JPS6167599A - Magnetic field forming method and forming device - Google Patents

Magnetic field forming method and forming device

Info

Publication number
JPS6167599A
JPS6167599A JP18937884A JP18937884A JPS6167599A JP S6167599 A JPS6167599 A JP S6167599A JP 18937884 A JP18937884 A JP 18937884A JP 18937884 A JP18937884 A JP 18937884A JP S6167599 A JPS6167599 A JP S6167599A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
rubber tube
powder
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18937884A
Other languages
Japanese (ja)
Inventor
Etsuo Otsuki
悦夫 大槻
Tsutomu Otsuka
努 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP18937884A priority Critical patent/JPS6167599A/en
Publication of JPS6167599A publication Critical patent/JPS6167599A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses

Abstract

PURPOSE:To obtain a formed part of a uniform density, and to give an orienting property to said body by packing a flexible rubber tube with a magnetic powder, or providing a magnetic metal partition plate and a core rod and packing and choking them, and compressing the rubber tube by a hydrostatic pressure in a state that a magnetic field has been applied in the axial direction. CONSTITUTION:A lower punch 6 is installed to a urethane rubber table 7, and it is packed with a magnetic powder 15. It is charged into a rubber press body 10, and an upper punch 5 is attached. The rubber press body 10 is installed between magnetic field load use coils 1 of a frame 2 through a yoke 4. In a state that a magnetic field has been applied to the axial direction of the rubber tube, the rubber tube 7 is compressed and formed by applying a hydrostatic pressure 16. The pressure is eliminated after demagnetization, the rubber press body 10 is fetched and a compressed formed body is discharged. The formed body has a homogeneous density, has a magnetic orienting property, and becomes a non-defective unit. In this regard, the packed powder 15 can also be compressed and formed by providing a magnetic metal partition plate, a core rod, etc.

Description

【発明の詳細な説明】 本発明は、均質かつ高密度な成型体を比較的高スピード
で製造する二とができる乾式ラバープレスに靜磁場及び
パルス磁場負荷は溝を加えることにより、フェライト・
希土類磁石等の異方性磁石の製造に適用して好適な磁場
成望方法及グ歳望装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is capable of manufacturing homogeneous and high-density molded bodies at relatively high speeds by adding grooves to a dry rubber press capable of producing ferrite and
The present invention relates to a magnetic field determination method and apparatus suitable for use in manufacturing anisotropic magnets such as rare earth magnets.

従来、異方性磁石の製造は金型を用いた6fii%プレ
スにてなされている。この場合、ブレ又方向に対して磁
場方向が平行及び垂直の2方式採用されている6平行磁
場プレスは、プレス体の形状の仕上がりか良好であ纂が
、粉末の配向度か悪い欠点がある。一方、垂直磁場プレ
スは、粉末配向性1こ優れているか、プレス体形状か限
定される。さらに、両方に共通する欠点として、プレス
体の密度の不均一1こ起因する亀裂か発生しやすく、ま
たそのため高プレス圧による活度の上昇かM待て゛きな
いなどがある。
Conventionally, anisotropic magnets have been manufactured using a 6fii% press using a mold. In this case, the 6-parallel magnetic field press, which employs two methods in which the magnetic field direction is parallel and perpendicular to the blur direction, has the disadvantage that the finished shape of the pressed body is good, but the orientation of the powder is poor. . On the other hand, perpendicular magnetic field pressing is limited by its superior powder orientation and the shape of the pressed body. Furthermore, a common drawback of both is that cracks are likely to occur due to non-uniform density of the pressed body, and therefore, it is difficult to wait for an increase in activity due to high pressing pressure.

