JPS601820A - Manufacture of cylindrical permanent magnet - Google Patents
Manufacture of cylindrical permanent magnetInfo
- Publication number
- JPS601820A JPS601820A JP10900483A JP10900483A JPS601820A JP S601820 A JPS601820 A JP S601820A JP 10900483 A JP10900483 A JP 10900483A JP 10900483 A JP10900483 A JP 10900483A JP S601820 A JPS601820 A JP S601820A
- Authority
- JP
- Japan
- Prior art keywords
- magnets
- cylindrical
- magnet
- ferrite
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はフェライト磁石であって、径方向に多極の異方
性をもつ円筒状永久磁石を製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a ferrite magnet, which is a cylindrical permanent magnet having multipolar anisotropy in the radial direction.
フェライト磁石として9例えば、基本式%式%)
をもつフェライト磁石が知られている。一般にこの種の
フェライト磁石は、 MO化合物(焼成してMOとなる
)とFe 203とを所定のモル比に配合し。For example, a ferrite magnet having the basic formula (%) is known as a ferrite magnet. Generally, this type of ferrite magnet is made by blending an MO compound (which becomes MO upon firing) and Fe 203 in a predetermined molar ratio.
仮焼してフェライトとし、これを粉砕して単磁区粒径以
下としたフェライト粉末を圧縮成形し、焼結して得られ
る。このフェライト粉末はC軸方向に容易磁化方向をも
つが、このフェライト粉末を圧縮成形する場合に、磁界
中で行って容易磁化の方向をそろえたものは異方性フェ
ライト磁石とよばれ、容易磁化方向をそろえず無秩序の
状態で成形したものは等方性フェライト磁石とよばれる
。It is obtained by calcining to produce ferrite, pulverizing it to a ferrite powder having a single magnetic domain particle size or less, compression molding, and sintering. This ferrite powder has an easy magnetization direction in the C-axis direction, but when compression molding this ferrite powder, the easy magnetization direction is aligned in a magnetic field, which is called an anisotropic ferrite magnet. Magnets formed in a disordered state without aligning their directions are called isotropic ferrite magnets.
異方性フェライト磁石は等方性フェライト磁石に比べ残
留磁束密度Brで約2倍、最大磁気エネルギー積(BH
)maxで3〜4倍の値をもつことが知られている。Anisotropic ferrite magnets have approximately twice the residual magnetic flux density Br and maximum magnetic energy product (BH) as compared to isotropic ferrite magnets.
)max is known to have a value of 3 to 4 times.
すなわち、この種のフェライト磁石の磁気特性を向上さ
せるには、密度の向上、単磁区粒子の存在率の向上と共
に、フェライト粒子を良好に配向させることが必要であ
り、したがって、径方向に磁化方向をもつ円筒形磁石の
場合には、径方向にできるだけ多くの磁化容易方向をも
つ粒子を配向させることが必要である。In other words, in order to improve the magnetic properties of this type of ferrite magnet, it is necessary to improve the density, increase the abundance of single domain grains, and also to orient the ferrite grains well. In the case of a cylindrical magnet with a magnetic field, it is necessary to orient the particles with as many easy directions of magnetization as possible in the radial direction.
従来よシ径方向に粒子を配向させるだめの成形方法が種
々提案されているが、大別すると9円筒状キャビティ部
の上下よシ磁場を反発させて2粒子を径方向にそろえる
ものと1円筒状キャビティ部の円周上に磁極を配置して
1粒子を径方向にそろえる方法が提案されている。Various molding methods have been proposed in the past to orient particles in the radial direction, but they can be roughly divided into 9 methods in which two particles are aligned in the radial direction by repelling magnetic fields from the top and bottom of a cylindrical cavity, and 1 cylindrical molding method. A method has been proposed in which magnetic poles are arranged on the circumference of a shaped cavity to align each particle in the radial direction.
