JPH0340298A - Memory circuit - Google Patents
Memory circuitInfo
- Publication number
- JPH0340298A JPH0340298A JP1172868A JP17286889A JPH0340298A JP H0340298 A JPH0340298 A JP H0340298A JP 1172868 A JP1172868 A JP 1172868A JP 17286889 A JP17286889 A JP 17286889A JP H0340298 A JPH0340298 A JP H0340298A
- Authority
- JP
- Japan
- Prior art keywords
- potential
- word line
- transistor
- data
- memory cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 2
- 230000010287 polarization Effects 0.000 abstract description 15
- 238000010586 diagram Methods 0.000 description 5
- 230000005684 electric field Effects 0.000 description 4
- 230000002269 spontaneous effect Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002305 electric material Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Landscapes
- Read Only Memory (AREA)
- Dram (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、リフレッシュ不要にしてデータを保持しうる
メモリ回路に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a memory circuit that can retain data without requiring refreshing.
(従来の技術)
第3図は強誘電体を用いた従来のメモリ回路のメモリセ
ルの構成を示す図である。(Prior Art) FIG. 3 is a diagram showing the structure of a memory cell of a conventional memory circuit using a ferroelectric material.
このような回路構成において、データの書き込みは、ビ
ット線の電位を記憶すべきデータにしたがって高電位ま
たは低電位にしたのち、ワード線の電位を上げてMO8
電界効果トランジスタ1を導電させ、ノード2をデータ
電位に設定し、クロックφにパルスを印加する。これに
より、キャパシタを構成している例えばジルコンチタン
酸鉛からなる強誘電体物質3の自発分極の方向が設定さ
れ、第4図(a)に示すように、データの書き込みが行
われる。In such a circuit configuration, data is written by setting the potential of the bit line to a high or low potential according to the data to be stored, and then raising the potential of the word line to write the MO8.
Field effect transistor 1 is made conductive, node 2 is set to data potential, and a pulse is applied to clock φ. As a result, the direction of spontaneous polarization of the ferroelectric material 3 made of lead zirconate titanate, for example, which constitutes the capacitor is set, and data is written as shown in FIG. 4(a).
例えば、高電位データであれば、ノード2か高電位で、
クロックφが“0“レベルである時に強誘電体物質3に
対して矢印4の向きに大きな電界が印加され、自発分極
を生ずる。For example, if it is high potential data, node 2 or high potential,
When the clock φ is at the "0" level, a large electric field is applied to the ferroelectric material 3 in the direction of the arrow 4, causing spontaneous polarization.
一方、低電位データては、ノード2が低電位、クロック
φが高電位のときに、強1舌号電体物質3は矢印5の方
向に分極を生ずる。すなわち、矢印の分極方向がデータ
を表わし、電源を切っても分極は不変であるから不揮発
性のデータ記憶が可能となる。On the other hand, regarding low potential data, when the node 2 is at a low potential and the clock φ is at a high potential, the strongly monotonous electric material 3 is polarized in the direction of the arrow 5. That is, the polarization direction of the arrow represents data, and since the polarization remains unchanged even when the power is turned off, nonvolatile data storage is possible.
記憶されたデータを読出すには、第4図(b)に示すよ
うに、クロックφを低電位にし、ビット線を高電位の浮
遊状態にしてワード線の電位を上げ、アクセスすべきメ
モリセルのトランジスタ1を導通させる。これにより、
ノード2が高電位となり、強誘電体3には矢印4の方向
に電界が印加される。To read the stored data, as shown in FIG. 4(b), the clock φ is set to a low potential, the bit line is placed in a floating state at a high potential, and the potential of the word line is raised to read out the memory cell to be accessed. transistor 1 is made conductive. This results in
Node 2 has a high potential, and an electric field is applied to ferroelectric material 3 in the direction of arrow 4.