本発明はかかる点に鑑み、粉末配向性、密度の均一性、
種々の形状のプレス体の製jユの容易性等にすぐれ、し
かも高密度のプレス体を比較的高速で製造可能にする可
撓性ラバー管をキャビティとした磁場成型方法及び成型
装置を提案することを主たる目的とする。
In view of these points, the present invention provides powder orientation, density uniformity,
We propose a magnetic field molding method and molding device using a flexible rubber tube as a cavity, which is excellent in the ease of manufacturing pressed bodies of various shapes, and also enables production of high-density pressed bodies at relatively high speed. The main purpose is to

以下本発明の一実施例について図面を参照しなから詳細
に説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は磁場中乾式ラバープレス装置の外観構造の路線
概念図である。磁場負荷用コイル1を持っ7レーム2は
床3に固定している。コイル1の両端に設けられた各ヨ
ーク4の間には、磁性金属体で構成しtこ上及び下のパ
ンチ5,6を介在して可撓性ラバー管7が設けられてい
る。可撓性ラバー管7はウレタンラバーによって構成さ
れている。
FIG. 1 is a conceptual diagram of the external structure of a magnetic field dry type rubber press device. Seven frames 2 each having a magnetic field load coil 1 are fixed to a floor 3. A flexible rubber tube 7 is provided between each yoke 4 provided at both ends of the coil 1, with upper and lower punches 5 and 6 interposed therebetween, which are made of a magnetic metal material. The flexible rubber tube 7 is made of urethane rubber.

可撓性ラバー管7にはその外側にゴム管8を介してラバ
ープレス外殻101こよって保護されている。
The flexible rubber tube 7 is protected on the outside by a rubber press shell 101 via a rubber tube 8.

そして可撓性ラバー管7と外殻10との開には静水圧が
形f1.さhでいる。したがって、可撓性ラバー管7の
ラバープレスは可動式になっている5呵撓性ラバー管7
の上下には上及び下パンチ5.Gによってキャビティが
閉塞され、キャビティ部を外方より放射状に静水圧を加
えるため、外χ受10に水の導入管12が設けられてい
る。
Hydrostatic pressure forms f1. I'm in the middle of the day. Therefore, the rubber press of the flexible rubber tube 7 is movable.
Upper and lower punches 5. The cavity is closed by G, and a water introduction pipe 12 is provided in the outer X receiver 10 in order to apply hydrostatic pressure radially to the cavity portion from the outside.

第2図は本発明プレス工程の一例を示している。FIG. 2 shows an example of the pressing process of the present invention.

すなわち、ラバープレス本体を取扱える位置に移動(並
進移動回転移動、どちらでも良い)し、粉末、を充填し
たウレタンラバー管7(下パンチ6装着)を下から固定
する6モして上パンチ5を収り付け、フレーム2に戻し
、成型用粉末15を充填し、上下パンチ5,6を上下フ
ィル1のヨーク4が接するよう固定する。犬に、静磁場
およびパルス磁場を負荷し、粉末X5を磁場配向させ、
静磁場の場合はそのままの磁場中て゛、パルス磁場の場
合は小さい磁場を負荷した状態で、ラバー管7の加圧部
へ水16を圧送して加圧する。
That is, move the rubber press main body to a position where it can be handled (translational or rotational movement, either is fine), fix the urethane rubber tube 7 (with the lower punch 6 attached) filled with powder from below, and then move the upper punch 5. are placed, returned to the frame 2, filled with molding powder 15, and fixed so that the upper and lower punches 5 and 6 are in contact with the yokes 4 of the upper and lower fills 1. A static magnetic field and a pulsed magnetic field are applied to the dog to orient the powder X5 in the magnetic field,
In the case of a static magnetic field, the water 16 is pressurized in the same magnetic field, or in the case of a pulsed magnetic field, with a small magnetic field being applied to the pressurizing part of the rubber tube 7.

