JPH0340390A - Manufacture of heater - Google Patents
Manufacture of heaterInfo
- Publication number
- JPH0340390A JPH0340390A JP17527789A JP17527789A JPH0340390A JP H0340390 A JPH0340390 A JP H0340390A JP 17527789 A JP17527789 A JP 17527789A JP 17527789 A JP17527789 A JP 17527789A JP H0340390 A JPH0340390 A JP H0340390A
- Authority
- JP
- Japan
- Prior art keywords
- mask
- pattern
- heater
- base table
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000010409 thin film Substances 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims description 19
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 abstract description 15
- 229910052804 chromium Inorganic materials 0.000 abstract description 14
- 239000011651 chromium Substances 0.000 abstract description 14
- 239000010408 film Substances 0.000 abstract description 12
- 239000007921 spray Substances 0.000 abstract description 2
- 230000004927 fusion Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 6
- 238000007750 plasma spraying Methods 0.000 description 6
- 239000002131 composite material Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000011449 brick Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910001120 nichrome Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910000809 Alumel Inorganic materials 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 229910001179 chromel Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000007736 thin film deposition technique Methods 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Surface Heating Bodies (AREA)
- Resistance Heating (AREA)
Abstract
Description
この発明は、ヒータの製造方法に関する。 The present invention relates to a method for manufacturing a heater.
従来、一般的にヒータとしては、ニクロム線を巻回した
ものや発熱用ランプを用いたものがよく用いられるが、
これらのものは微細ヒータとしての構成は困難である。
そこで、発熱基台上に抵抗発熱材料を被着して所定のヒ
ータパターンの微細ヒータを形成することが考えられて
いる。Conventionally, heaters made of wound nichrome wire or heat-generating lamps were often used.
It is difficult to construct these as fine heaters. Therefore, it has been considered to form a fine heater with a predetermined heater pattern by depositing a resistance heating material on a heating base.
ところで、基台に発熱材料を被着する方法としては、蒸
着法、CVD法、スパッタ法、イオンブレーティング法
等の半導体製造技術で一般的に使用される方法のほか、
プラズマ溶射法等の方法があるが、単にこれらの技術を
用いたとしても微細なパターンのヒータを得るのには限
界がある。
例えば、プラズマ溶射法は、ノントランスファー(非移
行型)アークとサーマルピンチ効果により発生する高速
、高温のプラズマ流を用い、コーティング材料を瞬時に
溶解して吹き付ける方法で、この方法によれば、半導体
製造技術では被着できないような無機物や無機物と金属
の複合体等の被着ができると共に、高硬度、高接着度の
緻密な被膜を形成することができる。
しかし、このプラズマ溶射法の場合、基台に発熱材料を
所定のパターン状に被着するには、プラズマガンをパタ
ーンに沿って移動させるようにするが、パターンの幅は
プラズマガンの性能による幅、例えば5關の幅が限界で
ある。したがって、この幅よりも細かい幅の微細パター
ンは形成することができないという欠点がある。
この発明は、以上の点にかんがみ、微細パターンのヒー
タを形成することができるヒータの製造方法を提供する
ことを目的とする。By the way, methods for depositing the heat-generating material on the base include methods commonly used in semiconductor manufacturing technology such as vapor deposition, CVD, sputtering, and ion blating, as well as other methods.
There are methods such as plasma spraying, but even if these techniques are used, there is a limit to the ability to obtain a heater with a fine pattern. For example, plasma spraying uses a high-speed, high-temperature plasma stream generated by a non-transfer arc and thermal pinch effect to instantly melt and spray coating materials. It is possible to adhere inorganic substances and composites of inorganic substances and metals that cannot be applied using manufacturing techniques, and it is also possible to form dense films with high hardness and high adhesion. However, in the case of this plasma spraying method, in order to deposit the heat-generating material on the base in a predetermined pattern, the plasma gun is moved along the pattern, but the width of the pattern depends on the performance of the plasma gun. For example, the width of 5 angles is the limit. Therefore, there is a drawback that a fine pattern with a width smaller than this width cannot be formed. In view of the above points, it is an object of the present invention to provide a method for manufacturing a heater that can form a heater with a fine pattern.
