JPH0234817Y2 - - Google Patents

Info

Publication number
JPH0234817Y2
JPH0234817Y2 JP16317485U JP16317485U JPH0234817Y2 JP H0234817 Y2 JPH0234817 Y2 JP H0234817Y2 JP 16317485 U JP16317485 U JP 16317485U JP 16317485 U JP16317485 U JP 16317485U JP H0234817 Y2 JPH0234817 Y2 JP H0234817Y2
Authority
JP
Japan
Prior art keywords
magnetic
molding
core
punch
anisotropic ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16317485U
Other languages
Japanese (ja)
Other versions
JPS6273524U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16317485U priority Critical patent/JPH0234817Y2/ja
Publication of JPS6273524U publication Critical patent/JPS6273524U/ja
Application granted granted Critical
Publication of JPH0234817Y2 publication Critical patent/JPH0234817Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【考案の詳細な説明】 利用産業分野 この考案は、異方性フエライト磁石の成型装置
に係り、環状体異方性フエライト磁石の両平面の
磁気特性の差を拡大し、一方平面側の磁気特性を
向上させ、さらに、焼結体の微細クラツク等を防
止しかつ成型体の圧壊強度を大幅に向上させるこ
とができる成型装置に関する。 背景技術 環状体の異方性フエライト磁石を成型する装置
として一般に多用される成型装置は、ダイス内の
成型空間にスラリー状原料粉末を充填し、該原料
粉末を磁界中にて、上パンチと下パンチにより圧
縮型する構成である。 一般に、上記構成の成型装置で異方性フエライ
ト磁石を成型すると、圧縮成型時の水抜き等の影
響あるいは上パンチ側と下パンチ側との成型密度
の差によつて、相対的に強磁性端面と弱磁性端面
とが形成され、両平面間で磁気特性に差が生じて
いた。 かかる磁気特性差のある磁石の積極的な利用法
として、偏平型モーターやマグネトロン、ヒステ
リシスカツプリング等があり、該形状磁石の両平
面間の磁気特性差をさらに拡大することが要望さ
れている。 しかし、異方性フエライト磁石の両面の磁気特
性の強弱を積極的にかつ所望の差で設ける手段は
確立されておらず、特開昭59−28541号公報に、
磁界中圧縮成型時の上下パンチ磁極面の面積比を
変えることにより、かかる磁気特性の強弱を制御
する方法が提案されている程度である。 また、環状異方性フエライト磁石は、マグネト
ロンや磁気カツプリング、偏平モーター等の用途
に使用され、実用に際して磁石体の強度の向上が
強く望まれているが、従来の成型装置では、周方
向、放射方向あるいは層状の微細クラツクが発生
し易く、さらに圧壊強度を大きく向上させること
は困難であつた。 考案の目的 この考案は、異方性フエライト磁石の成型装置
において、偏平環状磁石の両平面の磁気特性の差
を拡大し、一方平面側の磁気特性を大巾に向上さ
せることができ、かつ微細クラツクの発生を防止
し成型体の圧壊強度を向上させ得る成型装置を目
的としている。 考案の構成と効果 この考案は、環状体の偏平状の異方性フエライ
ト磁石の両平面における磁気特性差を設ける手段
並びに微細クラツク防止と強度を向上させる手段
について種々検討した結果、磁性材からなる上パ
ンチ先端部を非磁性体となして、さらに、非磁性
体コアに鉄芯を配置して、圧縮成型すると、得ら
れた磁石の両面間の磁気特性差を大きくでき、一
方面の磁気特性を向上させることができ、かつ、
焼結成型体の微細クラツクの発生防止が可能で、
さらに圧壊強度が大幅に向上することを知見した
ものである。 すなわち、この考案は、ダイス内の成型空間に
スラリー状原料粉末を充填し、該原料粉末を磁界
中にて、上パンチと下パンチにより圧縮成型する
異方性フエライト磁石の成型装置において、非磁
性体を上パンチ成形空間側先端部に配置し、成型
空間内に挿通させた非磁性体コア内に、強磁性芯
材を同心状に配置したことを特徴とする異方性フ
エライト磁石の成型装置である。 この考案は、詳述すれば、環状体異方性フエラ
イト磁石の成型装置において、上パンチの成形空