所定の加圧力に達した後、除荷、逆磁場負荷によるプレ
ス体の脱磁を行なう。そしてラバープレス体体を移動し
、プレス体の入っているウレタンラバーを移動し、プレ
ス体の入っているウレタンラバー管7を取り出し、プレ
スi体を得る。
After reaching a predetermined pressing force, the press body is demagnetized by unloading and reverse magnetic field loading. Then, the rubber press body is moved, the urethane rubber containing the press body is moved, and the urethane rubber tube 7 containing the press body is taken out to obtain a pressed body i.

第1表は垂直磁場成型プレス及び乾式ラバープレスで得
たS’mCo、ブレス成型体の相対密度及び亀裂の有無
についての表である。
Table 1 is a table regarding the relative density and presence or absence of cracks of S'mCo and press molded bodies obtained by a vertical magnetic field molding press and a dry rubber press.

第1表 これにより、金型ブレ又は成形圧の上昇に伴なりで、亀
裂の発生頻度が増える゛にらかかわらず、密度増加は僅
かである。一方、乾式ラバープレスで得rこプレス体は
密度が高く、さらに密度か均一なため亀裂の発生がない
ものか得られる。
Table 1 As a result, even though the frequency of cracking increases due to mold runout or an increase in molding pressure, the density increase is small. On the other hand, the pressed body obtained by dry rubber pressing has a high density and is uniform in density, so it is possible to obtain a product without cracking.

第3図は平行磁場プレスおよび垂直磁場ラバープレスで
得たSmCo、プレス体の配向度測定結果を示す線図で
ある。実線図示は垂直磁場乾式ラバープレスによる曲線
、破線図示は平行磁場金型プレスによる曲線を夫々示し
ている。配向度は配向軸廻りの(002)重回折X線強
度がするどい方か高い。したがって、垂直磁場乾式ラバ
ープレス成形体の配向度がすぐれている二とがわかる。
FIG. 3 is a diagram showing the results of measuring the degree of orientation of SmCo and pressed bodies obtained by parallel magnetic field pressing and perpendicular magnetic field rubber pressing. The solid line diagram shows the curve obtained by the vertical magnetic field dry rubber press, and the broken line diagram shows the curve produced by the parallel magnetic field mold press. The degree of orientation is as high as the (002) multiple diffraction X-ray intensity around the orientation axis. Therefore, it can be seen that the degree of orientation of the vertical magnetic field dry rubber press molded product is excellent.

第4図は本発明の池の実施例を示す断面図である。本ρ
1においては、長尺のラバー管17の上下パンチ25.
26開に充填した磁性粉末ISの間に所定の開隔になる
ように磁性の仕切り板28を介在したものである。
FIG. 4 is a sectional view showing an embodiment of the pond of the present invention. book rho
1, the upper and lower punches 25.1 of the long rubber tube 17.
A magnetic partition plate 28 is interposed between the magnetic powders IS filled in a 26-split manner so as to have a predetermined gap.

静水圧プレスにおいては、袖の長いものを成型すること
が効率的な生産に寄与する。しかし、エレクトロニクス
用永久磁石等に使用するには小型あるいは薄くしたもの
か要求される。従って、静水圧で成型したものは、成型
体か焼結体を後工程で切削や切断して得る必要がある。
In hydrostatic presses, forming long sleeves contributes to efficient production. However, for use in permanent magnets for electronics, etc., smaller or thinner magnets are required. Therefore, when molded using hydrostatic pressure, it is necessary to cut or cut the molded or sintered body in a subsequent process.

しかし、これは合理的とは言えず、磁性の仕切り板を複
数個間挿してプレス成型すれは、予め分割して成をでき
、切断工程を省くことかできる。
However, this cannot be said to be rational, and press molding can be done by inserting a plurality of magnetic partition plates in advance, which can be divided into parts and the cutting process can be omitted.

この場合、金属性の金型においては、金属の仕切り板を
間挿してのプレス成型は金型を破壊してしまって無理で
あるか、本例においては可能であ1)、さらにあらゆる
方向例えば放射状に静水圧を印加することができる効果
を有する。
In this case, in the case of a metal mold, press molding by inserting a metal partition plate is either impossible because it would destroy the mold, or it is possible in this example 1), and furthermore, it is possible in any direction, e.g. It has the effect of applying hydrostatic pressure radially.

