JP3079348B2 - Manufacturing method of radially oriented magnet - Google Patents

Manufacturing method of radially oriented magnet

Info

Publication number
JP3079348B2
JP3079348B2 JP06219282A JP21928294A JP3079348B2 JP 3079348 B2 JP3079348 B2 JP 3079348B2 JP 06219282 A JP06219282 A JP 06219282A JP 21928294 A JP21928294 A JP 21928294A JP 3079348 B2 JP3079348 B2 JP 3079348B2
Authority
JP
Japan
Prior art keywords
magnet
radially oriented
manufacturing
magnet powder
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06219282A
Other languages
Japanese (ja)
Other versions
JPH0883728A (en
Inventor
芳文 中村
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP06219282A priority Critical patent/JP3079348B2/en
Publication of JPH0883728A publication Critical patent/JPH0883728A/en
Application granted granted Critical
Publication of JP3079348B2 publication Critical patent/JP3079348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ラジアル配向磁石の製
造方法に関し、特にハードディスク用スピンドルモータ
に用いられる高い配向度で、しかも小型のラジアル配向
磁石の製造方法を提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a radially oriented magnet, and more particularly to a method of manufacturing a small-sized radially oriented magnet having a high degree of orientation used for a spindle motor for a hard disk.

【0002】[0002]

【従来の技術】ラジアル配向磁石は、磁石粉末を、放射
状に配向させた後に焼結またはキュアすることで製造さ
れたリング状磁石である。従来のラジアル配向磁石の製
造方法を説明する。一般に電磁石と強磁性ヨークからな
る磁気回路を利用し、放射状(ラジアル)に磁束が流れ
る部分を磁石粉末の位置につくり磁石粉末を、ラジアル
に配向させ、次に上下パンチによりリング状に圧縮成形
される。通常、磁場は、電磁石による定常磁場を利用す
るが、パルス的な瞬間磁場を利用する方法もある。又、
磁気回路ヨークを用いないが、上記方法より高配向率を
もたらす方法として、一対の同形状パルスコイルによっ
て、対向パルス磁場を形成する工程と、その形成された
磁場中に於いて磁石粉末をパルス的にラジアル配向させ
る工程と、そのラジアル配向された磁石粉末を絶縁体か
らなる手段を用いて加圧成形する工程とを備えたラジア
ル配向磁石製造方法もある。
2. Description of the Related Art A radially oriented magnet is a ring-shaped magnet manufactured by sintering or curing magnet powder after radially orienting it. A conventional method for manufacturing a radially oriented magnet will be described. In general, using a magnetic circuit consisting of an electromagnet and a ferromagnetic yoke, a portion where magnetic flux flows radially is created at the position of the magnet powder, the magnet powder is radially oriented, and then compression molded into a ring shape by upper and lower punches. You. Usually, the magnetic field uses a steady magnetic field generated by an electromagnet, but there is also a method using a pulsed instantaneous magnetic field. or,
Although a magnetic circuit yoke is not used, as a method of providing a higher orientation ratio than the above method, a step of forming a counter pulse magnetic field with a pair of pulse coils of the same shape, and pulsing the magnet powder in the formed magnetic field. There is also a method of manufacturing a radially oriented magnet, which comprises a step of radially orienting the magnet powder and a step of pressure-forming the radially oriented magnet powder using a means made of an insulator.

【0003】[0003]

【発明が解決しようとする課題】しかし、磁性材料ヨー
クを挿入して磁気回路を形成する従来のラジアル配向磁
石の製造方法では、特に小型のラジアル配向磁石に於い
ては、磁石内径に入るヨークの断面積が小さくなり飽和
し、磁石粉末をラジアル配向させる磁場が得られず、殆
ど等方性に等しくなる。又、上記の一対の同形状パルス
コイルを用いたラジアル配向方法に於いては、従来に比
べて高い配向率を有するものの磁石粉末の配置されてい
る部分での磁束の流れが、ラジアル方向に充分向いてい
ないため、更に高い特性を有するラジアル配向磁石を得
る事ができないと言う不都合があった。
However, in a conventional method for manufacturing a radially oriented magnet in which a magnetic material yoke is inserted to form a magnetic circuit, especially in a small radially oriented magnet, the yoke that fits inside the magnet inner diameter is used. The cross-sectional area becomes smaller and saturated, and a magnetic field for radially orienting the magnet powder cannot be obtained, which is almost equal to isotropic. Further, in the radial orientation method using the pair of pulse coils having the same shape, the magnetic flux at the portion where the magnet powder is arranged has a sufficient orientation ratio in the radial direction although the orientation ratio is higher than before. Since it is not suitable, there is an inconvenience that a radially oriented magnet having higher characteristics cannot be obtained.