しかし、いずれの方法でも1粒子の配向を径方向にそろ
えればそろえるほど、成形体の焼結〜冷却過程でクラッ
クが発生し、使用できなくなる。However, in either method, the more the grains are aligned in the radial direction, the more cracks will occur during the sintering and cooling processes of the compact, making it unusable.
このクラックの発生は9粒子を径方向にそろえた結果、
半径方向とこれに直角な接線方向の熱膨張係数が異なる
ために、冷却中に機械的応力が生じることによるものと
されている。This crack is generated as a result of aligning the nine particles in the radial direction.
This is believed to be due to the mechanical stress generated during cooling due to the difference in coefficient of thermal expansion in the radial direction and in the tangential direction perpendicular to the radial direction.
このクラックの発生をなくすためには1粒子の配向度を
おとして1等方性に近づけることが必要となり、従って
磁気特性の劣化をまねき、同一形状の等方性のものと比
較した場合2表面磁束密度Boで10〜20%のレベル
が向上したにすぎなくなる。このため、磁気特性の優れ
たクラックのない円筒状のフェライト磁石を製造するこ
とは困難であった。In order to eliminate the occurrence of cracks, it is necessary to reduce the degree of orientation of one particle to bring it closer to one isotropy, which leads to deterioration of magnetic properties, and when compared with isotropic ones of the same shape, two surfaces The level of magnetic flux density Bo is only improved by 10 to 20%. For this reason, it has been difficult to manufacture crack-free cylindrical ferrite magnets with excellent magnetic properties.
本発明の目的は、磁気特性の優れたクラックの々い径方
向に異方性をもつフェライト磁石を製造する方法を提供
することにある。An object of the present invention is to provide a method for manufacturing a ferrite magnet with excellent magnetic properties and anisotropy in the radial direction of cracks.
本発明によれば9円筒状のキャビティ部に半径方向の磁
場を発生させるように、複数の磁石を前記キャビティ部
以外の部分に配置し、該キャビティ部にフェライト粉末
を充填し、フェライト粒子の磁化容易方向を半径方向に
配列させ、該フェライト粉末を圧縮成形した後、焼結し
て、径方向に異方性を持つ円筒状フェライト傭行を得る
ようにした円筒状永久磁石の製造方法において、前記磁
石相互間の距離及び前記磁石と前記フェライト粉末との
間の距離を調節することによって、焼結後の円筒状フェ
ライト磁石に、異方性化している部分と等方性の部分と
を同軸の筒状に一体に形成せしめることを特徴とする円
筒状永久磁石の製造方法が得られス。According to the present invention, in order to generate a radial magnetic field in the cylindrical cavity part, a plurality of magnets are arranged in a part other than the cavity part, the cavity part is filled with ferrite powder, and the ferrite particles are magnetized. In a method for manufacturing a cylindrical permanent magnet, the easy direction is arranged in the radial direction, the ferrite powder is compression molded, and then sintered to obtain a cylindrical ferrite magnet having radial anisotropy, By adjusting the distance between the magnets and the distance between the magnets and the ferrite powder, the anisotropic part and the isotropic part can be coaxially formed in the sintered cylindrical ferrite magnet. A method for manufacturing a cylindrical permanent magnet is provided, which is characterized in that it is integrally formed into a cylindrical shape.
