JPH0211006B2 - - Google Patents

Info

Publication number
JPH0211006B2
JPH0211006B2 JP13899483A JP13899483A JPH0211006B2 JP H0211006 B2 JPH0211006 B2 JP H0211006B2 JP 13899483 A JP13899483 A JP 13899483A JP 13899483 A JP13899483 A JP 13899483A JP H0211006 B2 JPH0211006 B2 JP H0211006B2
Authority
JP
Japan
Prior art keywords
slurry
magnetic
ferrite
magnet
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13899483A
Other languages
Japanese (ja)
Other versions
JPS6046016A (en
Inventor
Kazuhiko Idei
Keiichi Pponda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP13899483A priority Critical patent/JPS6046016A/en
Publication of JPS6046016A publication Critical patent/JPS6046016A/en
Publication of JPH0211006B2 publication Critical patent/JPH0211006B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は径方向に磁気異方性を有する円筒形酸
化物(フエライト磁石)の製造方法特に径方向に
異方性を有する円筒形磁石の製法に係る。 一般にフエライト磁石はフエライト粒子粉末を
成形し、焼結して得られる。このフエライト粒子
は化学式MOnFe2O3で表わされるマグネトプラ
ンバイト型の六方晶の構造をもち、そのC軸が磁
気容易軸となる。上記学式中MはBa、Sr、Pbの
1種または2種以上でnは5.0〜6.3で表わされ
る。 このため、このフエライト磁石の特性を向上す
る条件としては イ 焼結体の密度を上げること ロ 保持力Hcを劣化させないために結晶を単磁
に近づけること ハ 磁気容易軸方向を同一方向に揃えること が肝要である。なお、C軸を揃えないものを等方
性磁石、揃えたものを異方性磁石と呼び異方性磁
石は等方性に比べて2倍の残留磁束密度(Br)
と3倍以上の最大エネルギー積(BH)maxをも
つことが知られている。またC軸を揃えるには一
般にはフエライト粉末を成形の際磁場を印加し
て、その磁場方向にC軸を揃える。 ところでマイクロモータや小形発電機用の回転
子磁石としては円筒状磁石が用いられているが、
この円筒状磁石は径方向の磁力を用いるため、第
1図に示す如く径方向に異方性を有することがこ
の磁石の性能を向上させることとなる。このため
径方向にC軸を揃える成形方法が種々試みられて
きたが、プレス焼結工程によつて得られる磁石に
おいては、径方向への配向度を上げると焼結の冷
却過程においてクラツクを生ずる。そのため配向
度を大巾に下げなければならないため磁石特性は
等方性のたかだか20%改善されるに過ぎない。こ
の相反する現象を解決するため本願発明者らは昭
和57年特許願第184370号(特開昭59−72704号)
明細書において金型のキヤビテイに充填した粉末
と、少くとも16極以上の磁極によつて径方向に異
方性化して成形する方法を提案した。更に昭和58
年特許願第109004号(特開昭60−1820号)におい
て、外周部または内周部を多極に異方性とし、そ
の反対側を等方性とし、しかも一体の同心円構造
を持たせることによつてクラツクの生ずることの
ない磁気特性の透れた径方向に異方性をもつ円筒
形磁石を発明することができた。しかし乍らこの
フエライト磁石は焼結において残留磁束密度Br
を上げるために密度を上げると結晶成長して保持
力HCが下がるという相反する性質をもつが、こ
の異方性部と等方性部を一体として同心円にもつ
径方向異方性永久磁石の製造においては等方性部
と異方性部との焼結速度の違いにより保持力HC
を劣化させ IHC30000eになるためには焼結体
の密度を4.78g/cm3以下とすることが必要である
ことを知見した。 しかし乍らこのフエライト磁石の理論密度(空
孔を0とした場合)は5.14g/cm3であり、密度を
上げれば(BH)maxは向上する。 本願発明者等はこの等方性部と異方性部をもつ
円筒形永久磁石について更に研究を重ねた結果、
円筒状キヤビテイの外周または内周に磁極を配し
た金型のキヤビテイに最終製品の充填を100%と
したとき、平均粒径の小さいフエライト粒子を30
乃至80%充填し、磁極にこの細かい粒子を磁気配
向すると共に吸着させておき、その後平均粒度の
大きいフエライト粉末を主として前記粉末が磁気
的に吸着していない部分に充填するように残りの
量を充填し、圧縮成形後焼結することにより高い
密度をもつ等方性部と異方性部をもつ円筒形永久
磁石の製造に成功した。 一般的に六方晶の構造をもつマグネトプランバ
イト型のフエライト粉末は単軸粒子径が約1μmで
あり、磁場配向時の配向度を上げるために1μm以
下に粉砕することは当業者として普通のことであ
る。また逆に粒子径が1μmを超える粒子径のもの
は容易に磁場配向されず特性は低下する。本発明
においてはコア内部に配向された領域と配向され
ない領域を意図的につくり出すために磁極付近に
は配向しやすい粒径1μm以下の粒子を配し、他の
部分に配向しにくい1μm以上の粒子を配すること
を特徴とするものである。 本発明は従つて径方向に多極に磁気配向させた
円筒永久磁石を得る成型方法に関するものであつ
て、その要旨とするところは六方晶型の酸化物磁
性粉子を平均粒子径が1.0μm以下の第1の泥漿
と、1.0μmを越える第2の泥漿を別々に用意して
おき、径方向に磁力を及ぼす複数の磁極を周辺に
具備する充填用金型に前記第1の泥漿を注入して
磁気配向させておき、その後前記第2の泥漿を充
填し圧縮成型し焼結することを特徴とする径方向
異方性円筒状永久磁石の製造方法に係る。 本発明による円筒形永久磁石は4.98g/cm3以上
の密度を示しながら、その製品特性は同一形状で
4.77g/cm3程度の従来のものに比して5%以上の
特性の向上をみた。即ち、平均粒子径が1.0μm以
下好ましい径としては0.9μm以下のフエライト粒
子は金型の外周または内周に配された磁極によつ
て配向され、異方性部を構成する。この後に充填
された平均粒子径が1.0μmを越え好ましい径とし
ては1.1μm以上のフエライト粒子は粒径が粗いた
め容易に配向されずに等方性部を構成することと
なる。 実施例 1 外径が28φ、内径が16φのキヤビテイ部を持つ
金型の外周部に16極の希土類永久磁石を配し仮焼
したSr−フエライトを0.7μm乃至1.56μmに粉砕
し、数種の泥漿を用意し、前記金型に充填圧縮成
型後成型体の金型の磁極にあたつた部分の配向度
を測定した。この結果を第2図に示す。なおこの
時の磁極より5mm離れたときの磁場は680Gであ
つた。フエライト粒子が1.1μmを越えると粒子配
向(X線配向度F)は470より小となり、本発明
において、後に充填される1.1μm以上の泥漿は磁
気的配向しにくいことが分る。この結果粒子の細
いものは磁気配向部分に、粗い粒子は等方性領域
に充填することが良いことが分る。 実施例 2 外径が28φ内径が16φのキヤビテイをもつ金型
の外周部に幅4.4mmの着磁した希土類磁石を1.9mm
づつ離して16ケ円周上に配した。このキヤビテイ
部に平均粒度が0.78μmのSr−フエライト泥漿を
それぞれ0%、25%、50%、75%、100%充填し、
配向後平均粒度を1.3μmとした泥漿をそれぞれ
100%、75%、50%、25%、0%充填し成形圧縮
後各々の成形体を1440℃、1180℃、1220℃で90分
焼結した。このときの焼結体密度及び IHCと着
磁後の開磁路での磁束Boを第1表に示す。
