JP2000077982A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JP2000077982A
JP2000077982A JP10241701A JP24170198A JP2000077982A JP 2000077982 A JP2000077982 A JP 2000077982A JP 10241701 A JP10241701 A JP 10241701A JP 24170198 A JP24170198 A JP 24170198A JP 2000077982 A JP2000077982 A JP 2000077982A
Authority
JP
Japan
Prior art keywords
circuit
semiconductor integrated
integrated circuit
data
flip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10241701A
Other languages
Japanese (ja)
Inventor
Hideo Yatsuno
英生 八野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10241701A priority Critical patent/JP2000077982A/en
Publication of JP2000077982A publication Critical patent/JP2000077982A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C14/00Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down
    • G11C14/0054Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a SRAM cell
    • G11C14/0072Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a SRAM cell and the nonvolatile element is a ferroelectric element

Abstract

PROBLEM TO BE SOLVED: To provide a resume function with simple circuit configuration without using a non-volatile memory provided in a peripheral circuit for saving data at the time of power supply cutoff by providing a non-volatile element such as a ferroelectric capacitor corresponding to the storage node of an order circuit in a processing circuit. SOLUTION: This semiconductor integrated circuit is provided with the processing circuit equipped with the order circuit and combination circuit for holding data such as a D flip-flop circuit, for example. The D flip-flop circuit is a circuit for fetching and holding data at the rising edge of a clock. Concerning the semiconductor integrated circuit, ferroelectric capacitors 9 and 8 are respectively connected to storage nodes N1 and N2 of the D flip-flop circuit. Then, power supply is cut off after the data of the storage nodes N1 and N2 are previously saved in the ferroelectric capacitors 9 and 8 before the cutoff of power supply and the data saved in the ferroelectric capacitors 9 and 8 are fed back to the storage nodes N1 and N2 when a power source is turned on again.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,半導体集積回路に
係り,詳しくは,電源遮断前にシステムの状態を予め不
揮発性素子に待避させて電源を遮断し,電源の再投入時
に上記不揮発性素子に待避させられたデータを復帰させ
得る半導体集積回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit, and more particularly to a semiconductor integrated circuit. The present invention relates to a semiconductor integrated circuit capable of restoring data saved in a semiconductor integrated circuit.

【0002】[0002]

【従来の技術】例えばパーソナルコンピュータ等の情報
端末では,高機能化にともなって,電源投入後から使用
可能になるまでに要する起動時間が長時間化する傾向に
ある。特に,携帯を目的とした情報端末では,上記起動
時間の短縮に対する要求が強く,電源遮断前に半導体メ
モリに待避させたシステムの状態を電源再投入時に復帰
させるレジューム機能の必要性は高い。システムの状態
を待避させるための半導体メモリとしては,例えばEE
PROM(エレクトリック・イレース・プログラマブル
・リード・オンリー・メモリ)やフラッシュメモリ等の
不揮発性半導体メモリが用いられることが多い。これ
は,DRAM(ダイナミック・ランダム・アクセス・メ
モリ)やSRAM(スタティック・ランダム・アクセス
・メモリ)等の揮発性半導体メモリでは,主電源の遮断
後に電力を供給するためのバックアップ電池が別途必要
になるためである。また,近年では,PZT(ジルコン
チタン酸鉛)等のヒステリシス特性を有する強誘電体材
料をメモリセルに用いた不揮発性半導体メモリも開発さ
れている。例えば特開昭64−66899号公報には,
SRAMの揮発性メモリセルと強誘電体材料を用いた強
誘電体キャパシタとを組み合わせた不揮発性半導体メモ
リが記載されている。ここで,図8に上記公報に記載の
不揮発性メモリのメモリセルを示す。上記公報に記載の
不揮発性メモリのメモリセルは,例えばCMOS型SR
AMセルからなる揮発性の部分と,強誘電体キャパシタ