本発明者等は、磁気特性の優れたクラ、りのない、径方
向に異方性をもつフェライト磁石の製造方法について研
究した結果、フェライト粒子の配向において2円筒状の
キャビティ部に半径方向に磁場を発生するように複数の
磁石を配し、磁石間の距離(p)及びフェライト粉末と
磁石の距離(1)を調節することによシ、焼結後の円筒
状フェライト磁石に、異方性化している部分と等方性の
部分とを同軸の筒状に一体に形成せしめ、クラックがな
く、磁気特性に優れた円筒状永久磁石を製造するに至っ
た。その磁気特性は同一形状の等方性フェライト磁石に
比べ、20〜80%高い表面磁束密度B。をもつことが
できた。As a result of research into a method for manufacturing a ferrite magnet with excellent magnetic properties, no cracks, no cracks, and radially anisotropic, the present inventors discovered that the orientation of ferrite particles in two cylindrical cavities is radially anisotropic. By arranging a plurality of magnets to generate a magnetic field and adjusting the distance (p) between the magnets and the distance (1) between the ferrite powder and the magnet, the cylindrical ferrite magnet after sintering can have anisotropic properties. A cylindrical permanent magnet with no cracks and excellent magnetic properties has been manufactured by integrally forming a coaxial cylindrical part with a polarized part and an isotropic part. Its magnetic properties include a surface magnetic flux density B that is 20 to 80% higher than that of an isotropic ferrite magnet of the same shape. I was able to have
次に図面を用いて本発明を説明する。Next, the present invention will be explained using the drawings.
本発明で用いる金型構造例を第1図及び第2図に示す。Examples of mold structures used in the present invention are shown in FIGS. 1 and 2.
第1図及び第2図において、■は外壁金型(ダイ)であ
る。このダイ1の中には、高エネルギー積を有する例え
ば希土類磁石体で構成された複数の磁石体2と、磁石体
2を等間隔に配置するための非磁性材で構成された非磁
性リング3と。In FIGS. 1 and 2, ■ is an outer wall mold (die). Inside this die 1, there are a plurality of magnet bodies 2 made of, for example, a rare earth magnet having a high energy product, and a non-magnetic ring 3 made of a non-magnetic material for arranging the magnet bodies 2 at equal intervals. and.
磁石体2の内側の非磁性体の円筒5とが配置されている
。6は非磁性体で構成された内壁金型(中芯)で1円筒
5との間に円筒状のキャビティ10を形成している。こ
の中芯6の中央より下側には。A non-magnetic cylinder 5 is arranged inside the magnet body 2. Reference numeral 6 denotes an inner wall mold (center core) made of a non-magnetic material and forms a cylindrical cavity 10 between it and the cylinder 5 . Below the center of this center core 6.
フェライト磁石粉末を水等の液体に懸濁した泥漿(スラ
リー)の供給パイプ(図示せず)に連結される孔6aと
、更にその孔6aと前述のキャビティ10とを連絡する
横孔6bとが形成されている。A hole 6a is connected to a supply pipe (not shown) for slurry in which ferrite magnet powder is suspended in a liquid such as water, and a horizontal hole 6b is connected to the hole 6a and the cavity 10 described above. It is formed.
7は下ieンチで非磁性体である。8は貫通孔9を形成
した涙過機構を備えた濾過板で、との濾過板8は非磁性
体で構成されている。11はフィルターである。7 is a lower ie inch and is a non-magnetic material. Reference numeral 8 denotes a filter plate equipped with a lacrimal mechanism in which through-holes 9 are formed, and the filter plate 8 is made of a non-magnetic material. 11 is a filter.
円筒5.中芯6.下パンチ7および濾過板8とで円筒状
のキャビティ部10が構成される。Cylinder 5. Center core 6. The lower punch 7 and the filter plate 8 constitute a cylindrical cavity portion 10.
図中1円筒5の厚みEil″J: o、 5〜4、Om
mで好ましくは15〜3.0閣である。この厚みLは薄
すぎると成形時の圧力に耐えられず9円筒5が破壊され
。Thickness of cylinder 5 in the figure Eil''J: o, 5~4, Om
m is preferably 15 to 3.0 m. If the thickness L is too thin, the cylinder 5 will not be able to withstand the pressure during molding and will be destroyed.