The present invention relates to a method for manufacturing a cylindrical oxide (ferrite magnet) having radial magnetic anisotropy, and particularly to a method for manufacturing a cylindrical magnet having radial anisotropy. Generally, ferrite magnets are obtained by molding and sintering ferrite particle powder. These ferrite particles have a magnetoplumbite-type hexagonal crystal structure represented by the chemical formula MOnFe 2 O 3 , and the C axis thereof is the magnetic easy axis. In the above formula, M is one or more of Ba, Sr, and Pb, and n is 5.0 to 6.3. Therefore, the conditions for improving the characteristics of this ferrite magnet are: (1) Increasing the density of the sintered body (2) Making the crystal closer to monomagnetic so as not to deteriorate the coercive force Hc (3) Aligning the magnetic easy axes in the same direction is essential. Note that magnets whose C axes are not aligned are called isotropic magnets, and magnets whose C axes are aligned are called anisotropic magnets. Anisotropic magnets have a residual magnetic flux density (Br) that is twice that of isotropic magnets.
It is known that the maximum energy product (B H )max is more than three times as large as that of B H . In order to align the C-axes, generally a magnetic field is applied when ferrite powder is molded, and the C-axes are aligned in the direction of the magnetic field. By the way, cylindrical magnets are used as rotor magnets for micro motors and small generators.
Since this cylindrical magnet uses magnetic force in the radial direction, having anisotropy in the radial direction as shown in FIG. 1 improves the performance of this magnet. For this reason, various forming methods have been attempted to align the C-axes in the radial direction, but in magnets obtained by the press sintering process, increasing the degree of orientation in the radial direction causes cracks during the cooling process of sintering. . Therefore, the degree of orientation must be significantly lowered, and the magnetic properties can only be improved by at most 20% of the isotropy. In order to solve this contradictory phenomenon, the inventors of the present invention filed Patent Application No. 184370 (Japanese Unexamined Patent Publication No. 1983-72704).
In this specification, we proposed a molding method in which the powder is filled into the cavity of a mold and at least 16 or more magnetic poles are used to create anisotropy in the radial direction. Furthermore, in 1982
In Patent Application No. 109004 (Japanese Unexamined Patent Publication No. 1820-1982), the outer or inner circumferential portion is multipolar anisotropic, the opposite side is isotropic, and has an integral concentric structure. As a result, we were able to invent a cylindrical magnet with transparent radial anisotropy and magnetic properties that do not cause cracks. However, this ferrite magnet has a residual magnetic flux density of Br during sintering.
Increasing the density in order to increase the density causes crystal growth and reduces the coercive force H C , which is a contradictory property. During manufacturing, the holding force H C
It was found that the density of the sintered body needs to be 4.78 g/cm 3 or less in order to deteriorate the I H C 30000e. However, the theoretical density of this ferrite magnet (assuming the number of holes is 0) is 5.14 g/cm 3 , and increasing the density will improve (B H )max. As a result of further research into this cylindrical permanent magnet having an isotropic part and an anisotropic part, the inventors of the present application found that
When the cavity of a mold with magnetic poles arranged on the outer or inner periphery of the cylindrical cavity is filled with the final product at 100%, 30% of the ferrite particles with a small average particle size are used.
The fine particles are magnetically oriented and adsorbed by the magnetic poles, and then the remaining amount is filled so that the ferrite powder with a large average particle size is mainly filled in the areas where the powder is not magnetically adsorbed. By filling, compression molding, and sintering, we succeeded in manufacturing a cylindrical permanent magnet with high density, an isotropic part and an anisotropic part. In general, magnetoplumbite-type ferrite powder with a hexagonal crystal structure has a uniaxial particle diameter of approximately 1 μm, and it is common for those skilled in the art to grind it to 1 μm or less in order to increase the degree of orientation during magnetic field orientation. It is. On the other hand, particles with a particle size exceeding 1 μm are not easily oriented in a magnetic field and their properties deteriorate. In the present invention, in order to intentionally create oriented regions and non-oriented regions inside the core, particles with a diameter of 1 μm or less that are easily oriented are arranged near the magnetic poles, and particles of 1 μm or more that are difficult to be oriented are arranged in other parts. It is characterized by the arrangement of The present invention therefore relates to a molding method for obtaining a cylindrical permanent magnet with multipole magnetic orientation in the radial direction, and its gist is to form hexagonal oxide magnetic powder with an average particle diameter of 1.0 μm Prepare the following first slurry and a second slurry exceeding 1.0 μm separately, and inject the first slurry into a filling mold equipped with a plurality of magnetic poles around the periphery that exert magnetic force in the radial direction. The method of manufacturing a radially anisotropic cylindrical permanent magnet is characterized in that the magnet is magnetically oriented and then filled with the second slurry, compression molded, and sintered. The cylindrical permanent magnet according to the present invention has a density of 4.98 g/cm 3 or more, and its product characteristics are the same in shape.
The properties were improved by more than 5% compared to the conventional one, which weighed about 4.77g/cm 3 . That is, ferrite particles having an average particle diameter of 1.0 μm or less, preferably 0.9 μm or less, are oriented by magnetic poles arranged on the outer or inner periphery of the mold, and form an anisotropic portion. Ferrite particles filled after this with an average particle diameter of more than 1.0 μm, preferably 1.1 μm or more, are coarse in particle size and are not easily oriented and form an isotropic part. Example 1 A 16-pole rare earth permanent magnet was placed on the outer periphery of a mold having a cavity with an outer diameter of 28φ and an inner diameter of 16φ, and the calcined Sr-ferrite was crushed to 0.7μm to 1.56μm and several types of A slurry was prepared, and the slurry was filled into the mold and compression molded, and then the degree of orientation of the portion of the molded product that came into contact with the magnetic pole of the mold was measured. The results are shown in FIG. At this time, the magnetic field when 5 mm away from the magnetic pole was 680G. When the ferrite particles exceed 1.1 μm, the particle orientation (X-ray orientation degree F) becomes smaller than 470, and it is understood that in the present invention, it is difficult to magnetically orient the slurry of 1.1 μm or more that is filled later. As a result, it is found that it is better to fill the magnetically oriented portion with thin particles and fill the isotropic region with coarse particles. Example 2 A magnetized rare earth magnet with a width of 4.4 mm was attached to the outer circumference of a mold having a cavity with an outer diameter of 28 φ and an inner diameter of 16 φ.
16 pieces were placed on the circumference, spaced apart from each other. This cavity is filled with 0%, 25%, 50%, 75%, and 100% Sr-ferrite slurry with an average particle size of 0.78 μm, respectively.
Each slurry with an average particle size of 1.3 μm after orientation
After filling and compressing 100%, 75%, 50%, 25%, and 0%, each molded body was sintered at 1440°C, 1180°C, and 1220°C for 90 minutes. Table 1 shows the sintered body density and I H C at this time, and the magnetic flux Bo in the open magnetic path after magnetization.