【0004】[0004]

【課題を解決するための手段】この課題を解決するため
に、本発明においては、磁気回路のシュミレーションと
実験を繰り返した結果、磁石粉末を配向し圧縮成形する
際に、コイル形状を工夫することで、高い配向度のラジ
アル配向磁石が、容易に製造できることを発明するに至
った。
Means for Solving the Problems In order to solve this problem, in the present invention, as a result of repeating a simulation and an experiment of a magnetic circuit, a coil shape is devised when magnet powder is oriented and compression-molded. As a result, a radially oriented magnet having a high degree of orientation can be easily manufactured.

【0005】即ち、本発明のラジアル配向磁石の製造方
法では、少なくとも一方のコイル内径をパンチの内径よ
り小さい一対のパルスコイルで対向磁場を形成し、この
磁場中で、磁石粉末を、パルス的にラジアル配向させパ
ンチにより圧縮成形するように構成した。
That is, in the method for manufacturing a radially oriented magnet of the present invention, at least one of the coil inner diameters is formed by a pair of pulse coils smaller than the punch inner diameter, and in this magnetic field, the magnet powder is pulsed. It was configured to be radially oriented and compression molded by a punch.

【0006】[0006]

【作用】従来の製造方法図5の拡大図である図6に示す
ような従来の磁石粉末充填部8よりコイル内径の大きい
同形状コイル1,2を使用すると、磁石粉末充填部8の
磁束線の流れは、R状にカーブを描きラジアルに向いて
いる磁束線は、少ない。次に、本発明の製造方法での一
実施例としての図1の拡大図である図2に示すように、
上コイル1の内径を磁石粉末充填部8より内側に入れる
ことにより、上コイル1側に磁石粉末充填部8が移動す
るもののR状にカーブを描いている磁束線の流れている
箇所から外れて、磁束線の多くがラジアル方向に向いて
いる箇所にて配向することができる。
When the same shaped coils 1 and 2 having a larger coil inner diameter than the conventional magnet powder filling portion 8 as shown in FIG. 6 which is an enlarged view of FIG. Of the magnetic flux lines are curved in an R shape, and the number of magnetic flux lines directed radially is small. Next, as shown in FIG. 2 which is an enlarged view of FIG. 1 as one embodiment of the manufacturing method of the present invention,
By inserting the inner diameter of the upper coil 1 inside the magnet powder filling portion 8, the magnet powder filling portion 8 moves to the upper coil 1 side, but deviates from the location where the magnetic flux lines flowing in an R shape flow. In addition, the magnetic flux lines can be oriented at locations where most of the magnetic flux lines are oriented in the radial direction.

【0007】更に、本発明のの他の実施例である図3の
拡大図である図4に示すように、上コイル1の内径を小
さくすると、図2の拡大図より多くのラジアル方向に向
く磁束線が存在する。以上のように、磁石粉末充填部8
の内側にコイル内径を置き更に小さくしていくことによ
り磁束線の流れる方向は、ラジアル成分が多くなり高い
配向度を持つラジアル磁石が得られる。また、上下共に
最も小さいコイルの内径を用いると、更に配向度が上が
ることは容易に推測できる。よって、以前より小型化で
高い配向度のラジアル磁石を容易に製造することが可能
である。
Further, as shown in FIG. 4, which is an enlarged view of FIG. 3, which is another embodiment of the present invention, when the inner diameter of the upper coil 1 is reduced, the number of radial directions is larger than that of the enlarged view of FIG. There are magnetic flux lines. As described above, the magnet powder filling unit 8
The radial direction of the magnetic flux lines is increased by placing the inner diameter of the coil inside the coil and making it smaller, so that a radial magnet having a high degree of orientation can be obtained. When the inner diameter of the coil is the smallest in both the upper and lower directions, it can be easily estimated that the degree of orientation is further increased. Therefore, it is possible to easily manufacture a radial magnet having a higher degree of orientation with a smaller size than before.