を備えた不揮発性の部分とに大きく分けることができ
る。揮発性の部分には,例えば2個のpチャンネルトラ
ンジスタ101,102と,2個のnチャンネルトラン
ジスタ103,104から成るフリップフリップが含ま
れる。不揮発性の部分には,上記フリップフロップの2
つの記憶ノードに,トランジスタ111,112を介し
てそれぞれ接続された強誘電体キャパシタ107,10
8が含まれる。そして,上記公報に記載の不揮発性メモ
リでは,通常の動作中(電源が投入されている間),上
記トランジスタ111,112はオフ状態にされてお
り,上記フリップフロップと強誘電体キャパシタ10
7,108とは切り離されている。即ち,通常の動作中
は,上記不揮発性メモリのメモリセルはSRAMセルと
等価であり,一般のSRAMと同様に,ビット線7,8
及びワード線9によりアクセスして上記フリップフロッ
プに情報の書き込み,読み出しを行うことができる。ま
た,電源が遮断される場合には,上記トランジスタ11
1,112がオン状態にされ,上記フリップフロップの
記憶ノードと強誘電体キャパシタ107,108とが接
続され,強誘電体キャパシタ107,108に上記記憶
ノードの情報が読み出され記憶される。このため,上記
公報に記載の不揮発性メモリでは,電源が遮断されても
情報が失われない。そこで,上記のような不揮発性メモ
リを用いれば,順序回路と組合せ回路とからなる処理回
路,例えばASIC(特定用途向けIC)等の順序回路
に保持されている内部データを,ハードウェア又はソフ
トウェアを用いて,上記不揮発性メモリに電源遮断前に
待避させて電源を遮断し,電源の再投入時に上記不揮発
性メモリから上記順序回路に復帰させることによって,
長い起動プロセスを経ることなく,使用者は,電源遮断
前に行っていた作業を電源の再投入時に継続することが
できる。
2. Description of the Related Art In information terminals such as personal computers, for example, with the advancement of functions, the startup time required after power-on until the terminal becomes usable tends to be long. In particular, in the case of information terminals intended for portable use, there is a strong demand for shortening the start-up time, and there is a high need for a resume function for restoring the state of the system saved in the semiconductor memory before power-off when power is turned on again. As a semiconductor memory for saving the state of the system, for example, EE
A nonvolatile semiconductor memory such as a PROM (electric erase programmable read only memory) or a flash memory is often used. This is because volatile semiconductor memories such as DRAM (Dynamic Random Access Memory) and SRAM (Static Random Access Memory) require a separate backup battery to supply power after the main power is turned off. That's why. In recent years, nonvolatile semiconductor memories using ferroelectric materials having hysteresis characteristics, such as PZT (lead zirconate titanate), for memory cells have also been developed. For example, JP-A-64-68699 discloses that
A nonvolatile semiconductor memory in which a volatile memory cell of an SRAM and a ferroelectric capacitor using a ferroelectric material are combined is described. Here, FIG. 8 shows a memory cell of the nonvolatile memory described in the above publication. The memory cell of the nonvolatile memory described in the above publication is, for example, a CMOS type SR.
It can be broadly divided into a volatile portion composed of an AM cell and a non-volatile portion provided with a ferroelectric capacitor. The volatile portion includes, for example, a flip flip including two p-channel transistors 101 and 102 and two n-channel transistors 103 and 104. In the non-volatile part, the flip-flop 2
Ferroelectric capacitors 107 and 10 connected to two storage nodes via transistors 111 and 112, respectively.
8 is included. In the nonvolatile memory described in the above publication, during normal operation (while power is turned on), the transistors 111 and 112 are turned off, and the flip-flop and the ferroelectric capacitor 10 are turned off.
7, 108 are separated. That is, during a normal operation, the memory cells of the nonvolatile memory are equivalent to the SRAM cells, and the bit lines 7, 8 are similar to the general SRAM.