間側先端部に非磁性体を設け、あるいはさらに、
該上パンチ先端部の非磁性体内または非磁性体外
周に、成形空間内周面より外側に環状の磁性体を
同心状に設け、また、成形空間内に挿通配置する
コアを非磁性円筒状コアとなし、コア内に同心状
に鉄芯等の強磁性芯材を嵌入、挿入配置すること
を特徴とする異方性フエライト磁石の成型装置で
あり、例えば、強磁性端面と弱磁性端面との特性
格差を拡大して強磁性端面の磁気特性を向上させ
ることができ、かつ、焼結成型体の微細クラツク
がなく、圧壊強度が大幅に向上する。 考案の好ましい実施態様 この考案において、上パンチの磁極面と原料粉
末間に介在させる非磁性体及び非磁性体コア内の
強磁性芯材は、予め上パンチの磁極面、コア内に
設ける構成のほか、圧縮成型時に随時介在させて
もよく、パンチ面の非磁性体は成型空間内に充填
した原料粉末が洩れることのないように構成する
必要があり、成型の作業性などに応じて適宜選定
すればよい。また、圧縮成型装置は公知のいかな
る構成のものでも適用できる。 さらに、非磁性体の厚みは、成型体の形状によ
り適宜選定すればよいが、厚すぎると適正な磁界
形成に多くの電流を要して効率上種々の問題を来
たし、また、薄すぎると十分な効果が得られなく
なるが、環状磁性体の好ましい寸法と合せて、適
宜選定する必要がある。 この考案において、上パンチ先端部の非磁性体
内または非磁性体外周に、成型空間内周面より外
側に環状の磁性体を同心状に設けることにより、
強磁性端面と弱磁性端面との特性格差を拡大して
強磁性端面の磁気特性を向上させることができ、
環状磁性体の高さは上記の非磁性体厚みと同じで
あり、ダイス内径をDとすると、0.2D〜2.0Dが
望ましく、さらに0.5D〜1.5Dが好ましく、また
環状磁性体の内径は、1D〜1.5Dが望ましく、好
ましくは1.1D〜1.2D、さらに厚みは、0.02D〜
0.3Dが望ましく、0.1D〜0.2Dが最も好ましく、
充填した原料粉末との接触面部分に非磁性体を設
けてその外周部に環状に磁性体を配置すればよ
く、被成形体の形状や作業性を考慮して適宜選定
するとよい。 成形空間内に挿通配置する非磁性コア材は、プ
レス時の下パンチとの摩擦によつて摩耗し、実用
上の問題を来たすことがないよう、ロツクウエル
硬度HRCが40以上であることが望ましい。 また、該非磁性コア内に同心状に、嵌入あるい
は遊挿する強磁性芯材は、その直径d1が、非磁性
コアの直径をdとすると、0.2d未満では、磁界成
形時の印加磁界によつて磁気的に飽和してしま
い、かかる考案の効果を充分に得ることができ
ず、また、0.8dを越えると、成型体付近の磁場配
向が部分的に乱れて、成型体に微細なクラツクが
発生し好ましくないため、d1=0.2d〜0.8dとし、
さらに好ましくはd1=0.4d〜0.6dである。 また、非磁性体コア内での強磁性芯材の配置
は、その上面先端位置が、コアと同一高さであ
り、上パンチ面と当接する高さが望ましく、さら
に、強磁性芯材の長さは、プレス後の成型体厚み
の4倍以上が好ましい。 図面に基づく考案の開示 第1図はこの考案による成型装置の縦断説明図
である。 成型空間は、非磁性体のダイス1に設けた円柱
状空間内に、磁性体からなる中空円筒状の下パン
チ2を嵌入し、下パンチ2の中空部に非磁性体の
円筒状非磁性コア3を挿通させ、さらに、この非
磁性コア3の軸芯部に鉄芯7を挿入させることに
より、ダイス1内に形成され、原料粉末が同空間
内に充填される。 また、ダイス1上端面には、磁極面に上パンチ
5と同径の円板である非磁性板4を設けた上パン
チ5が当接する。さらに、成形空間であるダイス
1内径より大きな内径を有するリング状の環状磁
性体を成形空間と同心状に非磁性板4内に設ける
のもよい。 さらに、上パンチ5と下パンチ2には図示しな
い油圧シリンダが付設されて上下方向に移動して
加圧する構成となり、ダイス1外周部には磁界を
形成するための電磁コイル6が設けてある。 ダイス1内の成型空間にスラリー状の原料粉末
を充填したのち、コイル6を励磁して磁界を形成
し、ダイス1、上パンチ5、コア3を降下させて
圧縮成型する。 この際、スラリー状原料粉末の水分は、例えば
非磁性板4に設ける抜水孔より抜水するのもよ
く、あるいは非磁性板4と原料粉末との間に濾過
布等のフイルター類を介在させるのもよい。 また、上パンチの磁極面の面積Suと、ダイス
内の成型空間における横断面面積Sd(π/4・
D2)との比、Su/Sdは、1以上であれば、この
考案の効果は十分に発揮される。 さらに、ダイス内に複数の成型空間を設けて、
1回の成型で複数個の成型体を得る装置において
も、通常、上パンチは1つのみで構成されるた
め、各成型空間のSu/Sd比は、上記の上パンチ
が1つとして求めた比を成型空間数で除した値と
考える。 一方、電磁コイルは、ダイスの外周部に設けた
場合を説明したが、上パンチと下パンチの外周部
に設けてもよく、この場合、上下コイルの起磁力
バランスは、同等、または下側が強い場合がよ