したがって、分極状態に変化を生じないので、ビット線
の電位は変らない。しかしながら、分極状態が矢印5の
方向であったとすると、分極は反転し、矢印4の方向と
なる。このとき、ノード2およびビット線の電位は分極
反転に対応した量だけ電位が低下する。第4図(b)に
おいて、前記反転の量を6で示す。上記のビット線の変
化はビット線に接続されたセンスアンプ7で増幅され出
力される。Therefore, since no change occurs in the polarization state, the potential of the bit line does not change. However, if the polarization state was in the direction of arrow 5, the polarization is reversed and becomes in the direction of arrow 4. At this time, the potentials of node 2 and the bit line decrease by an amount corresponding to the polarization inversion. In FIG. 4(b), the amount of reversal is indicated by 6. The above change in the bit line is amplified by the sense amplifier 7 connected to the bit line and output.
その後、クロックφ−“1”レベルにして強誘電体物質
3の分極を元に戻して再書き込みを行うようにしている
。Thereafter, the clock φ-“1” level is set to restore the polarization of the ferroelectric material 3 to perform rewriting.
(発明が解決しようとする課題)
強誘電体メモリであっても、ダイナミックメモリのよう
に定期的なリフレッシュ動作が不要であることが望まし
く、また電源が入っている間はデータが失なわれないこ
とが所望される。(Problem to be solved by the invention) Even with ferroelectric memory, it is desirable that it does not require periodic refresh operations like dynamic memory, and data is not lost while the power is on. It is desired that
しかしながら、上記メモリセルの場合、リフレッシュ動
作を行なわなければデータは消失してしまうおそれがあ
る。However, in the case of the above memory cell, there is a risk that data will be lost unless a refresh operation is performed.
すなわち、第3図において、ノード2を高電位にして書
き込んだ後、クロックφが低電位にさ、れたままの状態
にあるとする。トランジスタ1の基板ノードは通常Vs
sに接続されているため、基板とソース/ドレイン間の
PN接合を通して高電位にあったノード2は、リークし
て低電位に下ってしまう。したがって、この時点て他の
メモリセルの書き込みパルスが入ると、強誘電体にかか
る電界は、高電位データ書き込み時とは逆となり分極の
反転が生じ、データが消失してしまうといった問題が発
生する。That is, in FIG. 3, it is assumed that after the node 2 is set to a high potential and data is written, the clock φ remains at a low potential. The substrate node of transistor 1 is normally Vs
s, the node 2, which was at a high potential through the PN junction between the substrate and the source/drain, leaks and drops to a low potential. Therefore, if a write pulse from another memory cell is applied at this point, the electric field applied to the ferroelectric material will be opposite to that when writing high-potential data, resulting in polarization reversal and data loss. .
そこで、本発明は上記の如きデータ消失現象を防止する
と共に電源供給中はリフレッシュが不要である強誘電体
のメモリセルを備えたメモリ回路を提供することを目的
としている。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a memory circuit equipped with ferroelectric memory cells that prevents the data loss phenomenon described above and does not require refreshing while power is being supplied.
(課題を解決するための手段)
上記目的を達成するために、電極間に強誘電体を挾んで
形成された強誘電体キャパシタに情報を記憶するメモリ
セルをマトリックス状に配置したメモリ回路において、
前記それぞれのメモリセルの強誘電体キャパシタの電極
間を同電位に設定する設定手段を備えて構成される。(Means for Solving the Problems) In order to achieve the above object, in a memory circuit in which memory cells for storing information in ferroelectric capacitors formed by sandwiching a ferroelectric material between electrodes are arranged in a matrix,
The memory cell is configured to include a setting means for setting the electrodes of the ferroelectric capacitors of each of the memory cells to the same potential.
(作用)
前記設定手段は、メモリセルに書き込み用のパルスが入
力された際に、アクセスされていないメモリセルに対し
て強誘電体キャパシタの両端を同電位にしてしまうので
、逆電界が印加されず、データの消失が生じない。(Function) The setting means sets both ends of the ferroelectric capacitor to the same potential for memory cells that are not accessed when a write pulse is input to the memory cell, so that a reverse electric field is not applied. No data loss will occur.