In addition, writing and reading of information to and from the flip-flop can be performed by accessing the word line 9. When the power supply is cut off, the transistor 11
1 and 112 are turned on, the storage node of the flip-flop is connected to the ferroelectric capacitors 107 and 108, and the information of the storage node is read and stored in the ferroelectric capacitors 107 and 108. For this reason, in the nonvolatile memory described in the above publication, information is not lost even when the power is cut off. Therefore, if the above-described non-volatile memory is used, internal data held in a processing circuit including a sequential circuit and a combinational circuit, for example, a sequential circuit such as an ASIC (IC for a specific application) can be converted into hardware or software. By turning off the power before turning off the power in the non-volatile memory and turning off the power, and returning to the sequential circuit from the non-volatile memory when the power is turned on again,
Without going through a long start-up process, the user can continue the work that was done before the power was turned off when the power is turned on again.

【0003】[0003]

【発明が解決しようとする課題】ところで,上記処理回
路に含まれる,数10ビット程度の小さなデータを記憶
する例えばレジスタファイル等は,通常,DRAMやS
RAM等を用いずに,フリップフロップ回路等の順序回
路と組合せ回路を用いて構成される場合が多い。これ
は,DRAMやSRAM等では,入力アドレスに従って
ワード線を駆動するローデコーダとワードドライバ,出
力データを増幅するセンスアンプ,入出力データを制御
するI/O回路,これらを制御するコントロール回路等
の周辺回路が必要となり,ビット容量が小さい場合に
は,上記周辺回路の占める割合がメモリセルが占める割
合よりも大きくなってしまい面積的に非効率的な構成と
なってしまうからである。しかしながら,上記のように
CMOSトランジスタ等で構成されるフリップフロップ
回路では,電源が遮断されると,内部に保持されたデー
タが失われてしまうため,上記レジューム機能を実現す
るには,システムの状態を保持したり処理を行う処理回
路の他に,上記のようなSRAM等を備えた不揮発性メ
モリが必要となり,面積的に非効率になっていた。ま
た,不揮発性メモリにアクセスを行う分だけ,データの
書き込み又は読み出しに時間がかかっていた。更に,上
記不揮発性メモリへデータの書き込み又は読み出しを行
うための回路やソフトウェアも必要となっていた。本発
明は,このような従来の技術における課題を解決するた
めに,半導体集積回路を改良し,処理回路の順序回路の
記憶ノードに対応して強誘電体キャパシタ等の不揮発性
素子を設けることにより,電源遮断時にデータを待避さ
せるために周辺回路を備えた不揮発性メモリを用いる必
要をなくし,簡素な回路構成によりレジューム機能を実
現することのできる半導体集積回路を提供することを目
的とするものである。
Incidentally, a register file or the like for storing small data of about several tens of bits, which is included in the above-mentioned processing circuit, is usually provided by a DRAM or an SD card.
In many cases, a sequential circuit such as a flip-flop circuit and a combinational circuit are used without using a RAM or the like. This means that in a DRAM or SRAM, a row decoder and a word driver for driving a word line in accordance with an input address, a sense amplifier for amplifying output data, an I / O circuit for controlling input / output data, and a control circuit for controlling these are provided. This is because a peripheral circuit is required, and if the bit capacity is small, the ratio occupied by the peripheral circuit becomes larger than the ratio occupied by the memory cells, resulting in an inefficient configuration in area. However, in the flip-flop circuit composed of CMOS transistors and the like as described above, when the power supply is cut off, the data held therein is lost. In addition to a processing circuit that holds and processes data, a non-volatile memory including the above-described SRAM and the like is required, and the area becomes inefficient. Also, it takes time to write or read data for accessing the nonvolatile memory. Further, a circuit and software for writing or reading data to or from the nonvolatile memory have been required. In order to solve the problems in the prior art, the present invention improves a semiconductor integrated circuit and provides a nonvolatile element such as a ferroelectric capacitor corresponding to a storage node of a sequential circuit of a processing circuit. It is an object of the present invention to provide a semiconductor integrated circuit capable of realizing a resume function with a simple circuit configuration by eliminating the need to use a nonvolatile memory having a peripheral circuit to save data when power is cut off. is there.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に,請求項1に係る発明は,順序回路と組合せ回路とか
らなる処理回路を含み,上記処理回路の上記順序回路に
含まれるデータを電源遮断前に予め不揮発性素子に待避
させて電源を遮断し,電源の再投入時に上記不揮発性素
子に待避させられたデータを上記処理回路の上記順序回
路に復帰させ得る半導体集積回路において,上記処理回
路の順序回路の記憶ノードに対応して上記不揮発性素子
を設けてなることを特徴とする半導体集積回路として構
成されている。また,請求項2に係る発明は,上記請求
項1に記載の半導体集積回路において,上記処理回路の
順序回路が,フリップフロップ回路又はラッチ回路であ
ることをその要旨とする。また,請求項3に係る発明
は,上記請求項2に記載の半導体集積回路において,上
記不揮発性素子が上記フリップフロップ回路の記憶ノー
ドに接続されてなることをその要旨とする。また,請求
項4に係る発明は,上記請求項3に記載の半導体集積回
路において,上記不揮発性素子と上記フリップフロップ
回路を結合又は分離する結合分離素子と,上記不揮発性
素子を短絡させる短絡素子とが備えられてなることをそ
の要旨とする。また,請求項5に係る発明は,上記請求
項2に記載の半導体集積回路において,上記フリップフ
ロップ回路を構成するトランジスタが,ゲート電極に強
誘電体を用いたものであることをその要旨とする。ま
た,請求項6に係る発明は,上記請求項1〜5のいずれ
か1項に記載の半導体集積回路において,クロック又は
入力データに同期して上記不揮発性素子に上記処理回路
の順序回路に含まれるデータを保存してなることをその
要旨とする。上記請求項1〜6のいずれか1項に記載の
半導体集積回路によれば,処理回路の順序回路の記憶ノ
ードに対応して不揮発性素子を設けることにより,電源
遮断時にデータを待避させるレジューム機能を実現する
ために,周辺回路を備えた不揮発性メモリ等を用いる必
要がなくなる。このため,回路構成をより簡素なものと
することができ,上記不揮発性メモリにアクセスするた
めの専用回路やソフトウェアも必要ない。更に,周辺回
路を備えた不揮発性メモリにアクセスする必要がない分
だけ書き込み及び読み出しの時間を短縮することができ
る。
To achieve the above object, the invention according to claim 1 includes a processing circuit including a sequential circuit and a combinational circuit, and stores data included in the sequential circuit of the processing circuit. In a semiconductor integrated circuit capable of saving the power saved in the nonvolatile element and returning the data saved in the nonvolatile element to the sequential circuit when the power is turned on again, the semiconductor integrated circuit has The semiconductor integrated circuit is provided with the above-mentioned nonvolatile element corresponding to a storage node of a sequential circuit of a processing circuit. According to a second aspect of the present invention, in the semiconductor integrated circuit according to the first aspect, the sequential circuit of the processing circuit is a flip-flop circuit or a latch circuit. According to a third aspect of the present invention, in the semiconductor integrated circuit according to the second aspect, the nonvolatile element is connected to a storage node of the flip-flop circuit. According to a fourth aspect of the present invention, in the semiconductor integrated circuit according to the third aspect, a coupling / separation element that couples or separates the nonvolatile element and the flip-flop circuit, and a short-circuit element that short-circuits the nonvolatile element. The gist is to be provided. According to a fifth aspect of the present invention, in the semiconductor integrated circuit according to the second aspect, the transistor constituting the flip-flop circuit has a gate electrode made of a ferroelectric material. . According to a sixth aspect of the present invention, in the semiconductor integrated circuit according to any one of the first to fifth aspects, the non-volatile element is included in the sequential circuit of the processing circuit in synchronization with a clock or input data. The main point is to save the data to be stored. According to the semiconductor integrated circuit of any one of claims 1 to 6, a resume function for saving data when power is cut off is provided by providing a nonvolatile element corresponding to a storage node of a sequential circuit of a processing circuit. Therefore, it is not necessary to use a non-volatile memory or the like having a peripheral circuit in order to realize the above. For this reason, the circuit configuration can be simplified, and there is no need for a dedicated circuit or software for accessing the nonvolatile memory. Further, the time for writing and reading can be reduced by the amount that it is not necessary to access the nonvolatile memory having the peripheral circuit.