【0008】[0008]

【実施例1】 [実施例1]本発明を図1により説明する。Sm−Co
系ラジアル配向磁石の形状が、φ18.6×φ15.4
×2を作成する金型の構成は、上コイル1の寸法がφ3
0×φ10×30と、下コイル2の寸法がφ40×φ2
0×30である一対の空芯ソレノイドコイルにて、対向
パルス磁場を印加する時、磁石粉末の飛散を防ぐため上
コイル底面下に絶縁体の蓋9をし、上パンチ3、下パン
チ4、コア5及びダイ6のセラミックスから構成され
る。図に示すように、磁石粉末の高配向度位置は、上下
コイルのギャップ中心から上コイルへ約6mmずれた位
置にて、磁石粉末に10kOeの対向パルス磁場を印加
させ、上コイル1を抜き取り、その後、上下パンチ3,
4で磁石粉末を圧縮成形した。図中の符号9は磁石粉末
飛散防止蓋である。
Embodiment 1 Embodiment 1 The present invention will be described with reference to FIG. Sm-Co
The shape of the system radially oriented magnet is φ18.6 × φ15.4
The configuration of the mold for making × 2 is that the size of the upper coil 1 is φ3
0 × φ10 × 30 and the size of the lower coil 2 is φ40 × φ2
When a counter pulse magnetic field is applied by a pair of air-core solenoid coils of 0 × 30, an insulator lid 9 is placed under the bottom of the upper coil to prevent scattering of the magnet powder, and the upper punch 3, the lower punch 4, The core 5 and the die 6 are made of ceramics. As shown in the figure, the position of the high degree of orientation of the magnet powder is applied at a position approximately 6 mm from the gap center of the upper and lower coils to the upper coil, by applying a counter pulse magnetic field of 10 kOe to the magnet powder and extracting the upper coil 1. Then, upper and lower punch 3,
In 4 the magnet powder was compression molded. Reference numeral 9 in the figure denotes a magnet powder scattering prevention lid.

【0009】磁石粉末充填部に印加した磁場の流れを拡
大し、図2に表した。このように作成したラジアル配向
磁石の配向度を測定し、従来の方法によるものと比較し
た結果を図7に示す。 配向度(%)=100×Mx/(√Mx2 +My2 +Mz2 ) ・・(1) Mx:ラジアル方向の残留磁束密度 My:周方向の残留磁束密度方向 Mz:高さ方向の残留磁束密度方向 図7の配向度は(1)式による。
The flow of the magnetic field applied to the magnet powder filling section is enlarged and shown in FIG. FIG. 7 shows the results obtained by measuring the degree of orientation of the radially oriented magnet thus prepared and comparing it with the conventional method. Degree of orientation (%) = 100 × Mx / (√Mx 2 + My 2 + Mz 2 ) (1) Mx: Radial residual magnetic flux density My: Circumferential residual magnetic flux density direction Mz: Height residual magnetic flux density Direction The degree of orientation in FIG. 7 is based on equation (1).

【0010】[実施例2]同様に、本発明の他の実施例
を図3により説明する。Sm−Co系ラジアル配向磁石
の形状が、φ18.6×φ15.4×2を作成する金型
の構成は、磁性超鋼の上パンチ3の中に入るような上コ
イル1の寸法がφ17×φ3×30と、下コイル2の寸
法がφ40×φ20×30である一対の空芯ソレノイド
コイルにて、下パンチ4、コア5及びダイ6のセラミッ
クスから成る。図に示すように、磁石粉末の高配向度位
置は、上下コイルのギャップ中心から上コイルへ約6m
mずれた位置にて、磁石粉末に10kOeの対向パルス
磁場を印加させ、その後、上下パンチ3,4で磁石粉末
を圧縮成形した。磁石粉末充填部に印加した磁束の流れ
を拡大し、図4に表した。
Embodiment 2 Similarly, another embodiment of the present invention will be described with reference to FIG. The configuration of the mold in which the shape of the Sm-Co based radially oriented magnet forms φ18.6 × φ15.4 × 2 is such that the size of the upper coil 1 such that it enters the upper punch 3 of the magnetic super steel is φ17 × A pair of air-core solenoid coils having a size of φ3 × 30 and a size of the lower coil 2 of φ40 × φ20 × 30 are made of ceramics of the lower punch 4, the core 5 and the die 6. As shown in the figure, the position of the high orientation degree of the magnet powder is approximately 6 m from the center of the gap between the upper and lower coils to the upper coil.
At a position deviated by m, an opposing pulse magnetic field of 10 kOe was applied to the magnet powder, and then the magnet powder was compression-molded by the upper and lower punches 3 and 4. The flow of the magnetic flux applied to the magnet powder filling portion was enlarged and shown in FIG.

