JP2004285365A - Method for manufacturing green compact for sintered magnet and apparatus therefor - Google Patents

Method for manufacturing green compact for sintered magnet and apparatus therefor Download PDF

Info

Publication number
JP2004285365A
JP2004285365A JP2000282406A JP2000282406A JP2004285365A JP 2004285365 A JP2004285365 A JP 2004285365A JP 2000282406 A JP2000282406 A JP 2000282406A JP 2000282406 A JP2000282406 A JP 2000282406A JP 2004285365 A JP2004285365 A JP 2004285365A
Authority
JP
Japan
Prior art keywords
magnetic powder
sintered magnet
green compact
magnetic
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000282406A
Other languages
Japanese (ja)
Inventor
Takahisa Shizuku
雫  孝久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2000282406A priority Critical patent/JP2004285365A/en
Priority to PCT/JP2001/007997 priority patent/WO2002022294A1/en
Publication of JP2004285365A publication Critical patent/JP2004285365A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/022Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space whereby the material is subjected to vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a green compact superior in orientability for a sintered magnet, by reducing friction occurring among magnetic powders when being pressed in a magnetic field. <P>SOLUTION: The method for manufacturing the green compact for the sintered magnet containing a rare earth element comprises sticking ultrasonic vibrators 1 and 2 onto the die body 11 of a press die 10, and pressing the magnetic powder M in a magnetic field while ultrasonically vibrating the powder filled in the press die 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、焼結磁石の製造方法に関するもので、特に、焼結の前工程で作製される、磁性粉を磁場中プレスして成る焼結磁石用圧粉体を製造する方法とその装置に関するものである。
【0002】
【従来の技術】
永久磁石として使用されるSmCoやNdFeBのような希土類磁石は、エネルギー積(BH)Maxが大きいことから、現在、モータ用の磁石などの小型の高磁力磁石として、各分野において広く使用されている。
従来の希土類焼結磁石の製造方法は、まず単磁区の磁性体粉末(磁性粉)を得るため、Nd,Smなどの希土類金属とFe,Coなどの遷移金属やBなどのその他の金属とを真空中で溶融して合金化する真空溶解法によりインゴットを作製し、このインゴットを粉砕して微粉末にする方法や、例えば、Ndなどの希土類酸化物の粉末とFeやFeBなどの遷移金属や金属間化合物などの粉末に、金属Caなどの還元剤を混合して不活性ガス中で加熱処理し、希土類酸化物の還元と上記還元された希土類金属と上記遷移金属及び金属間化合物との合金化とを同時に行い、Ca還元された還元生成物を生成した後、上記還元生成物を洗浄水中に投入して洗浄し、Ca分を除去して希土類磁性合金の粉末を抽出する還元拡散法などが採用されている。
【0003】
次に、上記のようにして得られた希土類磁性合金の磁性粉をバインダーと混合してプレス用の金型内に充填し、磁場中でプレスして配向性を揃える前処理を行って焼結磁石用圧粉体を製造して後、上記配向された圧粉体を所定の温度で焼結して焼結磁石を得る。なお、上記バインダは、粒子の滑り向上及び磁性粉の酸化防止のために混合するのもので、焼結時には分解するので、その成分が焼結磁石内に残留することはない。
図5(a),(b)は、外型11と上側パンチ12と下側パンチ13とから構成された従来の一軸性のプレス金型(以下、プレス型という)10を用いた焼結磁石用圧粉体の製造方法を示す模式図である。このプレス型10は、外型11と下側パンチ13とは固定状態にあって上側パンチ12のみが可動である片押し方式のプレス型である。焼結磁石用圧粉体は、上記プレス型10内に磁性粉Mを充填した後、上記上側パンチ12を下降させて上記プレス型10内の磁性粉Mを加圧して凝固させるとともに、図外の電磁石により、上記磁性粉Mに配向磁場を印可して上記磁性粉Mを配向させる、いわゆる磁場中プレスにより作製される。