【0005】[0005]

【発明の実施の形態】以下,添付図面を参照して,本発
明の実施の形態につき説明し,本発明の理解に供する。
尚,以下の実施の形態は,本発明の具体的な一例であっ
て,本発明の技術的範囲を限定する性格のものではな
い。本発明の一実施の形態に係る半導体集積回路は,例
えばDフリップフロップ回路等のデータを保持する順序
回路と組合せ回路とを含む処理回路を備えたASIC
(特定用途向けIC)として具体化される。上記ASI
Cに含まれる上記Dフリップフロップ回路は,例えばク
ロックの立ち上がりエッジでデータを取り込み保持する
回路であり,その回路構成を図1に示す。図1に示す如
く,Dフリップフロップ回路は,2個のインバータ2及
びインバータ3からなるデータ保持回路を有するマスタ
ー側のハーフラッチ回路と,インバータ5及びインバー
タ6からなるデータ保持回路を有するスレーブ側のハー
フラッチ回路とを備える。本実施の形態に係る半導体集
積回路は,特に,上記Dフリップフロップ回路の記憶ノ
ードN1,N2にそれぞれ強誘電体キャパシタ9,8が
接続された点で従来のものと異なる。本実施の形態に係
る半導体集積回路では,上記記憶ノードN1,N2のデ
ータが電源遮断前に予め上記強誘電体キャパシタ9,8
に待避されてから電源が遮断され,電源の再投入時に上
記強誘電体キャパシタ9,8に待避させられたデータが
上記記憶ノードN1,N2に復帰させられる。以下,図
2及び図3を参照して,上記半導体集積回路の動作につ
いて説明する。ここで,図2は上記強誘電体キャパシタ
に対する印加電圧と分極状態との関係を示す図,図3は
電源遮断前の動作及び電源再投入時の動作を説明するた
めのタイムチャートである。通常動作中,上記Dフリッ
プフロップ回路には,クロック信号CKが供給されてお
り,入力Dに対応したデータが上記クロック信号の立ち
上がりエッジ毎に上記記憶ノードN1,N2にそれぞれ
保持される。上記半導体集積回路では,電源を遮断する
場合,まず時刻t1において上記クロック信号CKが停
止させられる。この時,上記記憶ノードN1はハイレベ
ルにあって,記憶ノードN2はローレベルにあるものと
する。次に,図3に示す如く,時刻t1から所定時間後
の時刻t2までの間,セルプレートCPの電位がハイレ
ベルに設定される。このとき,上記記憶ノードN2はロ
ーレベルにあるから,強誘電体キャパシタ8に負極性の
電圧が加えられることになる。即ち,図2に示す如く,
上記強誘電体キャパシタ8の分極状態は状態cとなり,
上記強誘電体キャパシタ8にデータ「0」が書き込まれ
る。次に,時刻t2から時刻t3での間,セルプレート
CPの電位がローレベルに設定される。このとき,上記
記憶ノードN1はハイレベルにあるから,強誘電体キャ
パシタ9には正極性の電圧が加えられることになる。即
ち,上記強誘電体キャパシタ9の分極状態は状態aとな
り,上記強誘電体キャパシタ9にデータ「1」が書き込
まれる。次に,時刻t3において電源VDDが遮断され
ると,上記記憶ノードN1及びN2はともにローレベル
になってデータは失われるが,上記強誘電体キャパシタ
8の分極状態は状態dとなってデータ「0」が保持さ
れ,上記強誘電体キャパシタ9の分極状態は状態bとな
ってデータ「1」が保持される。このようにして,上記
Dフリップフロップ回路を含む処理回路を備えた半導体
集積回路では,電源遮断前に記憶ノードN1,N2に保
持されていたデータを強誘電体キャパシタ9,8にそれ
ぞれ待避させた後,電源が遮断される。次に,電源を再
投入する場合には,まずセルプレートCPが時刻t4か
らハイレベルに設定される。このとき,強誘電体キャパ
シタ8の分極状態は状態dから状態cに変化し,強誘電
体キャパシタ9の分極状態は状態bから状態cに変化し
て,それぞれの分極電荷の変化量に応じた電位が,上記
記憶ノードN2,N1に生じる。この場合には,状態b
から状態cに変化した強誘電体キャパシタ9が接続され
た上記記憶ノードN1の方が,上記記憶ノードN2の電
位よりも大きくなる。次に,時刻t5において,電源V
DDが再投入されると,トランジスタ1,2,3,4か
らなる上記Dフリップフロップ回路は,ラッチ型センス
アンプとして動作し,上記記憶ノードN1の電位はハイ
レベルに,上記記憶ノードN2の電位はローレベルに確
定される。尚,このラッチ型センスアンプの動作につい
ては,DRAM等で使用されるものと同じであり周知で
あるので,その説明を省略する。そして,時刻t6にお
いて,セルプレートC6がローレベルに設定されると共
に,クロック信号CKの供給が再開される。このように
して,上記半導体集積回路では,強誘電体キャパシタ
8,9に待避させられたデータが,上記記憶ノードN