【0011】このように作成したラジアル配向磁石の配
向度を測定し、従来の方法によるものと比較した結果を
図7に示す。図6に示す従来の方法に比べ、上下コイル
の形状が違う図2の場合、上パンチ内に上コイルが入っ
た図4の場合の順にて配向度は、明らかに高くなってい
ることが示された。図7の配向度は、(1)式による。
FIG. 7 shows the results obtained by measuring the degree of orientation of the radially oriented magnet thus prepared and comparing it with the conventional method. Compared to the conventional method shown in FIG. 6, in the case of FIG. 2 in which the shapes of the upper and lower coils are different, the degree of orientation is clearly higher in the order of FIG. 4 in which the upper coil is inserted in the upper punch. Was done. The degree of orientation in FIG. 7 is based on equation (1).

【0012】[0012]

【発明の効果】以上述べたように、本発明を用いること
によりコイル形状及び磁石粉末の位置を工夫することに
より、従来の方法よりラジアル方向の磁場をより強くで
きるので、高い配向度でしかも小型のラジアル配向磁石
を製造する事ができる。
As described above, by using the present invention, the magnetic field in the radial direction can be made stronger than the conventional method by devising the shape of the coil and the position of the magnet powder. Can be manufactured.

【0013】また本発明は、実施例としてSm−Co系
の永久磁石材料について説明したが、Nd−Fe系永久
磁石材料など実施例以外の異方性永久磁石材料にも応用
できることは言うまでもない。
Although the present invention has been described with reference to the Sm-Co permanent magnet material as an example, it goes without saying that the present invention can be applied to anisotropic permanent magnet materials other than the examples, such as Nd-Fe permanent magnet material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法と磁束の流れを示す全体図で
ある。
FIG. 1 is an overall view showing a manufacturing method and a flow of magnetic flux according to the present invention.

【図2】図1に示した本発明の製造方法と磁束の流れを
磁石粉末充填部において拡大した図である。
FIG. 2 is an enlarged view of a flow of a magnetic flux and a manufacturing method of the present invention shown in FIG. 1 in a magnet powder filling section.

【図3】本発明の他の製造方法と磁束の流れを示す全体
図である。
FIG. 3 is an overall view showing a flow of a magnetic flux and another manufacturing method of the present invention.

【図4】図3に示した本発明の他の製造方法と磁束の流
れを磁石粉末充填部において拡大した図である。
FIG. 4 is an enlarged view of another manufacturing method of the present invention shown in FIG. 3 and a flow of magnetic flux in a magnetic powder filling portion.

【図5】従来のラジアル配向磁石の製造方法を示す全体
図である。
FIG. 5 is an overall view showing a method for manufacturing a conventional radially oriented magnet.

【図6】図5に示した従来のラジアル配向磁石の製造方
法と磁束の流れを磁石粉末充填部において拡大した図で
ある。
6 is an enlarged view of a method of manufacturing the conventional radially oriented magnet shown in FIG. 5 and a flow of magnetic flux in a magnet powder filling section.

【図7】コイルの形状とラジアル磁石の配向度の関係を
示すグラフである。
FIG. 7 is a graph showing the relationship between the shape of a coil and the degree of orientation of a radial magnet.