第5(2Iは本発明の更に池の実施態様例である。No. 5 (2I) is a further embodiment of the present invention.

本例においては、中子19をキャビティ20に挿入して
成型すること1こより、円筒状の異方性プレス体を得る
ものである。
In this example, a cylindrical anisotropic pressed body is obtained by inserting a core 19 into a cavity 20 and molding it.

以上述べrこごとく本発明によれば、磁性粉末を可撓性
ラバー管にて構成したキャビティに充填し、外方よl)
放射状に静水圧を加え、しかもその加圧方向と直角な軸
方向に磁場を印加して磁気異方性を付与するように構成
したので、 従来の金型プレスに比べて密度が均質で高く、配向性の
優バたプレス体を得ることができる。
As described above, according to the present invention, magnetic powder is filled into a cavity made of a flexible rubber tube, and the magnetic powder is poured outwardly.
Since it is configured to apply hydrostatic pressure radially and also apply a magnetic field in the axial direction perpendicular to the direction of pressure to impart magnetic anisotropy, the density is more homogeneous and higher than that of conventional mold presses. A pressed body with excellent orientation can be obtained.

また本発明によれば、キャビティ内部に複数の磁性金属
仕切ν)板を粉末内に間挿して成型するように構成しj
こので、 エレクトロニクス用小型て′吉幻斐が均質てl:’+、
<、配向性の優れたプレス体を得ることができる。
Further, according to the present invention, a plurality of magnetic metal partition plates are inserted into the powder inside the cavity and molded.
In this way, the small size for electronics is homogeneous.
<, a pressed body with excellent orientation can be obtained.

また本発明によれば、可撓性のラバー管て・粉末キャビ
ティと、前記ラバー管の上下に設けた磁性金属体て゛構
成した前記キャビティを閉塞する上及び下パンチと、前
記キャビティの外方より全体に加える静水下印加手段と
、前記上及び下パンチを介してパンチの軸方向と同一方
向に磁場を発生する電磁石装置とを具備したので゛、 従来の金型ブレスに比べ密度が均質で高く、配向性の加
くずれたプレス体を得ることがて゛きる。
Further, according to the present invention, there is provided a flexible rubber pipe/powder cavity, upper and lower punches for closing the cavity, which are constructed of magnetic metal bodies provided above and below the rubber pipe, and are provided from the outside of the cavity. It is equipped with a static water application means that applies to the entire mold press, and an electromagnetic device that generates a magnetic field in the same direction as the axial direction of the punch through the upper and lower punches, so the density is more homogeneous and higher than that of conventional mold presses. , it is possible to obtain a pressed body with poor orientation.

さらに本発明は金型プレスでは不可能な長尺物のプレス
ち可能であり、中子の使用による薄肉円面(川流も可)
、ウレタンラバー管の形状の工夫によってかなり複雑形
状のプレス体を成型することら可能となる。
Furthermore, the present invention can press long objects that are impossible with mold presses, and can press thin circular objects (river flow is also possible) by using a core.
By modifying the shape of the urethane rubber tube, it is possible to mold a pressed body with a fairly complex shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一例を示す垂直磁場乾式ラバープレス
の概略図、第2図は本発明の工程の例を示す図、第3図
は平行磁場金型プレス及び本発明方法で得たSmCo5
プレス体の配向度測定結果を示す線図、第4図及び第5
図は本発明の池の実施例を示す要部の断面図である。 1・・、5,6・・・上下パンチ、7・・・可 性ラバ
ー管、10・・外引 15=粉末、16・・水、19・
・中子、23・・仕切り板。 出願人代理人 弁理士 秋 山   高第1図 第4図 第2区 第3区
Fig. 1 is a schematic diagram of a vertical magnetic field dry rubber press showing an example of the present invention, Fig. 2 is a diagram showing an example of the process of the present invention, and Fig. 3 is a parallel magnetic field mold press and SmCo5 obtained by the method of the present invention.
Diagrams showing the results of measuring the degree of orientation of pressed bodies, Figures 4 and 5
The figure is a sectional view of essential parts showing an embodiment of the pond of the present invention. 1..., 5, 6...Upper and lower punch, 7...Possible rubber tube, 10...External puller 15=Powder, 16...Water, 19...
- Core, 23... Partition board. Applicant's Representative Patent Attorney Takashi Akiyama Figure 1 Figure 4 Ward 2 Ward 3