厚みtが厚すぎるとスラリーの配向に使用する永久磁石
体2のキャビティ部1oでの磁場強度が低下し、結果的
に製品でのB。を低下させるので好ましくない。また永
久磁石体2の間隔pは永久磁石体2の幅を2mとすると
、下記の式による。If the thickness t is too thick, the magnetic field strength in the cavity part 1o of the permanent magnet body 2 used for orienting the slurry will decrease, resulting in B in the product. This is not preferable because it lowers the Further, the interval p between the permanent magnets 2 is determined by the following formula, assuming that the width of the permanent magnets 2 is 2 m.
p、+4−pm (o≦に≦5で好ましくは0≦に≦3
である)とのpとtとを適当にコントロールすることに
ょシ、径方向に多極に異方性化している部分と等方性の
部分とを同軸の筒状に一体に形成せしめた円筒状永久磁
石が得られる。p, +4-pm (o≦≦5, preferably 0≦≦3
In order to appropriately control p and t with respect to A shaped permanent magnet is obtained.
製造の際には、ダイ1の上面に濾過板8を所定の位置に
セットし、フェライト粉末のスラリーを供給管(図示せ
ず)から孔6a、横孔6bを通してキャビティ部1oに
充填する。充填完了後、下パンチ7を上昇させる。そし
て、吸水する装置(図示せず)により濾過板8の貫通孔
9よシキャビティ部10にフェライト粒子を残したまま
水だけを排水させながら、下パンチ7をさらに押圧し。During manufacturing, a filter plate 8 is set at a predetermined position on the upper surface of the die 1, and a slurry of ferrite powder is filled into the cavity 1o from a supply pipe (not shown) through the holes 6a and the horizontal holes 6b. After filling is completed, lower punch 7 is raised. Then, the lower punch 7 is further pressed while draining only water with the ferrite particles remaining in the through hole 9 of the filter plate 8 and the cavity 10 using a water absorbing device (not shown).
所定の密度を有するプレス体を得る。この時、ダイ1に
半径方向に磁界を発生する複数の永久磁石2があるため
、との磁力線にそってフェライト粒子は半径方向に多極
に異方化され、半径方向に異方性化された部分と等方性
の部分とを同軸の筒状といて有する円筒状プレス成形体
が得られる。この後、プレス成形体は、ダイ1よ)とシ
出され乾燥後、焼結され、半径方向に多極に異方性化さ
れた部分と等方性の部分とを同軸の筒状として有する円
筒状永久磁石体が得られる。A pressed body having a predetermined density is obtained. At this time, since there are a plurality of permanent magnets 2 in the die 1 that generate magnetic fields in the radial direction, the ferrite particles are anisotropic in the radial direction to have multiple poles along the lines of magnetic force. A cylindrical press-formed body having a coaxial cylindrical portion and an isotropic portion is obtained. After this, the press-formed body is extruded from die 1), dried, and sintered, and has a coaxial cylindrical shape including a multipolar anisotropic part and an isotropic part in the radial direction. A cylindrical permanent magnet body is obtained.
以下9本発明の実施例を詳しく説明する。Hereinafter, nine embodiments of the present invention will be described in detail.
実施例1
キャビティ部10の外径3.1+llIn、内径17I
III11とした金型に2幅4.19mmの希土類磁石
2を、磁石間距離pがOmm、磁石と粉末との距離tが
0.5調となるように外周部に配置して、24極とした
。Example 1 Outer diameter of cavity part 10: 3.1+llIn, inner diameter: 17I
2 Rare earth magnets 2 with a width of 4.19 mm were placed in the mold III11 on the outer periphery so that the distance p between the magnets was 0 mm and the distance t between the magnets and the powder was 0.5 mm to form a mold with 24 poles. did.
この金型に平均粒径0,85μに粉砕したストロンチウ
ムフェライト粉末を濃度60係のスラリーとして充填し
、溶媒(水)を排出しながら500kli’/cm 2
で成形した。This mold was filled with strontium ferrite powder crushed to an average particle size of 0.85μ as a slurry with a concentration of 60, and while the solvent (water) was being discharged, the mold was heated to 500kli'/cm2.