このように、焼結磁石用圧粉体を、上記磁場中プレスにより配向した後に焼結することにより、焼結磁石内の構成粒子の配向性を高めることができ、焼結磁石を高磁力化することができる。
【0004】
【発明が解決しようとする課題】
ところで、上記のような一軸性のプレス型では、一般に、プレス型10内の圧力が不均一となる。すなわち、一軸圧縮にて作製された圧粉体の密度分布は、圧縮方向である上,下方向の外周側、特に上面の外周側で高くなる傾向にある。このような密度分布は、プレス中の磁性粉Mに加わる圧力分布に依存しており、圧力の高い部分から型内に充填された磁性粉Mの凝固が始まる。
したがって、上記プレス型10内の圧分分布が不均一であるために起こる原料粉の流動による磁性粉同士の摩擦や、プレス型10からプレスされた磁性粉(圧粉体)を抜き取る際に生じるプレス型10と上記圧粉体との摩擦などにより、圧粉体内部の磁区の向きが一様に揃わなくなる、いわゆる配向の乱れが生じてしまうといった問題点があった。
詳細には、プレス型10内に磁性粉を投入して磁界を印可し、上側パンチ12を徐々に下降させて原料粉である磁性粉Mを圧縮していくと、上述したように、圧力の高い箇所、すなわち、図5(b)の○印で示すような、プレス型10の上部である上側パンチ12及び下側パンチ13のそれぞれの外型11側近傍、いわゆる型の四隅にある磁性粉がまず凝固し始める。このとき、磁性粉Mは上記配向磁場に沿って回転しようとするが、上記プレス型10の四隅では既に凝固が始まり磁性粉Mが拘束状態になるため、上記磁性粉Mは磁界に沿って回転することができないまま固化されてしまう。更に、圧力を上昇させると、磁性粉Mが最密充填をとろうとして移動するため、磁区が揃っている部分でも、座屈による磁化方向の乱れが生じて配向が乱れてしまうといった問題点があった。
また、プレス型10から圧粉体を抜き取る際にも、プレス型10と圧粉体との摩擦などにより、座屈による配向方向の乱れが生じてくる。
【0005】
本発明は、従来の問題点に鑑みてなされたもので、磁場中プレスの際に生じる磁性粉間の摩擦を低減して、配向性に優れた焼結磁石用圧粉体を製造する方法とその装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の請求項1に記載の焼結磁石用圧粉体の製造方法は、磁性粉を金型内に充填し、磁場中プレスにより上記磁性粉を配向させて焼結磁石用圧粉体を製造する際に、上記磁性粉に振動を与えながらプレスするようにしたことを特徴とするもので、これにより、高圧部に位置する磁性粉の凝固を遅らせ、型内部の凝固流動を抑制することにより、圧粉体の配向性を向上させることが可能となる。
【0007】
請求項2に記載の焼結磁石用圧粉体の製造方法は、プレスされた磁性粉を脱型する際に、上記磁性粉に振動を与えて、脱型時に発生する金型と圧粉体との摩擦を抑制するようにしたことを特徴とする。
【0008】
請求項3に記載の焼結磁石用圧粉体の製造方法は、上記磁性粉に超音波振動を与えるようにしたことを特徴とするもので、これにより、上記磁性粉に凝固を遅らせるための適度な振動を与えることが可能となる。
【0009】
請求項4に記載の焼結磁石用圧粉体の製造方法は、上記磁性粉を、希土類磁性合金粉末としたことを特徴とする。
【0010】
また、請求項5に記載の焼結磁石用圧粉体の製造装置は、型内に充填された磁性粉を圧縮凝固させる加圧手段を有する金型と、上記磁性粉に所定方向の配向磁場を印可する磁界発生手段とを備えるとともに、加振手段を設けて、上記磁性粉に振動を与え、磁性粉の凝固状態を均一化して磁性粉の凝固流動を抑制し、圧粉体の配向性を向上させるようにしたものである。
【0011】
請求項6に記載の焼結磁石用圧粉体の製造装置は、上記金型に超音波振動子を貼着し、上記金型を介して、磁性粉に超音波振動を与えるようにしたことを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について、図面に基づき説明する。
図1は、本実施の形態に係わる焼結磁石用圧粉体の製造装置の概要を示す模式図で、10は外型11と上側パンチ12と下側パンチ13とから成るプレス型、20は上記プレス型10の外部に配置され、上記プレス型内の磁性粉Mに配向磁場を印可するための電磁石、1,2は上記外型11の外周側に貼着された超音波振動子である。
プレス型10は、直方体状の焼結磁石用圧粉体を作製するための片押し方式のプレス型で、電磁石20の配向磁場の方向は上記プレス型10の加圧方向とは直角な方向とした。
超音波振動子1,2は、図示しない駆動電源により振動し、上記外型11を介して、上記プレス型10内に充填された磁性粉Mに超音波振動を与えるもので、超音波振動の駆動周波数としては、50kHz〜100kHzが望ましく、出力は100W/cm以上であることが望ましい。なお、ここでは、超音波の伝播方向を、上記電磁石20の配向磁場の方向と同方向とした。
【0013】
次に、焼結磁石用圧粉体の製造方法について説明する。
まず、上記プレス型10内に、希土類磁性合金の微粉末(磁性粉M)を充填した後、電磁石20と超音波振動子1,2とをそれぞれ駆動して、上記磁性粉Mに配向磁場を印可するとともに、外型11を介して上記磁性粉Mに超音波振動を与えながら、上側パンチ12を下降させて上記磁性粉Mを圧縮して凝固させる。
このとき、超音波振動子1,2からの超音波振動により上記磁性粉Mは振動するため、上述したプレス型10の四隅では凝固が遅れる。そのため、超音波振動が与えられていない時のような、磁性粉M同士の摩擦が軽減され、上記磁性粉Mは磁界に沿って回転し易くなり、配向性が向上する。また、上側パンチ12を更に下降させて圧力を上昇させた場合でも、磁性粉M同士の摩擦が軽減されているため、磁性粉Mの移動が容易であり、上述した座屈による磁化方向の乱れを抑制することができる。