(実施例)
第1図は本発明によるメモリ回路の実施例を示す図であ
る。同図に示す回路は、説明を簡単にするために第1お
よび第2のメモリセルのみの構成を示す。(Embodiment) FIG. 1 is a diagram showing an embodiment of a memory circuit according to the present invention. The circuit shown in the figure shows the configuration of only the first and second memory cells to simplify the explanation.
各メモリセルには、第3図に示した構成に対して、各強
誘電体キャパシタ3の面電極を短絡させるための付加M
OSトランジスタ8が、それぞれ設けられている。Each memory cell has an additional M for short-circuiting the surface electrodes of each ferroelectric capacitor 3 with respect to the configuration shown in FIG.
OS transistors 8 are provided respectively.
そして、付加MOS)ランジスタ8のゲート電極Gは第
2ワード線W2に接続され、その残りの電極が強誘電体
キャパシタ3の両端(面電極)に接続された構成になっ
ている。The gate electrode G of the additional MOS transistor 8 is connected to the second word line W2, and the remaining electrodes are connected to both ends (plane electrodes) of the ferroelectric capacitor 3.
第1ワード線WIと第2ワード線W2に乗せる信号の極
性は互に逆極性となっているので、MOSトランジスタ
1がオン(導通)のときには、MOSトランジスタ8は
オフ(不導通)となる。Since the polarities of the signals placed on the first word line WI and the second word line W2 are opposite to each other, when the MOS transistor 1 is on (conducting), the MOS transistor 8 is off (non-conducting).
同様にして、第2メモリセルを始めとして図示しない残
りのメモリセルも同様の構成になっている。なお、第3
図に示す従来技術によるメモリ回路と同様、7はセンス
アンプを示す。Similarly, the remaining memory cells (not shown) including the second memory cell have similar configurations. In addition, the third
Similarly to the prior art memory circuit shown in the figure, 7 indicates a sense amplifier.
′次に本発明のメモリ回路の動作を第2図を参照して説
明する。'Next, the operation of the memory circuit of the present invention will be explained with reference to FIG.
データの書き込みに際して、アクセスすべき第1メモリ
セルの第1ワード線W1を高電位レベルにしてトランジ
スタ1を導通させる。この時、第2ワード線W2には第
1ワード線WI と逆位を目の信号が加わるようになっ
ているので、トランジスタ8はカットオフとなっている
。ノード2がビット線の電位に等しくなった時に、クロ
ックφに“11レベルにして、強誘電体キャパシタ3の
分極方向を人力データに一致させ、その後、第1ワード
線W言の電位を下げてトランジスタ1をカットオフさせ
、第2ワード線W2の電位を上げてトランジスタ8を導
通させる。When writing data, the first word line W1 of the first memory cell to be accessed is brought to a high potential level, and the transistor 1 is made conductive. At this time, the transistor 8 is cut off because the second word line W2 receives a signal having the opposite potential to that of the first word line WI. When the potential of the node 2 becomes equal to the bit line potential, set the clock φ to the "11 level" to match the polarization direction of the ferroelectric capacitor 3 with the manual data, and then lower the potential of the first word line W. Transistor 1 is cut off, and the potential of second word line W2 is raised to make transistor 8 conductive.
これにより、強誘電体キャパシタ3の画電極はアース電
位となるが、−度設定された自発分極は消失しない。As a result, the picture electrode of the ferroelectric capacitor 3 becomes at ground potential, but the spontaneous polarization set at -degrees does not disappear.
データの読み出しにおいては、クロックφを“0”レベ
ル(低電位)にして、ビット線を高電位にして第1ワー
ド線W1の電位を上げてアクセスすべきメモリセル、例
えばトランジスタ1を導通させ、トランジスタ8を非導
通にする。これにより、ノード2が高電位となりビット
線上に、メモリセルの分極データが出力として読み出さ
れる。In reading data, the clock φ is set to "0" level (low potential), the bit line is set to a high potential, the potential of the first word line W1 is raised, and the memory cell to be accessed, for example, the transistor 1, is made conductive. Transistor 8 is made non-conductive. As a result, the potential of the node 2 becomes high, and the polarization data of the memory cell is read out as an output onto the bit line.
このようにして出力されたデータは、センスアンプ7で
増幅されて外部に出力される。The data thus output is amplified by the sense amplifier 7 and output to the outside.
各メモリセルの各強誘電体キャパシタ3に記憶されたデ
ータは分極反転時に失われてしまうが、ビット線の電位
が正しく設定された時点でクロックφを“1”レベルに
して再書き込みを行えばよい。その後、トランジスタ1
をオフし、トランジスタ8をオンして強誘電体キャパシ
タ3の両端をアース電位にクランプする。The data stored in each ferroelectric capacitor 3 of each memory cell will be lost when the polarization is reversed, but if the clock φ is set to the "1" level and rewritten when the bit line potential is set correctly, the data can be rewritten. good. Then transistor 1
is turned off, transistor 8 is turned on, and both ends of ferroelectric capacitor 3 are clamped to ground potential.
以上述べたように、第1メモリセルがアクセスされてい
なければ、第1ワード線WIの電位は高レベルにならな
いのでトランジスタ8が導通したままになるのでクロッ
クφ−“1″レベルになっても強誘電体キャパシタ3の
両端は短絡されて同電位に保たれ、逆電位になることは
ない。したがって、データの消失状態は発生しない。As described above, if the first memory cell is not accessed, the potential of the first word line WI will not reach a high level, so the transistor 8 will remain conductive, even if the clock φ-“1” level is reached. Both ends of the ferroelectric capacitor 3 are short-circuited and kept at the same potential, and never have opposite potentials. Therefore, no data loss condition occurs.
この結果、リフレッシュ動作の不要な不揮発性のランダ
ムアクセスメモリ回路とすることが可能となる。なお、
第2メモリセルの動作も第1メモリセルと全く同じであ
るので省略する。As a result, it becomes possible to provide a nonvolatile random access memory circuit that does not require a refresh operation. In addition,
The operation of the second memory cell is also exactly the same as that of the first memory cell, so a description thereof will be omitted.
本発明においては、要するに、第1ワード線の信号と逆
極性の信号を与える第2ワード線を設け、該第2ワード
線に接続された第2のMOS)ランジスタの導通を制御
することによって強誘電体キャパシタの両端を同電位に
設定維持している。In short, the present invention provides a second word line that provides a signal of opposite polarity to the signal on the first word line, and controls conduction of a second MOS transistor connected to the second word line. Both ends of the dielectric capacitor are set and maintained at the same potential.
したがって、各種ノイズから前記キャパシタに記憶され
たデータが保護され、信頼性の高い強誘電体のメモリ回
路が実現できる。Therefore, the data stored in the capacitor is protected from various noises, and a highly reliable ferroelectric memory circuit can be realized.
[発明の効果]
以上説明したように、この発明によれば、情報を記憶す
るメモリセルの強誘電体キャパシタの両端を同電位に設
定制御するようにしたので、記憶情報の破壊を常時防止
することが可能となり、リフレッシュ動作を不要とした
、メモリセルに強誘電体キャパシタを使用した不揮発性
のランダムアクセスメモリ回路を提供することができる
。[Effects of the Invention] As explained above, according to the present invention, since both ends of the ferroelectric capacitor of the memory cell that stores information are controlled to be set to the same potential, destruction of stored information is always prevented. This makes it possible to provide a nonvolatile random access memory circuit using ferroelectric capacitors in memory cells that does not require a refresh operation.
第1図は本発明によるメモリ回路の実施例を示す構成図
、第2図は第1図の動作を説明する各タイミング図、第
3図は従来技術によるメモリセルの構成図、第4図は第
3図の動作を説明する各タイミング図である。
1・・・第1メモリセルの第lMOSトランジスタ、8
・・・付加MOS)ランジスタ、
3・・・強誘電体キャパシタ、
1−.8−.3″・・・第2メモリセルの対応構成要素
、
2.2′・・・各ノード、
7・・・センスアンプ。
代F臥弁理士三好秀和
派
比
(書き込み動作タイミング゛)
第4 図
(a)
(読み出し動作タイミンク゛)
第4
図
(b)
手続補正書
(自発)
特
許
庁
長
官
殿
平成
1年
7月11日
2゜
4゜
発明の名称
補正をする者
事件との関係
住所(居所)
氏名(名称)
代
理
人
住
所
メモリ回路FIG. 1 is a block diagram showing an embodiment of a memory circuit according to the present invention, FIG. 2 is a timing chart explaining the operation of FIG. 1, FIG. 3 is a block diagram of a memory cell according to the prior art, and FIG. 4A and 4B are timing diagrams illustrating the operation of FIG. 3. FIG. 1...l MOS transistor of the first memory cell, 8
...additional MOS) transistor, 3...ferroelectric capacitor, 1-. 8-. 3''...corresponding components of the second memory cell, 2.2'...each node, 7...sense amplifier. a) (Reading operation timing) Figure 4 (b) Procedural amendment (voluntary) Commissioner of the Japan Patent Office July 11, 1999 2゜4゜ Person who amends the name of the invention Address related to the case (residence) Name (Name) Agent address memory circuit
Claims (2)
ャパシタに情報を記憶するメモリセルをマトリツクス状
に配置したメモリ回路において、前記それぞれのメモリ
セルの強誘電体キャパシタの電極間を同電位に設定する
設定手段を備えたことを特徴とするメモリ回路。(1) In a memory circuit in which memory cells are arranged in a matrix to store information in ferroelectric capacitors formed by sandwiching a ferroelectric material between electrodes, the electrodes of the ferroelectric capacitors of each memory cell are A memory circuit characterized by comprising a setting means for setting to the same potential.
御される電界トランジスタで構成されたことを特徴とす
る請求項1記載のメモリ回路。(2) The memory circuit according to claim 1, wherein the setting means is constituted by a field transistor controlled to short-circuit between the electrodes.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17286889A JP2724212B2 (en) | 1989-07-06 | 1989-07-06 | Memory circuit |
US07/548,823 US5121353A (en) | 1989-07-06 | 1990-07-06 | Ferroelectric capacitor memory circuit MOS setting and transmission transistor |
US07/832,806 US5224069A (en) | 1989-07-06 | 1992-02-07 | Ferroelectric capacitor memory circuit MOS setting and transmission transistors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17286889A JP2724212B2 (en) | 1989-07-06 | 1989-07-06 | Memory circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0340298A true JPH0340298A (en) | 1991-02-21 |
JP2724212B2 JP2724212B2 (en) | 1998-03-09 |
Family
ID=15949791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17286889A Expired - Lifetime JP2724212B2 (en) | 1989-07-06 | 1989-07-06 | Memory circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2724212B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5487029A (en) * | 1992-08-27 | 1996-01-23 | Hitachi, Ltd. | Semiconductor memory device having a non-volatile memory composed of ferroelectric capacitors which are selectively addressed |
US5903492A (en) * | 1996-06-10 | 1999-05-11 | Kabushiki Kaisha Toshiba | Semiconductor memory device and various systems mounting them |
US6826072B2 (en) | 1996-06-10 | 2004-11-30 | Kabushiki Kaisha Toshiba | Semiconductor memory device and various systems mounting them |
JP2014503930A (en) * | 2010-11-30 | 2014-02-13 | レイディアント テクノロジーズ,インコーポレイテッド | Analog memory using ferroelectric capacitors |
WO2019111525A1 (en) * | 2017-12-04 | 2019-06-13 | ソニーセミコンダクタソリューションズ株式会社 | Semiconductor storage device, electronic apparatus, and information reading method |
-