この発明によるヒータの製造方法は、
基台上にマスクを形成し、このマスクを介して上記基台
上にヒータ性能を有する薄膜を形成し、その後、上記マ
スクを除去するようにしたことを特徴とする。The method for manufacturing a heater according to the present invention is characterized in that a mask is formed on a base, a thin film having heater performance is formed on the base through the mask, and then the mask is removed. shall be.
この発明による方法においては、基台上にマスクが形成
され、このマスクを介してヒータ性能を有する薄膜が形
成される。したがって、マスクパターンに応じた薄膜ヒ
ータパターンの微細ヒータを製造することができる。In the method according to the present invention, a mask is formed on a base, and a thin film having heating performance is formed through this mask. Therefore, a fine heater having a thin film heater pattern corresponding to a mask pattern can be manufactured.
以下この発明の一実施例を、薄膜の被着法としてプラズ
マ溶射法に使用した場合を例にとって、図を参照しなが
ら説明しよう。
先ず、この発明による方法により製造したヒータについ
て説明するに、第4図に示すように、このヒータは、基
台1上に導電性薄膜2からなるヒータパターンが形成さ
れたものである。基台1は、例えばアルミナ等のセラミ
ックからなる電気絶縁性及び熱伝導性を有する部材で形
成されている。
また、この基台1はヒータパターンを支持できれば良く
、その厚さは例えば0.1〜5關、好ましくは1〜2
+amとされている。
導電性薄膜2は、例えばクロム膜で構成されており、基
台1の表面に例えば厚さ0.1〜1000μ好ましくは
1〜10μで被着されている。導電性薄膜2のヒータパ
ターンの両端には、銅製の電極3及び4が形成されてい
る。
なお、基台1上には導電性薄膜2を覆うようにセラミッ
ク等の絶縁膜が形成されている。
次に、第1図〜第3図を参照しながら、この第4図に示
したようなヒータの製造方法を以下に説明する。
先ず、第1図に示すように、基台1上に第4図のような
ヒータパターン以外を覆うようなマスクパターンでマス
ク5を形成する。このマスク5の形成は、リソグラフィ
の技術を用いることができ、マスク5の材料としては、
フォトレジストやポリイミド等の有機物のほか、S L
O2、AiJ203等の無機物などを被着膜材料の種類
に応じてを用いることができる。
次に、このようにマスク5が形成された基台1の全面の
特にマスクパターン5が形成されていない部分に対し、
第2図に示すように、クロムをプラズマ溶射する。すな
わち、第2図において、6はプラズマガンで、このプラ
ズマガン6の中に微量かつ定量供給された導電性薄膜材
料であるクロムは、高温のプラズマ流によって3000
℃以上に熱せられて完全溶解し、所定の速さで基台1に
衝突し、基台1に被着される。このとき、基台1は、そ
の裏面からクーリングプレート(図示せず)に当接する
などの方法により冷却されており、被着膜形成に伴う基
台1の過度の温度上昇が抑制されている。そして、プラ
ズマガン6を基台1のマスクパターン5が形成されてい
ない部分に沿って走査させることによって、クロム薄膜
7を第2図に示すように基台1に被着することができる
。この場合、プラズマガン6の溶射幅がマスク5が形成
されていない部分よりも大きい場合には、マスク5上に
もクロムが被着されるが、その量は僅かである。
こうしてクロム薄膜7を被着した基台1を、例えばIP
Aやアセトン等の溶剤に浸漬し、第3図に示すようにマ
スク5を除去する。このマスク5の除去はエツチングに
より行っても良い。
こうして、基台1上に所望のパターンのクロム薄膜7を
被着することができる。
そして、図示しないが、クロム膜7のパターンの両端に
電極が形成された後、このクロム膜7のヒータパターン
が形成された基台1上に、例えばセラミックなどからな
る絶縁膜が、例えば蒸着により全面に亘って被着される
。
以上のようにマスクパターンを用いることによりプラズ
マガンの性能による限界幅よりも狭い輻の微細パターン
のヒータを形成することができる。
この例においては、プラズマ溶射によりヒータパターン
を被着形成したので、劣化、変化の少い良質のヒータパ
ターン被膜を得ることができる。
しかも、前述したように、半導体製造技術では被着でき
ないような無機物や無機物と金属の複合体等の被着がで
きると共に、高硬度、高接着度の緻密なヒータパターン
被膜を形成することができる。
なお、ヒータパターンを構成する導電性薄膜の材料とし
ては、上述の実施例で用いたクロムの他にも、ニッケル
、白金、タンタル、タングステン、スズ、鉄、鉛、アル
メル、ベリリウム、アンチモン、インジウム、クロメル
、コバルト、ストロンチウム、ロジウム、パラジウム、
マグネシウム、モリブデン、リチウム、ルビジウム等の
金属111体やカーボンブラック、グラファイトなどに
代表される炭素系材料の単体、ニクロム、ステンレス、
ステンレススチール、青銅、黄銅等合金、ポリマーグラ
フトカーボン等のポリマー系複合材料、ケイ化モリブデ
ンなどの複合セラミック材料のように、導電性を有する
とともに、通電によって発熱抵抗体として機能して熱源
となり得るものであれば良い。
また、基台1の材質としては、熱伝導性が良好で、しか
も電気絶縁性に優れたものが好ましい。
このようなものとして、上述のアルミナのほか、例えば
石英、ジルコニア、炭化ケイ素、窒化ケイ素、ダイヤモ
ンド等に代表されるセラミックス、ルチル等の金属酸化
物、高アルミナ煉瓦、カーボン煉瓦などの煉瓦を挙げる
ことができる。
また、以上の例では、ヒータパターン薄膜をプラズマ溶
射て被着するようにしたが、ヒータパターン薄膜の被着
には、その膜材料に応じて、スパッタ、CVD、蒸着、
イオンブレーティング等の半導体製造技術で用いられる
成膜方法を用いることができるのはもちろんである。
なお、ヒータとしては第4図に示すようなものに限られ
るものではなく、種々の薄膜パターンのヒータに適用可
能である。また、例えば薄膜パターンに電極を設けず、
非接触でヒータパターン上に誘導コイルを設け、この誘
導コイルに高周波信号を供給し、これより発生する誘導
磁束により薄膜にうず電流を発生させて発熱させるよう
にする高周波誘導加熱の方法によるヒータにも、この発
明は適用することができる。さらに、薄膜を誘電体で構
威し、高周波誘電加熱により発熱させるヒータにもこの
発明は適用可能である。Hereinafter, one embodiment of the present invention will be described with reference to the drawings, taking as an example a case where plasma spraying is used as a thin film deposition method. First, the heater manufactured by the method according to the present invention will be described. As shown in FIG. 4, this heater has a heater pattern made of a conductive thin film 2 formed on a base 1. The base 1 is made of a ceramic material such as alumina, which has electrical insulation and thermal conductivity. The base 1 only needs to be able to support the heater pattern, and its thickness is, for example, 0.1 to 5 mm, preferably 1 to 2 mm.
+am. The conductive thin film 2 is made of, for example, a chromium film, and is deposited on the surface of the base 1 to a thickness of, for example, 0.1 to 1000 μm, preferably 1 to 10 μm. Copper electrodes 3 and 4 are formed at both ends of the heater pattern of the conductive thin film 2. Note that an insulating film made of ceramic or the like is formed on the base 1 so as to cover the conductive thin film 2. Next, a method for manufacturing the heater shown in FIG. 4 will be described below with reference to FIGS. 1 to 3. First, as shown in FIG. 1, a mask 5 is formed on the base 1 with a mask pattern that covers areas other than the heater pattern as shown in FIG. This mask 5 can be formed using lithography technology, and the material of the mask 5 is as follows:
In addition to organic materials such as photoresist and polyimide, S L
Inorganic materials such as O2, AiJ203, etc. can be used depending on the type of coating material. Next, on the entire surface of the base 1 on which the mask 5 is formed, especially the part where the mask pattern 5 is not formed,
As shown in FIG. 2, chromium is plasma sprayed. That is, in FIG. 2, 6 is a plasma gun, and chromium, which is a conductive thin film material, is supplied in a small quantity and quantity into this plasma gun 6.