Claims (1)

【特許請求の範囲】 1、磁性粉末を可撓性ラバー管にて構成したキャビティ
に充填し、外方より放射状に静水圧を加え、しかもその
加圧方向と直角な軸方向に磁場を印加して磁気異方性を
付与することを特徴とする磁場成型方法。 2、前記キャビティ内部に複数の磁性金属仕切り板を粉
末内に間挿して成型する特許請求の範囲第1項記載の磁
場成型方法。 3、前記可撓性ラバー管の内部に、中子を配して成型す
ることにより、筒状の成型体を得る特許請求の範囲第1
項又は第2項記載の磁場成型方法。 4、可撓性のラバー管で粉末キャビティと、前記ラバー
管の上下に設けた磁性金属体で構成した前記キャビティ
を閉塞する上及び下パンチと、前記キャビティの外方よ
り全体に加える静水圧印加手段と、前記上及び下パンチ
を介してパンチの軸方向と同一方向に磁場を発生する電
磁石装置とを具備したことを特徴とする磁場成型装置。
[Claims] 1. Fill a cavity made of a flexible rubber tube with magnetic powder, apply hydrostatic pressure radially from the outside, and apply a magnetic field in an axial direction perpendicular to the direction of the pressure. A magnetic field forming method characterized by imparting magnetic anisotropy. 2. The magnetic field molding method according to claim 1, wherein a plurality of magnetic metal partition plates are inserted into the powder inside the cavity and molded. 3. Claim 1 in which a cylindrical molded body is obtained by disposing a core inside the flexible rubber tube and molding it.
The magnetic field forming method according to item 1 or 2. 4. A powder cavity made of a flexible rubber tube, upper and lower punches for closing the cavity made of magnetic metal bodies provided above and below the rubber tube, and application of hydrostatic pressure to the entire cavity from outside. and an electromagnet device that generates a magnetic field in the same direction as the axial direction of the punch through the upper and lower punches.
JP18937884A 1984-09-10 1984-09-10 Magnetic field forming method and forming device Pending JPS6167599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18937884A JPS6167599A (en) 1984-09-10 1984-09-10 Magnetic field forming method and forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18937884A JPS6167599A (en) 1984-09-10 1984-09-10 Magnetic field forming method and forming device

Publications (1)

Publication Number Publication Date
JPS6167599A true JPS6167599A (en) 1986-04-07

Family

ID=16240312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18937884A Pending JPS6167599A (en) 1984-09-10 1984-09-10 Magnetic field forming method and forming device

Country Status (1)

Country Link
JP (1) JPS6167599A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264498A (en) * 1985-09-13 1987-03-23 Tohoku Metal Ind Ltd Wet type rubber press in magnetic field
US5250255A (en) * 1990-11-30 1993-10-05 Intermetallics Co., Ltd. Method for producing permanent magnet and sintered compact and production apparatus for making green compacts
US5505990A (en) * 1992-08-10 1996-04-09 Intermetallics Co., Ltd. Method for forming a coating using powders of different fusion points
CN103496032A (en) * 2013-10-21 2014-01-08 伍会杰 Blank manufacturing device of cylindrical ceramic building structural component
CN103522395A (en) * 2013-10-21 2014-01-22 伍会杰 Preforming system for cylindrical ceramic building structural component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057009A (en) * 1973-09-21 1975-05-19
JPS51120923A (en) * 1975-04-16 1976-10-22 Namiki Precision Jewel Co Ltd Manufacturing method of a permanent magnet
JPS5437007A (en) * 1977-08-27 1979-03-19 Kobe Steel Ltd Method of producing complecatedly shaped articles by hot static pressing
JPS58224097A (en) * 1982-06-23 1983-12-26 Sumitomo Special Metals Co Ltd Dry type forming method
JPS591498B2 (en) * 1980-11-26 1984-01-12 株式会社クボタ Manufacturing method of spheroidal black ship cast iron pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057009A (en) * 1973-09-21 1975-05-19
JPS51120923A (en) * 1975-04-16 1976-10-22 Namiki Precision Jewel Co Ltd Manufacturing method of a permanent magnet
JPS5437007A (en) * 1977-08-27 1979-03-19 Kobe Steel Ltd Method of producing complecatedly shaped articles by hot static pressing
JPS591498B2 (en) * 1980-11-26 1984-01-12 株式会社クボタ Manufacturing method of spheroidal black ship cast iron pipe
JPS58224097A (en) * 1982-06-23 1983-12-26 Sumitomo Special Metals Co Ltd Dry type forming method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264498A (en) * 1985-09-13 1987-03-23 Tohoku Metal Ind Ltd Wet type rubber press in magnetic field
US5250255A (en) * 1990-11-30 1993-10-05 Intermetallics Co., Ltd. Method for producing permanent magnet and sintered compact and production apparatus for making green compacts
US5505990A (en) * 1992-08-10 1996-04-09 Intermetallics Co., Ltd. Method for forming a coating using powders of different fusion points
CN103496032A (en) * 2013-10-21 2014-01-08 伍会杰 Blank manufacturing device of cylindrical ceramic building structural component
CN103522395A (en) * 2013-10-21 2014-01-22 伍会杰 Preforming system for cylindrical ceramic building structural component

Similar Documents

Publication Publication Date Title
US4150927A (en) Mold for the production of anisotropic permanent magnets
JPS6427208A (en) Cylindrical permanent magnet, motor using same and manufacture thereof
EP0739018B1 (en) Method for producing a magnetic powder compact and rubber mold used in the method
US3274303A (en) Method and apparatus for making magnetically anisotropic permanent magnets
JPS6167599A (en) Magnetic field forming method and forming device
JPH06267774A (en) Manufacture of radially oriented magnet, and radially oriented magnet
US5080731A (en) Highly oriented permanent magnet and process for producing the same
JPS6134249B2 (en)
JPS5923448B2 (en) anisotropic magnet
JPH11195548A (en) Production of nd-fe-b magnet
JPH01124208A (en) Manufacture of diametrical bipolar magnet
JPH0646972Y2 (en) Magnetic field press equipment
US5342574A (en) Method for producing anisotropic rare earth magnet
JP2922535B2 (en) Highly oriented rare earth sintered magnet and method for producing the same
JPS59211502A (en) Production of permanent magnet body having surface multipolar anisotropy
JP2822180B2 (en) Ring magnet forming equipment
JP2916879B2 (en) Manufacturing method of radially oriented magnet
JPS60931B2 (en) Anisotropic magnet manufacturing method and manufacturing device
JPS61147997A (en) Dry process cold hot hydrostatic magnetic field press device
JPH08264362A (en) Magnet molding apparatus
JP2001093712A (en) Anisotropic permanent magnet, method for manufacturing thereof and manufacturing apparatus
JPS6137901A (en) Molding apparatus of anisotropic ferrite magnet
JPH03235311A (en) Manufacture of anisotropic plastic magnet
JPS56122115A (en) Manufacture of cylindrical permanent magnet
JP2004285365A (en) Method for manufacturing green compact for sintered magnet and apparatus therefor