【符号の説明】[Explanation of symbols]

1,2 ソレノイドコイル 3,4 パンチ 5 コア 6 ダイ 7 ダイプレート 8 磁石粉末 9 磁石粉末飛散防止蓋 1, 2 solenoid coil 3, 4 punch 5 core 6 die 7 die plate 8 magnet powder 9 magnet powder scattering prevention lid

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一対のパルスコイルで対向磁場を形成す
る工程と、この磁場中で、磁石粉末を、パルス的にラジ
アル配向させパンチにより圧縮成形するラジアル配向磁
石の製造方法において、少なくとも一方のコイル内径
を、上下パンチの内径より小さくした事を特徴とするラ
ジアル配向磁石の製造方法
1. A method of manufacturing a radially oriented magnet in which a counter magnetic field is formed by a pair of pulse coils and magnet powder is radially oriented in a pulsed manner in the magnetic field and compression-molded by a punch. A method for manufacturing a radially oriented magnet, wherein the inner diameter is smaller than the inner diameter of the upper and lower punches.
【請求項2】 一対のパルスコイルで対向磁場を形成
し、この磁場中で、磁石粉末を、パルス的にラジアル配
向させ上下パンチにより圧縮成形するラジアル配向磁石
の製造方法において、少なくとも一方のコイルをパンチ
の中に配置した事を特徴とするラジアル配向磁石の製造
方法。
2. A method for manufacturing a radially oriented magnet in which an opposing magnetic field is formed by a pair of pulse coils, and magnet powder is radially oriented in a pulsed manner in this magnetic field and compression-molded by upper and lower punches. A method for manufacturing a radially oriented magnet, wherein the magnet is arranged in a punch.
【請求項3】 少なくとも一方のパンチの材料が絶縁体
で、他方が導電体である請求項1または2記載のラジア
ル配向磁石の製造方法。
3. The method for manufacturing a radially oriented magnet according to claim 1, wherein a material of at least one of the punches is an insulator and the other is a conductor.
JP06219282A 1994-09-13 1994-09-13 Manufacturing method of radially oriented magnet Expired - Fee Related JP3079348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06219282A JP3079348B2 (en) 1994-09-13 1994-09-13 Manufacturing method of radially oriented magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06219282A JP3079348B2 (en) 1994-09-13 1994-09-13 Manufacturing method of radially oriented magnet

Publications (2)

Publication Number Publication Date
JPH0883728A JPH0883728A (en) 1996-03-26
JP3079348B2 true JP3079348B2 (en) 2000-08-21

Family

ID=16733074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06219282A Expired - Fee Related JP3079348B2 (en) 1994-09-13 1994-09-13 Manufacturing method of radially oriented magnet

Country Status (1)

Country Link
JP (1) JP3079348B2 (en)

Also Published As

Publication number Publication date
JPH0883728A (en) 1996-03-26

Similar Documents

Publication Publication Date Title
US7740714B2 (en) Method for preparing radially anisotropic magnet
EP1713098B1 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
US7166171B2 (en) Longitudinal magnetic field compacting method and device for manufacturing rare earth magnets
JP3079348B2 (en) Manufacturing method of radially oriented magnet
JPS6134249B2 (en)
JP2004153867A (en) Radial anisotropic sintered magnet, its manufacturing method, and magnet rotor and motor
EP0265016A2 (en) Process of making a permanent magnet
JP2004244708A (en) Apparatus and method for charging magnetic powder
JP2860858B2 (en) Mold for magnetic powder molding
JP3538762B2 (en) Method for producing anisotropic bonded magnet and anisotropic bonded magnet
EP4098433A2 (en) Preformed chip manufacturing apparatus, preformed chip, dust core manufacturing apparatus, dust core, preformed chip manufacturing method, and dust core manufacturing method
JP2000323341A (en) Radial anisotropic magnet molding device
JP2822180B2 (en) Ring magnet forming equipment
JP2916879B2 (en) Manufacturing method of radially oriented magnet
JP2012119698A (en) Manufacturing apparatus of radial anisotropic ring magnet
JP2001015340A (en) Method and device for manufacturing radial ring magnet
JPS5923448B2 (en) anisotropic magnet
JPS6358033B2 (en)
JPH0626169B2 (en) Method and apparatus for forming rare earth magnet in magnetic field
JP4926834B2 (en) Radial anisotropic ring magnet manufacturing equipment
JPH08264362A (en) Magnet molding apparatus
JPH09148165A (en) Manufacture of radially anisotropic bonded magnet and bonded magnet
JPS6221206A (en) Manufacture of ring-shaped multipolar magnet
JPH0215621Y2 (en)
JPH05258947A (en) Ring magnet and manufacture of ring magnet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees