permanent magnet having a composition of 1 MO·nFe 2 O 3 (M is one or more of Ba, Sr, and Pb, n = 5 to 6). , a surface multipolar anisotropy of 12 to 24 poles is imparted to the cylindrical portion of the magnet body,
And, the ratio of the inner diameter (D 1 ) to the outer diameter (D 2 ) of the cylindrical portion is represented by the following formula, where P is the number of magnetized poles and K is a constant of 1.76 to 2.5 . A cylindrical permanent magnet body. D 1 /D 2 = 1−K 1 π/P 2 Substantially composed of MO·nFe 2 O 3 (M is one or more of Ba, Sr, and Pb, n = 5 to 6), By applying a magnetic field to the outer circumferential surface of a cylindrical molded body containing 14 to 20% water to give it surface multipolar anisotropy of 12 to 24 poles, it is sintered and then magnetized.
The ratio of the inner diameter (D 1 ) and outer diameter (D 2 ) of the cylindrical part is, when the number of magnetized poles is P and the constant of 1.76 to 2.5 is K 1 ,
A method for manufacturing a cylindrical permanent magnet, characterized by obtaining a permanent magnet represented by the following formula. D 1 /D 2 =1−K 1 π/P
JP56084431A 1981-06-03 1981-06-03 Cylindrical permanent magnet and manufacture thereof Granted JPS57199205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56084431A JPS57199205A (en) 1981-06-03 1981-06-03 Cylindrical permanent magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56084431A JPS57199205A (en) 1981-06-03 1981-06-03 Cylindrical permanent magnet and manufacture thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6809188A Division JPH01144354A (en) 1988-03-24 1988-03-24 Rotor for stepping motor

Publications (2)

Publication Number Publication Date
JPS57199205A JPS57199205A (en) 1982-12-07
JPH0340487B2 true JPH0340487B2 (en) 1991-06-19

Family

ID=13830390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56084431A Granted JPS57199205A (en) 1981-06-03 1981-06-03 Cylindrical permanent magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS57199205A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59216453A (en) * 1983-05-20 1984-12-06 Hitachi Metals Ltd Manufacture of cylindrical permanent magnet
JPS59224103A (en) * 1983-06-03 1984-12-17 Tohoku Metal Ind Ltd Cylindrical permanent magnet
JPS60108184U (en) * 1983-12-24 1985-07-23 ティーディーケイ株式会社 cylindrical ferrite magnet
JPS61237405A (en) * 1985-04-12 1986-10-22 Kanegafuchi Chem Ind Co Ltd Multipolarized magnet
JPS6377361A (en) * 1986-09-19 1988-04-07 Hitachi Ltd Permanent magnet type rotor
JPH01144354A (en) * 1988-03-24 1989-06-06 Hitachi Metals Ltd Rotor for stepping motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143008U (en) * 1977-04-18 1978-11-11

Also Published As

Publication number Publication date
JPS57199205A (en) 1982-12-07

Similar Documents

Publication Publication Date Title
US4547758A (en) Cylindrical permanent magnet and method of manufacturing
JPH0340487B2 (en)
JPH0789728B2 (en) Motor
USRE34229E (en) Cylindrical permanent magnet and method of manufacturing
JP2002044889A (en) 3-axis anistropic one-body permanent magnet and rotating machine
JPS61237405A (en) Multipolarized magnet
JPS6312370B2 (en)
JPS59226367A (en) Production of anisotropic magnet roll
JP2003164082A (en) Ferrite magnet, rotating machine and production method of ferrite magnet
EP0109976B1 (en) Cylindrical permanent magnet and manufacturing method of it
JPS6349889B2 (en)
JPH0211006B2 (en)
US5170084A (en) Wide-angle arc segment magnet and brush motor containing it
JPH05129127A (en) Anisotropic segment type magnet
JPH01144354A (en) Rotor for stepping motor
JP3682850B2 (en) Rotating machine
JPS6039136A (en) Manufacture of cylindrical permanent magnet with anisotropy in diametral direction
JPH0469407B2 (en)
JP3012051B2 (en) Anisotropic segment type magnet
JP2001006913A (en) Rotor
JPS6344285B2 (en)
JP3049134B2 (en) 2-pole cylindrical magnet
JPS62232107A (en) Anisotropic resin magnet
JPS61116956A (en) Rotor for motor of magnet rotation type
JP2002198216A (en) Sheet magnet and method of magnetizing the same