Molded with.
また、上記の金型に幅4.97wnの希土類磁石をpが
0+mn、tが3.5咽となるように外周部に配置して
24極とし、上記のごとく成形した。これらの成形体を
1220℃で焼結し、このコアを24極に着磁して表面
磁束密度B。を測定した。また、この焼結体を外周より
の深さ1簡のa部と内周よシの深さ1門のb部の配向度
をX線によって測定した。配向度は面指数(OOS)の
X線強度と(107)の強度比で測定し、(oos)の
X線強度をx(008)。In addition, a rare earth magnet having a width of 4.97wn was placed on the outer periphery of the above mold so that p was 0+mn and t was 3.5mm to form 24 poles, and molded as described above. These molded bodies are sintered at 1220°C, and this core is magnetized to 24 poles to obtain a surface magnetic flux density of B. was measured. Further, the degree of orientation of this sintered body was measured using X-rays at part a at a depth of 1 depth from the outer periphery and part b at a depth of 1 depth from the inner periphery. The degree of orientation is measured by the ratio of the X-ray intensity of the surface index (OOS) to the intensity of (107), and the X-ray intensity of (oos) is x (008).
(107)のX線強度をI(107)とするとき。When the X-ray intensity of (107) is I(107).
で表わされる。この配向度(1)が1%に満たないもの
は等方性とみなし、異方性が強まるにつれて配向度(%
ilが上昇する。この時の測定結果を表1に示す・また
、同形状の等方性磁石の表面磁束密度B。It is expressed as If the degree of orientation (1) is less than 1%, it is considered to be isotropic, and as the anisotropy increases, the degree of orientation (%
il rises. The measurement results at this time are shown in Table 1. Also, the surface magnetic flux density B of an isotropic magnet of the same shape.
及びa部とb部の配向度を表1に示す。Table 1 shows the degrees of orientation of parts a and b.
以下余日
表1 配向度@)
p t Bo (G) b 外観
0 0.5 1300 56.5 498 クラック有
0 3.5 750 6.2 0.02 クラック無等
方性 680 −0.04 0.03 クラ、り無ツク
の無いものができた。Table 1 below: Degree of orientation @) pt Bo (G) b Appearance 0 0.5 1300 56.5 498 Cracks present 0 3.5 750 6.2 0.02 Crack anisotropy 680 -0.04 0 .03 I was able to create something completely flawless.
p = O、t = 0.5としたものは等方性の磁石
に比し90係優れた特性をもつが、クラックの発生によ
シ使用できないものであった。また、pmQ。A magnet with p = O and t = 0.5 had characteristics 90 times better than an isotropic magnet, but it could not be used due to the occurrence of cracks. Also, pmQ.
t = 0.5のものは外内周共異方性をもっことがみ
られ、pmO,t=3.5のものは内周部は等方性であ
った。The specimen with t = 0.5 was found to have anisotropy both on the outer and inner peripheries, and the specimen with pmO, t = 3.5 was isotropic at the inner periphery.
実施例2
実施例1と同じ金型を用い、磁石の幅を調整して磁石間
距離pを0.5+m++とじ、tを1.0+3.0+n
mになるよう磁石を外周部に配置し、実施例1と同様に
成形、焼成した。このコアを実施例1と同様に着磁後2
表面磁束密度B。を測定した結果と、配向度を測定した
結果を表2に示す。Example 2 Using the same mold as in Example 1, the width of the magnets was adjusted to set the distance p between the magnets to 0.5+m++, and t to 1.0+3.0+n.
A magnet was placed on the outer periphery so as to have a diameter of m, and molded and fired in the same manner as in Example 1. After magnetizing this core in the same manner as in Example 1,
Surface magnetic flux density B. Table 2 shows the results of measuring the degree of orientation and the results of measuring the degree of orientation.