2,N1にそれぞれ復帰させられる。ここで,上記Dフ
リップフロップ回路を用いた簡単な例として,3ビット
カウンタの回路構成を図4に,その動作を図5にそれぞ
れ示す。上記3ビットカウンタは,図5に示す如く,通
常動作中,クロック信号CKに同期してその出力Qを
1,2,3と増加させるが,例えば電源が遮断される時
刻taよりも前にクロック信号CKが停止させられ,各
Dフリップフロップ回路内に設けられた強誘電体キャパ
シタにクロック信号CKが停止させられたときの「5」
に対する内部データが待避させられる。そして,時刻t
bにおいて電源が再投入された時には,上記強誘電体キ
ャパシタから各Dフリップフロップ回路に内部データが
復帰させられ,クロック信号CKの供給が再開されたと
きには,クロック信号CKが停止させられたときのカウ
ント「5」から再開されて以降,出力Qは,6,7と増
加する。このようにして,本実施の形態に係る半導体集
積回路では,記憶ノードN2,N1のデータが電源遮断
前に,上記記憶ノードN2,N1にそれぞれ接続された
強誘電体キャパシタ8,9に待避させられ,電源遮断後
に復帰させられるため,レジューム機能を実現するため
に周辺回路を備えた不揮発性メモリを用いる必要がなく
なる。このため,回路構成をより簡素なものとすること
ができ,上記不揮発性メモリにアクセスするための専用
回路やソフトウェアも必要ない。更に,不揮発性メモリ
へのアクセスが不要になった分だけ読み出し及び書き込
みの時間を短縮することができる。
Embodiments of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention.
The following embodiment is a specific example of the present invention and does not limit the technical scope of the present invention. A semiconductor integrated circuit according to an embodiment of the present invention includes an ASIC including a processing circuit including a sequential circuit holding data, such as a D flip-flop circuit, and a combinational circuit.
(Application-specific IC). ASI above
The D flip-flop circuit included in C is a circuit that captures and holds data at the rising edge of a clock, for example, and its circuit configuration is shown in FIG. As shown in FIG. 1, the D flip-flop circuit includes a master half latch circuit having a data holding circuit including two inverters 2 and 3 and a slave half circuit including a data holding circuit including inverters 5 and 6. A half latch circuit. The semiconductor integrated circuit according to the present embodiment differs from the conventional semiconductor integrated circuit in that ferroelectric capacitors 9 and 8 are connected to storage nodes N1 and N2 of the D flip-flop circuit, respectively. In the semiconductor integrated circuit according to the present embodiment, the data of the storage nodes N1 and N2 are stored in advance in the ferroelectric capacitors 9 and 8 before the power is turned off.