更に、上記圧粉体を脱型する際にも、超音波振動子1,2を駆動して、プレスされた磁性粉M(圧粉体)に振動を与えながら脱型することにより、脱型時に発生するプレス型10と上記圧粉体との摩擦を抑制することができるので、脱型時の配向の乱れを抑制することができる。
したがって、配向性が高い希土類焼結磁石用圧粉体を得ることができる。また、この希土類焼結磁石用圧粉体を焼結することにより、磁気特性に優れた希土類焼結磁石を得ることができる。
【0014】
【実施例】
上記焼結磁石用圧粉体の製造装置を用い、型内に充填された希土類磁性合金の微粉末に超音波振動を与えながら磁場中プレスにて焼結磁石用圧粉体を作製した結果を表1に示す。なお、比較例として、従来の超音波振動を与えずに磁場中プレスした圧粉体の特性も合わせて記す。
【表1】

Figure 2004285365
表1から明らかなように、本発明の製造方法により得られた圧粉体は、残留磁束密度B及び(BH)Maxの値が向上しており、従来の方法に比べて、磁性粉の配向性が向上していることが確認された。
なお、超音波の出力は、100W/cm以上であればよく、また出力が高い程、残留磁束密度B,(BH)Maxともに高くなることが分かった。
【0015】
このように、本実施の形態によれば、プレス型10の外型11に、超音波振動子1,2を貼着して、上記プレス型10内に充填された磁性粉Mに超音波振動を与えながら磁場中プレスして希土類焼結磁石用の圧粉体を作製するようにしたので、磁性粉M同士の摩擦が軽減されて、磁性粉Mの回転や移動を容易となり、圧力分布の不均一性に起因する配向の乱れを抑制することができ、配向性に優れた希土類焼結磁石用圧粉体を得ることができる。
また、圧粉体を脱型する際にも、超音波振動を与えながら脱型することにより、脱型時に発生するプレス型10と上記圧粉体との摩擦を抑制することができるので、配向性を更に向上させることができる。
【0016】
なお、上記実施の形態では、超音波振動子1,2を外型11の外周側に貼着した場合について説明したが、図2に示すように、更に、上側パンチ12及び下側パンチ13にも超音波振動子3A,3B及び超音波振動子4A,4Bをそれぞれ貼着し、磁性体Mに超音波振動を与えるようにすることにより、配向性を更に向上させることができる。
あるいは、図3(a),(b)に示すように、超音波振動子3A,3Bにより、上側パンチ12のみを振動させたり、超音波振動子3A,3B,4A,4Bにより、上側パンチ12と下側パンチ13とを振動させて磁性体に超音波振動を与えるようにしても、上記実施の形態と同様の効果が得られる。
また、上記例では、直方体状の焼結磁石用圧粉体を作製する方法について説明したが、本発明の適用可能な焼結磁石用圧粉体の形状はこれに限るものではなく、円柱状あるいはリング状などの他の形状を有する圧粉体でもよい。但し、リング状のように、圧縮方向に穴のある圧粉体を形成する場合には、上記穴部を形成するためのコアロッドが必要となることは言うまでもない。
また、上記例では、配向磁場を圧縮方向とは直角方向に印可したが、配向磁場の方向はこれに限るものではなく、設計仕様により適宜決定されるものである。特に、圧粉体の形状が円柱状あるいはリング状である場合には、図4に示すように、配向磁場の方向と圧縮の方向がともに、円柱あるいはリングの軸上となる場合が多いが、その場合でも超音波振動子の設置位置については特に限定する必要はなく、作製する圧粉体の形状等に応じて適宜設定すればよい。
また、磁性粉も希土類磁性合金の微粉末に限らず、Baフェライト等のフェライト系磁石の粉末であってもよい。
【0017】
【発明の効果】
以上説明したように、本発明によれば、磁場中プレスにより磁性粉を配向させて焼結磁石用圧粉体を製造する際に、上記磁性粉に振動を与えながらプレスするようにしたので、プレス型内の圧力の不均一に起因する凝固流動を抑制することができるので、圧粉体の配向性を向上させることができる。また、この圧粉体を焼結処理することにより、高磁力の焼結磁石を得ることができる。
また、上記圧粉体を脱型する際に、上記磁性粉に振動を与えて、脱型時に発生するプレス型と圧粉体との摩擦を抑制することにより、圧粉体の配向性を更に向上させることができる。
【図面の簡単な説明】
【図1】本実施の形態に係わる焼結磁石用圧粉体の製造装置の概要を示す模式図である。
【図2】超音波振動子の配設例を示す図である。
【図3】超音波振動子の配設例を示す図である。
【図4】焼結磁石用圧粉体の製造装置の他の構成例を示す図である。
【図5】従来の焼結磁石用圧粉体の製造方法を示す図である。
【符号の説明】
1,2 超音波振動子、10 プレス型、11 外型、12 上側パンチ、13 下側パンチ、20 電磁石、M 磁性粉。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a sintered magnet, and more particularly, to a method and apparatus for manufacturing a sintered magnet compact formed by pressing a magnetic powder in a magnetic field, which is produced in a pre-sintering process. Things.
[0002]
[Prior art]
Rare earth magnets such as SmCo and NdFeB used as permanent magnets have a large energy product (BH) Max, and are therefore widely used in various fields as small high-magnetism magnets such as motor magnets at present. .