表2 配向度(支))
ptBo(G) 外観 b
O051,01230クラック有 51,0 47.2
0.5 3.0 810 クラック無 9.9 −0.
01して、p=1..0岨とし、tを1.5.2.5咽
としだ。Table 2 Orientation degree (support) ptBo (G) Appearance b O051,01230 cracked 51,0 47.2
0.5 3.0 810 No crack 9.9 -0.
01, p=1. .. Let's set it to 0, and let t be 1,5,2,5.
実施例1と同様に成形焼成したときの着磁後の表面磁束
密度B。及び配向度を表3に示す。Surface magnetic flux density B after magnetization when molded and fired in the same manner as in Example 1. and the degree of orientation are shown in Table 3.
表3 配向度@)
p E Bo(G) a b 外観
1.0 1.5 1180 4.8.5 0.03 ク
ラック無]、、0 2.5 1130 46.3 0.
00 クラック無等方性磁石に比べ40チ以上高いB。Table 3 Degree of orientation @) p E Bo (G) a b Appearance 1.0 1.5 1180 4.8.5 0.03 No cracks], 0 2.5 1130 46.3 0.
00 B more than 40 inches higher than crack anisotropic magnets.
をもち、しかもクランクの無い円筒形磁石が得られた。A cylindrical magnet without a crank was obtained.
以下余白
実施例4
実施例1と同様に成形焼結したときの着磁後の表面磁束
密度B。、及び配向度を表4に示す。The following margin is Example 4: Surface magnetic flux density B after magnetization when molded and sintered in the same manner as in Example 1. , and the degree of orientation are shown in Table 4.
表。 配向度(イ)
p t Bo(G) 外観 b
部、、5 1.5 1160 クラック無 46.6
0.31.52.5 1140 クラック無 46.0
−0.02実施例5
第3図に示すような円筒5の外側にキャビティ部10を
形成した金型構造を用いて、磁石2間距離p(−と、磁
石2と粉末間の距離t(m)とを、それぞれp二1.5
、 t =2.5 、1.5とし、キャビティ部10
の外径と内径がそれぞれ4.5.+11m 、 31
mmの金型にストロンチウムフェライト粉末を充填し。table. Orientation degree (A) pt Bo (G) Appearance b part, 5 1.5 1160 No crack 46.6
0.31.52.5 1140 No crack 46.0
−0.02 Example 5 Using a mold structure in which a cavity portion 10 is formed on the outside of a cylinder 5 as shown in FIG. m) and p21.5, respectively.
, t = 2.5, 1.5, and the cavity part 10
The outer diameter and inner diameter of each are 4.5. +11m, 31
Fill a mm mold with strontium ferrite powder.
500 kg7cm2で成形した後、この成形体を12
20℃で焼結した。このコアを着磁して表面磁束密度B
。After molding with 500 kg7cm2, this molded body was
It was sintered at 20°C. By magnetizing this core, the surface magnetic flux density B
.
を測定した結果を表5に示す。尚、比較のため同一形状
の等方性の磁石体を着磁した時の表面磁束密度B。を同
様に表5に示す。Table 5 shows the measurement results. For comparison, the surface magnetic flux density B is obtained when an isotropic magnet of the same shape is magnetized. are also shown in Table 5.
表5
p t Bo(G) 外観
1.5 2.5 1100 クラック無1.5 1.5
1190 クラック有等方性 660
まだ、焼結したコアを前述したようにa部とb部で切断
し、実施例1と同様に配向度を測定した。Table 5 pt Bo (G) Appearance 1.5 2.5 1100 No crack 1.5 1.5
1190 Crack Anisotropy 660 Still, the sintered core was cut at parts a and b as described above, and the degree of orientation was measured in the same manner as in Example 1.
その結果、t=1.5のものはaが28%、bが49.