It is heated to a temperature above .degree. C. to completely melt, collides with the base 1 at a predetermined speed, and is adhered to the base 1. At this time, the base 1 is cooled by a method such as contacting a cooling plate (not shown) from its back surface, and an excessive temperature rise in the base 1 due to the formation of the deposited film is suppressed. Then, by scanning the plasma gun 6 along the portion of the base 1 where the mask pattern 5 is not formed, the chromium thin film 7 can be deposited on the base 1 as shown in FIG. In this case, if the spray width of the plasma gun 6 is larger than the area where the mask 5 is not formed, chromium is also deposited on the mask 5, but the amount is small. The base 1 coated with the chromium thin film 7 in this way is coated with, for example, an IP coating.
The mask 5 is removed by immersing it in a solvent such as A or acetone as shown in FIG. This mask 5 may be removed by etching. In this way, the chromium thin film 7 in a desired pattern can be deposited on the base 1. Although not shown, after electrodes are formed at both ends of the pattern of the chromium film 7, an insulating film made of, for example, ceramic is deposited on the base 1 on which the heater pattern of the chromium film 7 is formed, by, for example, vapor deposition. It is coated over the entire surface. By using the mask pattern as described above, it is possible to form a heater with a fine pattern whose radius is narrower than the limit width due to the performance of the plasma gun. In this example, since the heater pattern was deposited and formed by plasma spraying, it is possible to obtain a high quality heater pattern coating with little deterioration or change. Moreover, as mentioned above, it is possible to adhere inorganic substances and composites of inorganic substances and metals that cannot be applied using semiconductor manufacturing technology, and it is also possible to form a dense heater pattern film with high hardness and high adhesion. . In addition to the chromium used in the above-mentioned embodiments, materials for the conductive thin film constituting the heater pattern include nickel, platinum, tantalum, tungsten, tin, iron, lead, alumel, beryllium, antimony, indium, Chromel, cobalt, strontium, rhodium, palladium,
111 metals such as magnesium, molybdenum, lithium, rubidium, carbon-based materials such as carbon black and graphite, nichrome, stainless steel,
Materials that are electrically conductive and can function as heating resistors and become heat sources when energized, such as alloys such as stainless steel, bronze, and brass, polymer composite materials such as polymer-grafted carbon, and composite ceramic materials such as molybdenum silicide. That's fine. Furthermore, the material for the base 1 is preferably one that has good thermal conductivity and excellent electrical insulation. Examples of such materials include, in addition to the above-mentioned alumina, ceramics such as quartz, zirconia, silicon carbide, silicon nitride, and diamond, metal oxides such as rutile, and bricks such as high alumina bricks and carbon bricks. I can do it. In the above example, the heater pattern thin film was deposited by plasma spraying, but the heater pattern thin film can be deposited by sputtering, CVD, vapor deposition, etc. depending on the film material.
Of course, film forming methods used in semiconductor manufacturing techniques such as ion blating can be used. Note that the heater is not limited to the one shown in FIG. 4, and can be applied to heaters with various thin film patterns. Also, for example, without providing electrodes on the thin film pattern,
A heater using a high-frequency induction heating method, in which an induction coil is placed on the heater pattern without contact, a high-frequency signal is supplied to the induction coil, and the induced magnetic flux generated by this generates eddy current in the thin film to generate heat. This invention can also be applied. Furthermore, the present invention is also applicable to a heater in which a thin film is made of a dielectric material and generates heat by high-frequency dielectric heating.
以上説明したように、この発明によれば、基台にマスク
パターンを形成した後、ヒータ性能を有する薄膜を被着
するようにしたので、マスクパターンに応じた微細な薄
膜ヒータパターンを基台上に形成することができる。As explained above, according to the present invention, after forming a mask pattern on the base, a thin film having heater performance is applied, so that a fine thin film heater pattern corresponding to the mask pattern is formed on the base. can be formed into
第1図〜第3図は、この発明による方法を説明するため
の図、第4図はこの発明により製造されたヒータの一例
を示す図である。
1;基台
2;導電性薄膜
5;マスク
6;プラズマガン
7 ;
クロム薄膜1 to 3 are diagrams for explaining the method according to the present invention, and FIG. 4 is a diagram showing an example of a heater manufactured according to the present invention. 1; Base 2; Conductive thin film 5; Mask 6; Plasma gun 7; Chrome thin film
Claims (1)
上にヒータ性能を有する薄膜を形成し、その後、上記マ
スクを除去するようにしたことを特徴とするヒータの製
造方法。A method for manufacturing a heater, comprising forming a mask on a base, forming a thin film having heater performance on the base through the mask, and then removing the mask.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17527789A JPH0340390A (en) | 1989-07-06 | 1989-07-06 | Manufacture of heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17527789A JPH0340390A (en) | 1989-07-06 | 1989-07-06 | Manufacture of heater |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0340390A true JPH0340390A (en) | 1991-02-21 |
Family
ID=15993320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17527789A Pending JPH0340390A (en) | 1989-07-06 | 1989-07-06 | Manufacture of heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0340390A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100352892B1 (en) * | 2000-05-22 | 2002-09-16 | 주식회사 팍스텍 | Method for manufacturing thin film heating material and heating device thereof |
JP2006119418A (en) * | 2004-10-22 | 2006-05-11 | Gunze Ltd | Transparent planar heater and method for manufacturing same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59175580A (en) * | 1983-03-25 | 1984-10-04 | 株式会社日立製作所 | Heat generating resistor |
JPH01163988A (en) * | 1987-12-18 | 1989-06-28 | Brother Ind Ltd | Constant temperature exothermic body |
-
1989
- 1989-07-06 JP JP17527789A patent/JPH0340390A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59175580A (en) * | 1983-03-25 | 1984-10-04 | 株式会社日立製作所 | Heat generating resistor |
JPH01163988A (en) * | 1987-12-18 | 1989-06-28 | Brother Ind Ltd | Constant temperature exothermic body |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100352892B1 (en) * | 2000-05-22 | 2002-09-16 | 주식회사 팍스텍 | Method for manufacturing thin film heating material and heating device thereof |
JP2006119418A (en) * | 2004-10-22 | 2006-05-11 | Gunze Ltd | Transparent planar heater and method for manufacturing same |
JP4662751B2 (en) * | 2004-10-22 | 2011-03-30 | グンゼ株式会社 | Transparent sheet heating element and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6242719B1 (en) | Multiple-layered ceramic heater | |
US7446284B2 (en) | Etch resistant wafer processing apparatus and method for producing the same | |
US5705272A (en) | Heating member and heat fixing apparatus using the same | |
TWI587732B (en) | Heater unit | |
JP4271339B2 (en) | Manufacturing method of thermal head | |
JPS6344269B2 (en) | ||
US4908599A (en) | Temperature-sensitive resistance element | |
JPH0340390A (en) | Manufacture of heater | |
DE602005025294D1 (en) | An electric device comprising a heat generating electrical resistance element and heat dissipation means therefor | |
JP2012009337A (en) | Ceramics heater | |
US3736406A (en) | Thermographic print head and method of making same | |
JPH06176680A (en) | Fuse | |
JP2500367Y2 (en) | Multi-layer ceramic heater | |
JPH1064665A (en) | Uniform heat ceramic sensor | |
JPH0674880A (en) | Sample holder for scanning tunneling microscope | |
JP4307699B2 (en) | Heat fixing device | |
JPH06348154A (en) | Heater, heating/fixing device with heater and manufacture thereof | |
JPS62109664A (en) | Thermal head | |
JPS62109663A (en) | Thermal head | |
JPH07130456A (en) | Heater and its manufacture | |
JPH027379A (en) | Manufacture of heating plate | |
JPH0325882A (en) | Heating device | |
JP2004022475A (en) | Ceramic heater and its manufacturing method | |
JPH08250465A (en) | Electrode cover for plasma treating device for semiconductor | |
JPH0322525A (en) | Heat treatment equipment |