In a conventional method for manufacturing a rare earth sintered magnet, first, a rare earth metal such as Nd or Sm and a transition metal such as Fe or Co or another metal such as B are obtained in order to obtain a magnetic powder (magnetic powder) having a single magnetic domain. A method of producing an ingot by a vacuum melting method of melting and alloying in a vacuum and pulverizing the ingot to a fine powder, for example, a powder of a rare earth oxide such as Nd 2 O 3 and a powder of Fe or FeB A powder of a transition metal or an intermetallic compound is mixed with a reducing agent such as metal Ca and heat-treated in an inert gas to reduce the rare earth oxide and the reduced rare earth metal and the transition metal and the intermetallic compound. And reducing the Ca component to remove the Ca component and extract the powder of the rare earth magnetic alloy. Diffusion method is adopted To have.
[0003]
Next, the magnetic powder of the rare earth magnetic alloy obtained as described above is mixed with a binder, filled into a pressing mold, pressed in a magnetic field, and subjected to a pretreatment to align the orientation and sintered. After manufacturing the green compact for magnet, the oriented green compact is sintered at a predetermined temperature to obtain a sintered magnet. The binder is mixed for the purpose of improving the sliding of the particles and preventing the oxidation of the magnetic powder. Since the binder is decomposed at the time of sintering, its components do not remain in the sintered magnet.
FIGS. 5A and 5B show a sintered magnet using a conventional uniaxial press die (hereinafter referred to as a press die) 10 including an outer die 11, an upper punch 12 and a lower punch 13. It is a schematic diagram which shows the manufacturing method of the green compact for use. The press die 10 is a single-press type press die in which the outer die 11 and the lower punch 13 are fixed and only the upper punch 12 is movable. After the magnetic powder M is filled in the press mold 10, the upper punch 12 is moved down to press the magnetic powder M in the press mold 10 to solidify the sintered compact for solidification. The magnetic powder M is produced by applying an orientation magnetic field to the magnetic powder M by the electromagnet to orient the magnetic powder M.
In this way, by sintering the sintered compact for a sintered magnet after orientation by the above-described magnetic field press, the orientation of constituent particles in the sintered magnet can be increased, and the sintered magnet can be made to have a high magnetic force. can do.
[0004]
[Problems to be solved by the invention]
By the way, in the uniaxial press die as described above, generally, the pressure in the press die 10 becomes uneven. That is, the density distribution of the green compact produced by uniaxial compression tends to be higher on the outer peripheral side in the upper and lower directions in the compression direction, particularly on the outer peripheral side on the upper surface. Such a density distribution depends on the pressure distribution applied to the magnetic powder M during the pressing, and the solidification of the magnetic powder M filled in the mold starts from a high pressure portion.
Therefore, the friction between the magnetic powders caused by the flow of the raw material powder caused by the non-uniform pressure distribution in the press mold 10 and the occurrence of the pressed magnetic powder (compact powder) from the press mold 10 are generated. Due to friction between the press die 10 and the green compact or the like, there is a problem that the orientation of magnetic domains inside the green compact is not uniformly aligned, that is, a so-called disorder of orientation occurs.
More specifically, when the magnetic powder is charged into the press mold 10 to apply a magnetic field, and the upper punch 12 is gradually lowered to compress the magnetic powder M as the raw material powder, the pressure is reduced as described above. As shown by the circles in FIG. 5 (b), magnetic powder in the vicinity of the outer punch 11 of the upper punch 12 and the lower punch 13, which are the upper part of the press die 10, that is, at the four corners of the die. Begins to solidify first. At this time, the magnetic powder M tends to rotate along the orientation magnetic field. However, since the solidification has already started at the four corners of the press die 10 and the magnetic powder M is in a restrained state, the magnetic powder M rotates along the magnetic field. It is solidified without being able to do it. Further, when the pressure is increased, the magnetic powder M moves to take the closest packing, so that even in a portion where the magnetic domains are aligned, the magnetization direction is disturbed due to buckling and the orientation is disturbed. there were.
Also, when the compact is extracted from the press mold 10, the orientation direction is disturbed by buckling due to friction between the press mold 10 and the compact.
[0005]
The present invention has been made in view of the conventional problems, and reduces the friction between magnetic powders generated during pressing in a magnetic field, and a method for producing a sintered magnet compact having excellent orientation. It is intended to provide the device.
[0006]
[Means for Solving the Problems]
The method for producing a sintered magnet compact according to claim 1 of the present invention comprises filling a magnetic powder in a mold, orienting the magnetic powder by pressing in a magnetic field, and forming the sintered magnet compact. During manufacturing, the magnetic powder is pressed while applying vibration, thereby delaying the solidification of the magnetic powder located in the high pressure part and suppressing the solidification flow inside the mold. Thereby, the orientation of the green compact can be improved.
[0007]
The method for producing a green compact for a sintered magnet according to claim 2, wherein when the pressed magnetic powder is released from the mold, a vibration is applied to the magnetic powder so that a mold and a green compact which are generated at the time of release are removed. It is characterized in that the friction with the sphere is suppressed.
[0008]
A method for manufacturing a green compact for a sintered magnet according to claim 3 is characterized in that ultrasonic vibration is applied to the magnetic powder, and thereby the solidification of the magnetic powder is delayed. Appropriate vibration can be given.
[0009]
According to a fourth aspect of the present invention, there is provided a method for manufacturing a green compact for a sintered magnet, wherein the magnetic powder is a rare earth magnetic alloy powder.
[0010]
Further, the apparatus for manufacturing a green compact for a sintered magnet according to claim 5 includes a mold having a pressurizing means for compressing and solidifying the magnetic powder filled in the mold, and an orienting magnetic field in a predetermined direction on the magnetic powder. A magnetic field generating means for applying a magnetic field, and a vibrating means are provided to apply vibration to the magnetic powder, to make the solidification state of the magnetic powder uniform, to suppress the solidification flow of the magnetic powder, Is to be improved.
[0011]
An apparatus for manufacturing a green compact for a sintered magnet according to claim 6, wherein an ultrasonic oscillator is attached to the mold, and ultrasonic vibration is applied to the magnetic powder via the mold. It is characterized by.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing an outline of a manufacturing apparatus for a green compact for a sintered magnet according to the present embodiment, where 10 is a press die composed of an outer die 11, an upper punch 12, and a lower punch 13, and 20 is a press die. Electromagnets arranged outside the press mold 10 for applying an orientation magnetic field to the magnetic powder M in the press mold, and 1 and 2 are ultrasonic vibrators attached to the outer peripheral side of the outer mold 11. .
The press die 10 is a single-press type press die for producing a green compact for a rectangular parallelepiped sintered magnet. The direction of the orientation magnetic field of the electromagnet 20 is perpendicular to the pressing direction of the press die 10. did.
The ultrasonic vibrators 1 and 2 are vibrated by a driving power supply (not shown) and apply ultrasonic vibration to the magnetic powder M filled in the press die 10 through the outer die 11. The driving frequency is desirably 50 kHz to 100 kHz, and the output is desirably 100 W / cm 2 or more. Here, the propagation direction of the ultrasonic wave was the same as the direction of the orientation magnetic field of the electromagnet 20.
[0013]
Next, a method for producing a green compact for a sintered magnet will be described.
First, after the fine powder (magnetic powder M) of the rare-earth magnetic alloy is filled in the press die 10, the electromagnet 20 and the ultrasonic vibrators 1 and 2 are respectively driven to apply an orientation magnetic field to the magnetic powder M. While applying, the upper punch 12 is lowered while applying the ultrasonic vibration to the magnetic powder M via the outer mold 11 to compress and solidify the magnetic powder M.
At this time, since the magnetic powder M vibrates due to the ultrasonic vibration from the ultrasonic vibrators 1 and 2, the solidification is delayed at the four corners of the press die 10 described above. Therefore, the friction between the magnetic powders M is reduced, unlike when no ultrasonic vibration is applied, and the magnetic powders M easily rotate along the magnetic field, and the orientation is improved. Further, even when the pressure is increased by further lowering the upper punch 12, since the friction between the magnetic powders M is reduced, the movement of the magnetic powders M is easy, and the magnetization direction is disturbed by the buckling described above. Can be suppressed.
Further, when removing the green compact, the ultrasonic vibrators 1 and 2 are driven to remove the compact while applying vibration to the pressed magnetic powder M (compact compact). Since the friction between the press die 10 and the green compact, which sometimes occurs, can be suppressed, it is possible to suppress the disorder of the orientation at the time of demolding.
Therefore, a green compact for rare earth sintered magnets having high orientation can be obtained. Further, by sintering the green compact for a rare earth sintered magnet, a rare earth sintered magnet having excellent magnetic properties can be obtained.
[0014]
【Example】
Using the above sintered magnet compact production equipment, the result of producing a sintered magnet compact by pressing in a magnetic field while applying ultrasonic vibration to the rare earth magnetic alloy fine powder filled in the mold is shown. It is shown in Table 1. As a comparative example, the characteristics of a conventional green compact pressed in a magnetic field without applying ultrasonic vibration are also described.
[Table 1]
Figure 2004285365
As is evident from Table 1, the green compact obtained by the production method of the present invention has improved values of the residual magnetic flux density Br and (BH) Max . It was confirmed that the orientation was improved.
The output of the ultrasonic wave should be 100 W / cm 2 or more, and it was found that the higher the output, the higher both the residual magnetic flux density Br and (BH) Max .
[0015]
As described above, according to the present embodiment, the ultrasonic vibrators 1 and 2 are adhered to the outer die 11 of the press die 10, and the ultrasonic vibration is applied to the magnetic powder M filled in the press die 10. To give a compact for a rare earth sintered magnet by applying a pressure in a magnetic field while applying the magnetic powder. Therefore, friction between the magnetic powders M is reduced, rotation and movement of the magnetic powders M are facilitated, and the pressure distribution is reduced. Disorder of orientation due to non-uniformity can be suppressed, and a green compact for a rare earth sintered magnet having excellent orientation can be obtained.
Also, when the green compact is released, the friction between the press die 10 and the green compact generated at the time of the release can be suppressed by removing the green compact while applying ultrasonic vibration. Properties can be further improved.
[0016]
In the above-described embodiment, the case where the ultrasonic vibrators 1 and 2 are adhered to the outer peripheral side of the outer mold 11 has been described. However, as shown in FIG. Also, the ultrasonic transducers 3A and 3B and the ultrasonic transducers 4A and 4B are respectively adhered and the ultrasonic vibration is applied to the magnetic material M, so that the orientation can be further improved.
Alternatively, as shown in FIGS. 3A and 3B, only the upper punch 12 is vibrated by the ultrasonic vibrators 3A and 3B, or the upper punch 12 is vibrated by the ultrasonic vibrators 3A, 3B, 4A and 4B. The same effect as in the above-described embodiment can be obtained even when the ultrasonic vibration is applied to the magnetic body by vibrating the magnetic material and the lower punch 13.
Further, in the above-described example, the method for producing the sintered compact for a rectangular parallelepiped sintered magnet has been described. However, the shape of the sintered magnet compact to which the present invention can be applied is not limited to this, and may be a columnar sintered compact. Alternatively, a green compact having another shape such as a ring shape may be used. However, when forming a green compact having a hole in the compression direction such as a ring shape, it goes without saying that a core rod for forming the hole is required.