9’%と外周部も配向されているが、t=2.5のもの
はaが0.06%、bが46.3%と内周が配向され、
外周部は等方性であることが測定された。As a result, in the case of t=1.5, a is 28% and b is 49%.
The outer periphery is also oriented at 9'%, but in the case of t=2.5, the inner periphery is oriented with a of 0.06% and b of 46.3%.
The outer periphery was determined to be isotropic.
以上、説明したように本発明によれば、磁石の磁石間距
離pと粉末と磁石との距離tを適当にコントロールする
ことにより、クラックのない磁気特性の優れた。径方向
に多極の異方性をもつ部分と等方性の部分とを同軸の筒
状として有する円筒状永久磁石を得ることが出来た。As described above, according to the present invention, by appropriately controlling the distance p between the magnets and the distance t between the powder and the magnet, excellent magnetic properties without cracks can be achieved. It was possible to obtain a cylindrical permanent magnet having a radially multipolar anisotropic part and an isotropic part coaxially cylindrical.
なお9本発明は、上記実施例のみに限定されるものでは
なく、乾式で粉末を充填する場合にも適用可能であり、
またキャビティ部の内周又は外周に配置する磁石は永久
磁石を用いても、電磁石を用いても、良い。Note that the present invention is not limited to the above embodiments, but can also be applied to the case of filling powder in a dry manner.
Furthermore, the magnets disposed on the inner or outer periphery of the cavity may be permanent magnets or electromagnets.
第1図は本発明で用いる金型構造を示す横断面図、第2
図は第1図の金型構造の縦断面図、第3図は本発明で用
いる金型構造の別の例を示す横断面図である。
1・・・外壁金型(ダイ)、2・・・磁石体、3・・非
磁性リング、5・・・円筒、6・・・内壁金型(中芯)
。
7 ・下パンチ、8・・・濾過板、9・・・貫通孔、1
0・円筒状キャビティ部、11・・・フィルタ。
第1図
第2図Figure 1 is a cross-sectional view showing the mold structure used in the present invention;
The figure is a longitudinal cross-sectional view of the mold structure shown in FIG. 1, and FIG. 3 is a cross-sectional view showing another example of the mold structure used in the present invention. 1...Outer wall mold (die), 2...Magnet, 3...Nonmagnetic ring, 5...Cylinder, 6...Inner wall mold (center core)
. 7 ・Lower punch, 8... Filter plate, 9... Through hole, 1
0. Cylindrical cavity portion, 11... Filter. Figure 1 Figure 2
Claims (1)
せるように、複数の磁石を前記キャビティ部以外の部分
に配置し、該キャビティ部にフェライト粉末を充填し、
フェライト粒子の磁化容易方向を半径方向に配列させ、
該フェライト粉末を圧縮成形した後、焼結して、径方向
に異方性を持つ円筒状フェライト磁石を得るようにした
円筒状永久磁石の製造方法において、前記磁石相互間の
距離及び前記磁石と前記フェライト粉末との間の距離を
調節することによって、焼結後の円筒状フェライト磁石
に、異方性化している部分と等方性の部分とを同軸の筒
状に一体に形成せしめることを特徴とする円筒状永久磁
石の製造方法。 以下余白[Claims] 1. A plurality of magnets are arranged in a part other than the cavity part so as to generate a radial magnetic field in the cylindrical cavity part, and the cavity part is filled with ferrite powder,
The direction of easy magnetization of ferrite particles is arranged in the radial direction,
In the method for manufacturing a cylindrical permanent magnet, the ferrite powder is compression-molded and then sintered to obtain a cylindrical ferrite magnet having radial anisotropy. By adjusting the distance between the ferrite powder and the sintered cylindrical ferrite magnet, an anisotropic part and an isotropic part can be integrally formed into a coaxial cylindrical shape. A method for manufacturing a cylindrical permanent magnet. Margin below
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10900483A JPS601820A (en) | 1983-06-17 | 1983-06-17 | Manufacture of cylindrical permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10900483A JPS601820A (en) | 1983-06-17 | 1983-06-17 | Manufacture of cylindrical permanent magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS601820A true JPS601820A (en) | 1985-01-08 |
Family
ID=14499124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10900483A Pending JPS601820A (en) | 1983-06-17 | 1983-06-17 | Manufacture of cylindrical permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS601820A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6252913A (en) * | 1985-09-02 | 1987-03-07 | Hitachi Metals Ltd | Method and device for manufacture of multipolar anisotropic cylindrical magnet |
JP2011220096A (en) * | 2010-03-25 | 2011-11-04 | Sharp Corp | Mount for structures, construction method of the mount, and solar energy power generation system using the mount |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS559456A (en) * | 1978-07-06 | 1980-01-23 | Tdk Corp | Magnetizing method of asymmetric and multipolar magnet disc |
JPS5511348A (en) * | 1978-07-12 | 1980-01-26 | Tdk Corp | Magnetization of asymmetric multipolar magnet disc |
JPS59216453A (en) * | 1983-05-20 | 1984-12-06 | Hitachi Metals Ltd | Manufacture of cylindrical permanent magnet |
-
1983
- 1983-06-17 JP JP10900483A patent/JPS601820A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS559456A (en) * | 1978-07-06 | 1980-01-23 | Tdk Corp | Magnetizing method of asymmetric and multipolar magnet disc |
JPS5511348A (en) * | 1978-07-12 | 1980-01-26 | Tdk Corp | Magnetization of asymmetric multipolar magnet disc |
JPS59216453A (en) * | 1983-05-20 | 1984-12-06 | Hitachi Metals Ltd | Manufacture of cylindrical permanent magnet |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6252913A (en) * | 1985-09-02 | 1987-03-07 | Hitachi Metals Ltd | Method and device for manufacture of multipolar anisotropic cylindrical magnet |
JP2011220096A (en) * | 2010-03-25 | 2011-11-04 | Sharp Corp | Mount for structures, construction method of the mount, and solar energy power generation system using the mount |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210183567A1 (en) | Radiation-oriented sintered arc-shaped nd-fe-b magnet, a manufacturing method thereof, and a corresponding manufacturing device | |
US4063970A (en) | Method of making permanent magnets | |
US5762967A (en) | Rubber mold for producing powder compacts | |
JPS601820A (en) | Manufacture of cylindrical permanent magnet | |
US3412461A (en) | Method for making ferrite magnets | |
US4010434A (en) | Radially anisotropic magnet body | |
JPH03265102A (en) | Diametrical anisotropic cylindrical permanent magnet and manufacture thereof | |
JP3012492B2 (en) | Manufacturing method of anisotropic magnet by dry forming method | |
JPH0215621Y2 (en) | ||
JP3538762B2 (en) | Method for producing anisotropic bonded magnet and anisotropic bonded magnet | |
JPH0211006B2 (en) | ||
JP2777693B2 (en) | Dry-formed ferrite magnet, method for producing the same, and dry-forming apparatus | |
JPH0559572B2 (en) | ||
JPS6169104A (en) | Semicircular anisotropic ferrite magnet and manufacture thereof | |
JPH11195548A (en) | Production of nd-fe-b magnet | |
JPH0726804Y2 (en) | Cylindrical outer peripheral multi-pole magnet | |
JPH0234816Y2 (en) | ||
US5170084A (en) | Wide-angle arc segment magnet and brush motor containing it | |
JPH05308030A (en) | Method of controlling residual magnetic induction of sintered magnet and product made the method | |
JP2001006913A (en) | Rotor | |
JPS6351991B2 (en) | ||
JPH0419685B2 (en) | ||
Sagawa et al. | Rubber isostatic pressing (RIP) for ferrite magnets | |
JPH0234817Y2 (en) | ||
JPS56125814A (en) | Manufacture of cylindrical permanent magnet |