【表】 この表から分るように1.3μm粉末を用いた泥漿
が75%以上では IHCは高くなるが異方性部が減
少し、Boが低下する。しかし1.3μm25%〜75%
では焼結密度を高めても IHCが3000以上を示し、
焼結密度の上昇に伴つて開磁路での磁束Boが向
上した。 以上本発明を上述の実施例について説明したが
単一粒径の粉末でもつて径方向に多極配向する場
合はBoと保持力 IHCとは相反して特にマイクロ
モータ用回転子としては好ましいものでは無かつ
た。本発明は上述の欠点を解消せんとするもので
磁場成型時に多極の磁極に細い粒子を磁気的に吸
着及び配向させ、その後磁石特性にあまり影響を
及ぼさない部分には粗い粒子を充填して磁気的に
ほぼ等方性領域を構成させる。この様にすること
により磁石特性を保持力 IHC及び開磁路での磁
束Boを所望値に制御することができた。 また磁気配向領域だけ(即ち細い粒子での配
向)では、磁気配向に方向により熱膨張係数の差
によりクラツクが発生するが、本発明では磁気配
向しない領域が形成されるため、このクラツクは
皆無となつた。
[Table] As can be seen from this table, when the slurry using 1.3 μm powder exceeds 75%, I H C increases, but the anisotropic part decreases and Bo decreases. But 1.3μm25%~75%
In this case, even if the sintered density is increased, the I H C shows more than 3000,
The magnetic flux Bo in the open magnetic path improved as the sintered density increased. Although the present invention has been described above with reference to the above-mentioned embodiments, when the powder has a single particle size and is oriented in multiple poles in the radial direction, Bo and the holding force I H C are contradictory, which is particularly preferable as a rotor for a micromotor. It was nothing. The present invention aims to solve the above-mentioned drawbacks by magnetically attracting and orienting thin particles to multi-pole magnetic poles during magnetic field forming, and then filling coarse particles in areas that do not significantly affect the magnetic properties. A magnetically almost isotropic region is formed. By doing this, it was possible to control the magnetic properties to desired values, such as the coercive force I H C and the magnetic flux Bo in the open magnetic path. Furthermore, in the case of only magnetically oriented regions (i.e., orientation of thin particles), cracks occur due to the difference in thermal expansion coefficient depending on the direction of magnetic orientation, but in the present invention, since regions without magnetically oriented are formed, these cracks are completely eliminated. Summer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は経方向に異方性を有する円筒状磁石の
平面図、第2図は本願発明者の実験結果を示す粉
砕粒径に対する配向度曲線を示す。
FIG. 1 is a plan view of a cylindrical magnet having anisotropy in the longitudinal direction, and FIG. 2 shows an orientation degree curve with respect to the pulverized particle size, which shows the experimental results of the inventor of the present application.

Claims (1)

【特許請求の範囲】 1 六方晶型の酸化物磁粒子を平均粒子径が
1.0μm以下の第1の泥漿と、1.0μmを超える第2
の泥漿を別々に用意しておき、径方向に磁力を及
ぼす複数の磁極を周辺に具備する充填用金型に前
記第1の泥漿を注入して磁気配向させておき、そ
の後前記第2の泥漿を充填し圧縮成型し焼結する
ことを特徴とする径方向異方性円筒状永久磁石の
製造方法。 2 第1の泥漿の平均粒子径を0.9μm以下とし、
第2の泥漿を1.1μmとする特許請求の範囲第1項
記載の径方向異方性円筒状永久磁石の製造方法。
[Claims] 1 Hexagonal oxide magnetic particles with an average particle diameter of
The first slurry is less than 1.0 μm and the second slurry is more than 1.0 μm.
The first slurry is prepared separately, and the first slurry is injected into a filling mold having a plurality of magnetic poles around the periphery that exert a magnetic force in the radial direction for magnetic orientation. A method for manufacturing a radially anisotropic cylindrical permanent magnet, characterized by filling the magnet with compression molding and sintering. 2 The average particle size of the first slurry is 0.9 μm or less,
The method for manufacturing a radially anisotropic cylindrical permanent magnet according to claim 1, wherein the second slurry has a thickness of 1.1 μm.
JP13899483A 1983-07-29 1983-07-29 Manufacture of radially anisotropic cylindrical permanent magnet Granted JPS6046016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13899483A JPS6046016A (en) 1983-07-29 1983-07-29 Manufacture of radially anisotropic cylindrical permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13899483A JPS6046016A (en) 1983-07-29 1983-07-29 Manufacture of radially anisotropic cylindrical permanent magnet

Publications (2)

Publication Number Publication Date
JPS6046016A JPS6046016A (en) 1985-03-12
JPH0211006B2 true JPH0211006B2 (en) 1990-03-12

Family

ID=15234996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13899483A Granted JPS6046016A (en) 1983-07-29 1983-07-29 Manufacture of radially anisotropic cylindrical permanent magnet

Country Status (1)

Country Link
JP (1) JPS6046016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128260U (en) * 1989-03-25 1990-10-23

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442116Y2 (en) * 1986-08-08 1992-10-05

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128260U (en) * 1989-03-25 1990-10-23

Also Published As

Publication number Publication date
JPS6046016A (en) 1985-03-12

Similar Documents

Publication Publication Date Title
CA1157082A (en) Anisotropic permanent magnets and method of manufacturing same
US4547758A (en) Cylindrical permanent magnet and method of manufacturing
Hirosawa et al. Magnetization and magnetic anisotropy of R2Co14B and Nd2 (Fe1− x Co x) 14B measured on single crystals
US4063970A (en) Method of making permanent magnets
Eshelman et al. Properties of Nd‐Fe‐B anisotropic powder prepared from rapidly solidified materials
US6605162B2 (en) Anisotropic magnet and process of producing the same
JPH0211006B2 (en)
CN110895984B (en) Strong texture SmCo5Base nano composite permanent magnetic material and its preparation method
JP2002057015A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JPH0341965B2 (en)
JPH0340487B2 (en)
JPS6351991B2 (en)
JP2002057014A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JPH0559572B2 (en)
US5170084A (en) Wide-angle arc segment magnet and brush motor containing it
JPS601820A (en) Manufacture of cylindrical permanent magnet
JP2001006913A (en) Rotor
JP2963786B2 (en) Manufacturing method of bonded magnet
JP3682850B2 (en) Rotating machine
KR20170142758A (en) Ferrite magnetic material and ferrite sintered magnet
KR100201684B1 (en) Rare-earth magnet manufacturing method
JPH1174143A (en) Method of molding magnetic powder
JPH067525B2 (en) Method for manufacturing resin-bonded permanent magnet
JPH04125907A (en) Nanocomposite permanent magnet material
EP0109976B1 (en) Cylindrical permanent magnet and manufacturing method of it