1989
- 1989-07-06 JP JP17286889A patent/JP2724212B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5487029A (en) * | 1992-08-27 | 1996-01-23 | Hitachi, Ltd. | Semiconductor memory device having a non-volatile memory composed of ferroelectric capacitors which are selectively addressed |
US5550770A (en) * | 1992-08-27 | 1996-08-27 | Hitachi, Ltd. | Semiconductor memory device having ferroelectric capacitor memory cells with reading, writing and forced refreshing functions and a method of operating the same |
US5903492A (en) * | 1996-06-10 | 1999-05-11 | Kabushiki Kaisha Toshiba | Semiconductor memory device and various systems mounting them |
US6826072B2 (en) | 1996-06-10 | 2004-11-30 | Kabushiki Kaisha Toshiba | Semiconductor memory device and various systems mounting them |
US7254051B2 (en) | 1996-06-10 | 2007-08-07 | Kabushiki Kaisha Toshiba | Semiconductor memory device and various systems mounting them |
JP2014503930A (en) * | 2010-11-30 | 2014-02-13 | レイディアント テクノロジーズ,インコーポレイテッド | Analog memory using ferroelectric capacitors |
WO2019111525A1 (en) * | 2017-12-04 | 2019-06-13 | ソニーセミコンダクタソリューションズ株式会社 | Semiconductor storage device, electronic apparatus, and information reading method |
US11139310B2 (en) | 2017-12-04 | 2021-10-05 | Sony Semiconductor Solutions Corporation | Semiconductor memory device, electronic apparatus, and method of reading data |
Also Published As
Publication number | Publication date |
---|---|
JP2724212B2 (en) | 1998-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2930168B2 (en) | Driving method of ferroelectric memory device | |
KR100290436B1 (en) | Ferroelectric Memory | |
US5121353A (en) | Ferroelectric capacitor memory circuit MOS setting and transmission transistor | |
US5262982A (en) | Nondestructive reading of a ferroelectric capacitor | |
US9812204B1 (en) | Ferroelectric memory cell without a plate line | |
US5579257A (en) | Method for reading and restoring data in a data storage element | |
JP2000077982A (en) | Semiconductor integrated circuit | |
JP3431122B2 (en) | Semiconductor storage device | |
US5381379A (en) | Non-volatile dynamic random access memory device; a page store device and a page recall device used in the same; and a page store method and a page recall method | |
US6707704B2 (en) | Semiconductor memory device and drive method therefor | |
JP3720983B2 (en) | Ferroelectric memory | |
JPH0340298A (en) | Memory circuit | |
US6046928A (en) | Non-volatile semiconductor memory device | |
JP3717097B2 (en) | Ferroelectric memory | |
JP3990334B2 (en) | Semiconductor integrated circuit device and operation method thereof | |
US5224069A (en) | Ferroelectric capacitor memory circuit MOS setting and transmission transistors | |
JPH02301093A (en) | Nonvolatile semiconductor memory device | |
US6839289B2 (en) | Semiconductor storage device | |
US6574134B1 (en) | Non-volatile ferroelectric capacitor memory circuit having nondestructive read capability | |
JPH01162296A (en) | Dram | |
JP3868660B2 (en) | Semiconductor memory device and driving method thereof | |
JPH04228191A (en) | Semiconductor integrated circuit | |
JP3467353B2 (en) | Data storage device | |
JP2000156090A (en) | Data storing method | |
JP2706584B2 (en) | Non-volatile storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071128 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081128 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091128 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091128 Year of fee payment: 12 |