In the above example, the orientation magnetic field is applied in a direction perpendicular to the compression direction. However, the direction of the orientation magnetic field is not limited to this, and may be appropriately determined according to design specifications. In particular, when the shape of the green compact is cylindrical or ring-shaped, as shown in FIG. 4, both the direction of the orientation magnetic field and the direction of compression are often on the axis of the cylinder or ring. Even in such a case, the installation position of the ultrasonic vibrator need not be particularly limited, and may be appropriately set according to the shape of the green compact to be produced.
The magnetic powder is not limited to a fine powder of a rare earth magnetic alloy, but may be a powder of a ferrite magnet such as Ba ferrite.
[0017]
【The invention's effect】
As described above, according to the present invention, when manufacturing a green compact for a sintered magnet by orienting the magnetic powder by pressing in a magnetic field, since the magnetic powder is pressed while applying vibration, Since the solidification flow caused by uneven pressure in the press die can be suppressed, the orientation of the green compact can be improved. By sintering the green compact, a sintered magnet having a high magnetic force can be obtained.
Further, when removing the green compact, by applying vibration to the magnetic powder, by suppressing the friction between the press die and the green compact generated at the time of demolding, the orientation of the green compact is further improved. Can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an outline of an apparatus for manufacturing a green compact for a sintered magnet according to the present embodiment.
FIG. 2 is a diagram illustrating an example of disposition of an ultrasonic transducer.
FIG. 3 is a diagram showing an arrangement example of an ultrasonic transducer.
FIG. 4 is a view showing another configuration example of a manufacturing apparatus for a green compact for a sintered magnet.
FIG. 5 is a view showing a conventional method for producing a green compact for a sintered magnet.
[Explanation of symbols]
1, 2 ultrasonic vibrator, 10 press die, 11 outer die, 12 upper punch, 13 lower punch, 20 electromagnet, M magnetic powder.

Claims (6)

磁性粉を金型内に充填し、磁場中プレスにより上記磁性粉を配向させて焼結磁石用圧粉体を製造する際に、上記磁性粉に振動を与えながらプレスするようにしたことを特徴とする焼結磁石用圧粉体の製造方法。When the magnetic powder is filled in a mold, and the magnetic powder is oriented by a magnetic field press to produce a green compact for a sintered magnet, the magnetic powder is pressed while being vibrated. Of producing a green compact for a sintered magnet. プレスされた磁性粉を脱型する際に、上記磁性粉に振動を与えながら脱型するようにしたことを特徴とする請求項1に記載の焼結磁石用圧粉体の製造方法。The method for producing a green compact for a sintered magnet according to claim 1, wherein when the pressed magnetic powder is removed from the mold, the magnetic powder is removed while applying vibration. 上記磁性粉に超音波振動を与えるようにしたことを特徴とする請求項1または請求項2に記載の焼結磁石用圧粉体の製造方法。The method of manufacturing a green compact for a sintered magnet according to claim 1, wherein ultrasonic vibration is applied to the magnetic powder. 上記磁性粉を、希土類磁性合金粉末としたことを特徴とする請求項1〜請求項3のいずれかに記載の焼結磁石用圧粉体の製造方法。The method for producing a green compact for a sintered magnet according to any one of claims 1 to 3, wherein the magnetic powder is a rare earth magnetic alloy powder. 型内に充填された磁性粉を圧縮凝固させる加圧手段を有する金型と、上記磁性粉に所定方向の配向磁場を印可する磁界発生手段とを備えた焼結磁石用圧粉体の製造装置において、上記磁性粉に振動を与える加振手段を設けたことを特徴とする焼結磁石用圧粉体の製造装置。An apparatus for manufacturing a compact for a sintered magnet, comprising: a mold having pressurizing means for compressing and solidifying magnetic powder filled in a mold; and a magnetic field generating means for applying an orientation magnetic field in a predetermined direction to the magnetic powder. , A vibrating means for applying vibration to the magnetic powder is provided. 上記金型に超音波振動子を貼着し、上記金型内の磁性粉に超音波振動を与えるようにしたことを特徴とする請求項5に記載の焼結磁石用圧粉体の製造装置。6. The apparatus for manufacturing a green compact for a sintered magnet according to claim 5, wherein an ultrasonic vibrator is attached to said mold to apply ultrasonic vibration to said magnetic powder in said mold. .
JP2000282406A 2000-09-18 2000-09-18 Method for manufacturing green compact for sintered magnet and apparatus therefor Pending JP2004285365A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000282406A JP2004285365A (en) 2000-09-18 2000-09-18 Method for manufacturing green compact for sintered magnet and apparatus therefor
PCT/JP2001/007997 WO2002022294A1 (en) 2000-09-18 2001-09-14 Method of producing sintered magnet-use green compact and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000282406A JP2004285365A (en) 2000-09-18 2000-09-18 Method for manufacturing green compact for sintered magnet and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2004285365A true JP2004285365A (en) 2004-10-14

Family

ID=18766933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000282406A Pending JP2004285365A (en) 2000-09-18 2000-09-18 Method for manufacturing green compact for sintered magnet and apparatus therefor

Country Status (2)

Country Link
JP (1) JP2004285365A (en)
WO (1) WO2002022294A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102909369A (en) * 2012-11-01 2013-02-06 山西京宇天成科技有限公司 Neodymium iron boron vibration magnetic field molding press device
JP2015052163A (en) * 2013-09-09 2015-03-19 住友電気工業株式会社 Method of producing pressure powder molding, pressure powder molding, heat-treated body and coil part
JP2017121118A (en) * 2015-12-28 2017-07-06 マツダ株式会社 Method of manufacturing anisotropic magnet, method of manufacturing anisotropic soft magnetic material and method of manufacturing rotor of dynamo-electric machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153640A (en) * 1993-11-29 1995-06-16 Hitachi Metals Ltd Method and device for manufacturing permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102909369A (en) * 2012-11-01 2013-02-06 山西京宇天成科技有限公司 Neodymium iron boron vibration magnetic field molding press device
JP2015052163A (en) * 2013-09-09 2015-03-19 住友電気工業株式会社 Method of producing pressure powder molding, pressure powder molding, heat-treated body and coil part
JP2017121118A (en) * 2015-12-28 2017-07-06 マツダ株式会社 Method of manufacturing anisotropic magnet, method of manufacturing anisotropic soft magnetic material and method of manufacturing rotor of dynamo-electric machine

Also Published As

Publication number Publication date
WO2002022294A1 (en) 2002-03-21

Similar Documents

Publication Publication Date Title
JP5815655B2 (en) R-T-B-M-C sintered magnet manufacturing method and manufacturing apparatus thereof
US7045092B2 (en) Method for press molding rare earth alloy powder and method for producing sintered object of rare earth alloy
WO2008062757A1 (en) Process for producing oriented object, molded object, and sintered object and process for producing permanent magnet
WO2003038845A1 (en) Permanent magnet manufacturing method and press apparatus
JP2004285365A (en) Method for manufacturing green compact for sintered magnet and apparatus therefor
WO2002060677A1 (en) Powder molding method
JP2004002998A (en) Press molding process for rare earth alloy powder and process for manufacturing rare earth alloy sintered body
CN1258919A (en) Forming method of sintered anisotropic magnet
JPH11176682A (en) Manufacturing bond (trade mark) magnet
JP2003203818A (en) Method of manufacturing permanent magnet and pressing apparatus
EP1391902B1 (en) Production method for permanent magnet and press device
JP3151604B2 (en) Method for producing radial anisotropic bonded magnet and bonded magnet
JP2003193107A (en) Method for pressing rare-earth alloy powder, and method for manufacturing sintered compact of rare-earth alloy
JPH11195548A (en) Production of nd-fe-b magnet
JP4057075B2 (en) Molding method of magnet powder
JP2002237406A (en) Method of manufacturing magnetically anisotropic resin- bonded magnet
JPH06188136A (en) Manufacture of permanent magnet
JPH104023A (en) Manufacture of bond type permanent magnet
JPH09186012A (en) Magnetically isotropic resin bond magnet
JPH09148165A (en) Manufacture of radially anisotropic bonded magnet and bonded magnet
WO1999007006A1 (en) Method of producing r-t-b-base radial anisotropic annular sintered magnet
JPH11150033A (en) Preparation for rare-earth magnet and magnetic circuit unit for loudspeaker
JP3086009U (en) Rotary magnetic powder molding machine combined with a DC electromagnet that generates a magnetic field in the horizontal direction using magnetized coagulated powder to produce arc-shaped anisotropic magnets for motors
JP2005259977A (en) Manufacturing method of rare earth magnet
JP2003257767A (en) Manufacturing method for permanent magnet, and pressing device