い。あるいは起磁力が十分に大きければ、下パン
チのみに周設してもよい。 実施例 実施例 1 前述した第1図の上パンチの磁極面に磁極面と
同寸法、80mmφの非磁性板を着設した成型装置を
用いて、非磁性コア(d=24mm)の軸心部に、
種々外径(d1)の鉄芯を挿入して、SrO9.5%、
Fe2O388%を含有するスラリー状原料粉末を、
8kOeの磁界中で、0.5t/cm2の圧力を加え、外径
65mm×内径24mm×高さ18mm寸法に成型し、得られ
たリング状の成型体に、1250℃×1時間の焼結を
施し、異方性フエライト磁石を得た。 また、非磁性コア内に鉄芯を挿入しない以外
は、全く同一条件で成型・焼結し、従来装置によ
る異方性フエライト磁石を得た。 得られた各磁石の残留磁束密度を測定し、強磁
性面と弱磁性面との比を、比較例の当該比を1と
して対比させて、測定結果を第1表に示す。 第1表から明らかなように、この考案装置によ
ると、リング状異方性フエライト磁石の弱磁性端
面の磁気特性を大幅に減衰させて両平面の磁気特
性の差を大きくし、強磁性端面の磁気特性を大幅
に向上させることができた。なお、d1が23mmの場
合は、Br比は向上するが、クラツクが発生する
ため好ましくない。 実施例 2 実施例1で得られたこの考案装置による各条件
の異方性フエライト磁石と、従来装置による異方
性フエライト磁石を、それぞれ100個づつ、目視
検査でクラツクの発生率を調べ、また圧壊強度試
験を施した。検査、試験結果を第1表に示す。 圧壊強度試験は、クラツクのないものを50個選
び、各々に第2図に示す如く、試験磁石10を所
定間隔に配置した2本のステンレスピン11(直
径8mmφ)を介して基台12上に載置し、磁石1
0上面にアングル材13をあてがい、プレス14
で荷重して、破壊時の荷重を測定する方法で行な
つた。 第1表の結果より、この考案装置による環状異
方性フエライト磁石は、微細クラツクの発生が防
止され、かつ従来磁石より大幅に圧壊強度が向上
したことが分る。なお、d1が2.4mmの場合はクラ
ツクの発生はないが、Br比の向上が得られない
ため好ましくない。 【表】
[Detailed description of the invention] Industrial field of use This invention relates to a molding device for anisotropic ferrite magnets, which increases the difference in the magnetic properties of both planes of an annular anisotropic ferrite magnet, and increases the magnetic properties of one plane side. The present invention relates to a molding device that can improve the properties of the molded product, prevent micro-cracks, etc. in the sintered body, and significantly improve the crushing strength of the molded body. BACKGROUND ART A molding device that is commonly used for molding an anisotropic ferrite magnet in the form of an annular body fills a molding space in a die with a slurry-like raw material powder, and then passes the raw material powder through an upper punch and a lower punch in a magnetic field. It is configured to be compressed using a punch. In general, when an anisotropic ferrite magnet is molded using a molding device with the above configuration, the ferromagnetic end surface becomes relatively ferromagnetic due to the influence of water removal during compression molding or the difference in molding density between the upper punch side and the lower punch side. and a weakly magnetic end face were formed, resulting in a difference in magnetic properties between the two planes. Active uses of magnets with such a difference in magnetic properties include flat type motors, magnetrons, hysteresis couplings, etc., and there is a desire to further expand the difference in magnetic properties between the two planes of the shaped magnet. However, no means has been established to actively set the strength and weakness of the magnetic properties on both sides of an anisotropic ferrite magnet with a desired difference.
Only a few methods have been proposed for controlling the strength of the magnetic properties by changing the area ratio of the upper and lower punch pole faces during compression molding in a magnetic field. In addition, annular anisotropic ferrite magnets are used in applications such as magnetrons, magnetic couplings, and flat motors, and it is strongly desired to improve the strength of the magnet body in practical use. Fine cracks in the direction or in layers tend to occur, and it has been difficult to significantly improve the crushing strength. Purpose of the invention This invention, in an anisotropic ferrite magnet molding device, is capable of expanding the difference in magnetic properties between both planes of a flat annular magnet, and greatly improving the magnetic properties of the plane side. The object is a molding device that can prevent the occurrence of cracks and improve the crushing strength of molded bodies. Structure and Effects of the Device This device was developed as a result of various studies on means of creating a difference in magnetic properties on both planes of an annular flat anisotropic ferrite magnet, as well as means of preventing micro-cracks and improving strength. By making the tip of the upper punch a non-magnetic material, placing an iron core in the non-magnetic core, and compression molding, the difference in magnetic properties between both sides of the obtained magnet can be increased, and the magnetic properties of one side can be increased. can be improved, and
It is possible to prevent the occurrence of minute cracks in the sintered molded body.
Furthermore, it was discovered that the crushing strength was significantly improved. That is, this invention is a molding device for anisotropic ferrite magnets that fills a molding space in a die with slurry-like raw material powder and compresses and molds the raw material powder in a magnetic field using an upper punch and a lower punch. A molding device for an anisotropic ferrite magnet, characterized in that the body is placed at the tip of the upper punch molding space, and a ferromagnetic core material is arranged concentrically within a non-magnetic core inserted into the molding space. It is. More specifically, this invention is a molding device for an annular anisotropic ferrite magnet, in which a non-magnetic material is provided at the tip of the upper punch on the molding space side, or in addition,
A ring-shaped magnetic body is provided concentrically outside the inner peripheral surface of the molding space on the non-magnetic body or the outer periphery of the non-magnetic body at the tip of the upper punch, and a core inserted into the molding space is a non-magnetic cylindrical core. This is an anisotropic ferrite magnet molding device characterized by fitting and inserting a ferromagnetic core material such as an iron core concentrically into the core. The magnetic properties of the ferromagnetic end face can be improved by widening the property difference, and there are no microcracks in the sintered molded body, and the crushing strength is greatly improved. Preferred Embodiment of the Invention In this invention, the non-magnetic material interposed between the magnetic pole surface of the upper punch and the raw material powder and the ferromagnetic core material in the non-magnetic core are provided in advance in the magnetic pole surface of the upper punch and in the core. In addition, it may be inserted at any time during compression molding, and the non-magnetic material on the punch surface must be configured to prevent the raw material powder filled into the molding space from leaking, and should be selected as appropriate depending on the workability of molding. do it. Furthermore, any known configuration of the compression molding device can be applied. Furthermore, the thickness of the non-magnetic material can be selected appropriately depending on the shape of the molded body, but if it is too thick, it will require a lot of current to form an appropriate magnetic field, causing various problems in terms of efficiency, and if it is too thin, it will not be sufficient. However, it is necessary to select the size appropriately in conjunction with the preferred dimensions of the annular magnetic body. In this invention, by providing an annular magnetic body concentrically outside the inner peripheral surface of the molding space in the non-magnetic body or the outer periphery of the non-magnetic body at the tip of the upper punch,
It is possible to improve the magnetic properties of the ferromagnetic end face by expanding the difference in characteristics between the ferromagnetic end face and the weakly magnetic end face.
The height of the annular magnetic material is the same as the thickness of the non-magnetic material described above, and when the die inner diameter is D, it is preferably 0.2D to 2.0D, more preferably 0.5D to 1.5D, and the inner diameter of the annular magnetic material is 1D to 1.5D is desirable, preferably 1.1D to 1.2D, and the thickness is 0.02D to
0.3D is preferred, 0.1D-0.2D is most preferred,
A non-magnetic material may be provided on the contact surface with the filled raw material powder, and a magnetic material may be arranged annularly around the outer periphery of the non-magnetic material, which may be appropriately selected in consideration of the shape of the object to be molded and workability. It is desirable that the non-magnetic core material inserted into the molding space has a Rockwell hardness HRC of 40 or higher so that it will not wear out due to friction with the lower punch during pressing and cause practical problems. In addition, if the diameter d1 of the ferromagnetic core material that fits or loosely inserts concentrically into the non-magnetic core is less than 0.2d, where d is the diameter of the non-magnetic core, it will not be affected by the applied magnetic field during magnetic field forming. As a result, it becomes magnetically saturated, making it impossible to obtain the full effect of this invention. Also, if it exceeds 0.8d, the magnetic field orientation near the molded body is partially disturbed, causing minute cracks in the molded body. occurs, which is undesirable, so d 1 is set to 0.2d to 0.8d,
More preferably, d 1 =0.4d to 0.6d. In addition, the ferromagnetic core material is preferably arranged within the non-magnetic core so that its upper surface tip position is at the same height as the core and at a height where it contacts the upper punch surface, and the length of the ferromagnetic core material is The thickness is preferably 4 times or more the thickness of the molded body after pressing. DISCLOSURE OF THE INVENTION BASED ON DRAWINGS FIG. 1 is a longitudinal sectional view of a molding apparatus according to this invention. The molding space is created by fitting a hollow cylindrical lower punch 2 made of a magnetic material into a cylindrical space provided in a die 1 made of a non-magnetic material, and inserting a cylindrical non-magnetic core made of a non-magnetic material into the hollow part of the lower punch 2. 3 and further inserting the iron core 7 into the axis of the non-magnetic core 3, the core 7 is formed inside the die 1, and the raw material powder is filled in the same space. Further, an upper punch 5 having a non-magnetic plate 4, which is a disc having the same diameter as the upper punch 5, is provided on the magnetic pole surface of the upper punch 5 comes into contact with the upper end surface of the die 1. Furthermore, a ring-shaped annular magnetic body having an inner diameter larger than the inner diameter of the die 1 serving as the molding space may be provided in the non-magnetic plate 4 concentrically with the molding space. Further, the upper punch 5 and the lower punch 2 are provided with hydraulic cylinders (not shown) that move in the vertical direction to apply pressure, and an electromagnetic coil 6 for forming a magnetic field is provided on the outer circumference of the die 1. After filling the molding space in the die 1 with slurry-like raw material powder, the coil 6 is excited to form a magnetic field, and the die 1, upper punch 5, and core 3 are lowered to perform compression molding. At this time, the water in the slurry-like raw material powder may be drained, for example, from a drainage hole provided in the non-magnetic plate 4, or by interposing a filter such as a filter cloth between the non-magnetic plate 4 and the raw material powder. It's also good. In addition, the area Su of the magnetic pole surface of the upper punch and the cross-sectional area Sd (π/4・
D 2 ), Su/Sd, is 1 or more, the effect of this invention is fully exhibited. Furthermore, by providing multiple molding spaces within the die,
Even in devices that produce multiple molded bodies in one molding process, there is usually only one upper punch, so the Su/Sd ratio of each molding space was calculated assuming that there is only one upper punch. Think of it as the value obtained by dividing the ratio by the number of molding spaces. On the other hand, although the case where the electromagnetic coil is provided on the outer periphery of the die has been described, it may also be provided on the outer periphery of the upper and lower punches. In this case, the balance of magnetomotive force between the upper and lower coils is the same, or the lower side is stronger. The case is good. Alternatively, if the magnetomotive force is sufficiently large, it may be provided around only the lower punch. Examples Example 1 The axial center of a non-magnetic core (d=24 mm) was molded using a molding device in which a non-magnetic plate of 80 mmφ and the same size as the magnetic pole surface was attached to the magnetic pole surface of the upper punch shown in FIG. To,
By inserting iron cores of various outer diameters (d 1 ), SrO9.5%,
Slurry raw material powder containing 88% Fe 2 O 3 is
In a magnetic field of 8 kOe, a pressure of 0.5 t/cm 2 was applied, and the outer diameter
It was molded into dimensions of 65 mm x inner diameter 24 mm x height 18 mm, and the resulting ring-shaped molded body was sintered at 1250°C for 1 hour to obtain an anisotropic ferrite magnet. Furthermore, an anisotropic ferrite magnet was obtained using the conventional apparatus by molding and sintering under exactly the same conditions except that the iron core was not inserted into the non-magnetic core. The residual magnetic flux density of each obtained magnet was measured, and the ratio of the ferromagnetic surface to the weakly magnetic surface was compared with the ratio of the comparative example as 1, and the measurement results are shown in Table 1. As is clear from Table 1, according to this invented device, the magnetic properties of the weakly magnetic end face of the ring-shaped anisotropic ferrite magnet are greatly attenuated, the difference in the magnetic properties of both planes is increased, and the ferromagnetic end face is We were able to significantly improve the magnetic properties. Note that when d1 is 23 mm, the Br ratio improves, but cracks occur, which is not preferable. Example 2 100 anisotropic ferrite magnets obtained in Example 1 under various conditions using the invented device and 100 anisotropic ferrite magnets obtained using the conventional device were visually inspected to determine the incidence of cracks. A crushing strength test was conducted. The inspection and test results are shown in Table 1. For the crushing strength test, 50 pieces with no cracks were selected, and each was placed on a base 12 via two stainless steel pins 11 (diameter 8 mmφ) with test magnets 10 arranged at a predetermined interval, as shown in Figure 2. Place magnet 1
Apply the angle material 13 to the top surface of 0 and press 14
The test was carried out by applying a load at the time of failure and measuring the load at the time of failure. From the results shown in Table 1, it can be seen that the annular anisotropic ferrite magnet produced by this device was prevented from generating minute cracks, and had significantly improved crushing strength compared to conventional magnets. Note that when d1 is 2.4 mm, no cracks occur, but the Br ratio cannot be improved, which is not preferable. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案による成型装置の縦断説明図
である。第2図は圧壊強度測定装置の概略図であ
る。 1……ダイス、2……下パンチ、3……コア、
4……非磁性板、5……上パンチ、6……電磁コ
イル、7……鉄芯、10……試験磁石、11……
ステンレスピン、12……基台、13……アング
ル材、14……プレス。
FIG. 1 is a longitudinal sectional view of the molding apparatus according to this invention. FIG. 2 is a schematic diagram of the crushing strength measuring device. 1... Dice, 2... Lower punch, 3... Core,
4... Non-magnetic plate, 5... Upper punch, 6... Electromagnetic coil, 7... Iron core, 10... Test magnet, 11...
Stainless steel pin, 12... base, 13... angle material, 14... press.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ダイス内の成型空間にスラリー状原料粉末を充
填し、該原料粉末を磁界中にて、上パンチと下パ
ンチにより圧縮成型する環状体の異方性フエライ
ト磁石の成型装置において、非磁性体を上パンチ
成形空間側先端部に配置し、成型空間内に挿通さ
せた非磁性体コア内に、強磁性芯材を同心状に配
置したことを特徴とする異方性フエライト磁石の
成型装置。
In a molding device for an anisotropic ferrite magnet having an annular body, a slurry-like raw material powder is filled into a molding space in a die, and the raw material powder is compressed and molded in a magnetic field using an upper punch and a lower punch. 1. A molding device for an anisotropic ferrite magnet, characterized in that a ferromagnetic core material is arranged concentrically within a non-magnetic core that is placed at the tip end of a punch molding space and inserted into the molding space.
JP16317485U 1985-10-24 1985-10-24 Expired JPH0234817Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16317485U JPH0234817Y2 (en) 1985-10-24 1985-10-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16317485U JPH0234817Y2 (en) 1985-10-24 1985-10-24

Publications (2)

Publication Number Publication Date
JPS6273524U JPS6273524U (en) 1987-05-11
JPH0234817Y2 true JPH0234817Y2 (en) 1990-09-19

Family

ID=31091130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16317485U Expired JPH0234817Y2 (en) 1985-10-24 1985-10-24

Country Status (1)

Country Link
JP (1) JPH0234817Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538166B2 (en) * 2001-06-12 2010-09-08 信越化学工業株式会社 Magnetic sensor

Also Published As

Publication number Publication date
JPS6273524U (en) 1987-05-11

Similar Documents

Publication Publication Date Title
JPS59216453A (en) Manufacture of cylindrical permanent magnet
US7740714B2 (en) Method for preparing radially anisotropic magnet
US3274303A (en) Method and apparatus for making magnetically anisotropic permanent magnets
JPH0234817Y2 (en)
JPH0234816Y2 (en)
JPH0215621Y2 (en)
JPS6134249B2 (en)
JPH027808B2 (en)
JPH0213452B2 (en)
JP2004259850A (en) Annular magnet and its manufacturing method
JPS62217607A (en) Manufacture of nd-fe-b based magnet
JP3538762B2 (en) Method for producing anisotropic bonded magnet and anisotropic bonded magnet
JPH0726804Y2 (en) Cylindrical outer peripheral multi-pole magnet
JPS6167599A (en) Magnetic field forming method and forming device
JPS601820A (en) Manufacture of cylindrical permanent magnet
JPS6211042B2 (en)
JPS59211502A (en) Production of permanent magnet body having surface multipolar anisotropy
CN115910589A (en) Circular magnetic core forming die and preparation method of semi-circular magnetic core
JPS61140124A (en) Manufacture of molded magnet oriented in axial direction
JPH0212726B2 (en)
JPS63310356A (en) Cylindrical permanent magnet
JP3079348B2 (en) Manufacturing method of radially oriented magnet
JPS61140125A (en) Metal mold structure for press of magnetic powder
JPH0296316A (en) Molding device of permanent magnet powder in magnetic field
JPH05326232A (en) Magnetic circuit component and manufacture thereof