Then, when the power is turned on, the data saved in the ferroelectric capacitors 9 and 8 is returned to the storage nodes N1 and N2. Hereinafter, the operation of the semiconductor integrated circuit will be described with reference to FIGS. Here, FIG. 2 is a diagram showing the relationship between the applied voltage and the polarization state to the ferroelectric capacitor, and FIG. 3 is a time chart for explaining the operation before the power is turned off and the operation when the power is turned on again. During normal operation, the clock signal CK is supplied to the D flip-flop circuit, and data corresponding to the input D is held in the storage nodes N1 and N2 at each rising edge of the clock signal. In the semiconductor integrated circuit, when the power is cut off, first, the clock signal CK is stopped at time t1. At this time, it is assumed that the storage node N1 is at a high level and the storage node N2 is at a low level. Next, as shown in FIG. 3, the potential of the cell plate CP is set to the high level from time t1 to time t2 after a predetermined time. At this time, since the storage node N2 is at a low level, a negative voltage is applied to the ferroelectric capacitor 8. That is, as shown in FIG.
The polarization state of the ferroelectric capacitor 8 becomes state c,
Data “0” is written in the ferroelectric capacitor 8. Next, from time t2 to time t3, the potential of the cell plate CP is set to a low level. At this time, since the storage node N1 is at a high level, a positive voltage is applied to the ferroelectric capacitor 9. That is, the polarization state of the ferroelectric capacitor 9 becomes the state a, and data “1” is written in the ferroelectric capacitor 9. Next, when the power supply VDD is cut off at the time t3, the storage nodes N1 and N2 are both at a low level and data is lost, but the polarization state of the ferroelectric capacitor 8 becomes the state d and the data ""0" is held, the polarization state of the ferroelectric capacitor 9 becomes the state b, and the data "1" is held. In this way, in the semiconductor integrated circuit provided with the processing circuit including the D flip-flop circuit, the data held in the storage nodes N1 and N2 before the power is turned off are saved in the ferroelectric capacitors 9 and 8, respectively. Later, the power is turned off. Next, when the power is turned on again, first, the cell plate CP is set to the high level from time t4. At this time, the polarization state of the ferroelectric capacitor 8 changes from the state d to the state c, and the polarization state of the ferroelectric capacitor 9 changes from the state b to the state c. A potential is generated at the storage nodes N2 and N1. In this case, state b
The state of the storage node N1 to which the ferroelectric capacitor 9 changed from the state to the state c is higher than the potential of the storage node N2. Next, at time t5, the power supply V
When DD is turned on again, the D flip-flop circuit including the transistors 1, 2, 3, and 4 operates as a latch type sense amplifier, and the potential of the storage node N1 becomes high level, and the potential of the storage node N2 becomes high. Is set to the low level. The operation of the latch type sense amplifier is the same as that used in a DRAM or the like and is well known, and therefore, the description thereof is omitted. Then, at time t6, the cell plate C6 is set to the low level, and the supply of the clock signal CK is restarted. Thus, in the semiconductor integrated circuit, the data saved in the ferroelectric capacitors 8 and 9 is stored in the storage node N.
2 and N1 respectively. Here, as a simple example using the D flip-flop circuit, the circuit configuration of a 3-bit counter is shown in FIG. 4 and the operation thereof is shown in FIG. As shown in FIG. 5, during normal operation, the 3-bit counter increases its output Q to 1, 2, 3 in synchronization with the clock signal CK. "5" when the signal CK is stopped and the clock signal CK is stopped in the ferroelectric capacitors provided in each D flip-flop circuit
Is saved. And time t
b, when the power is turned on again, the internal data is restored from the ferroelectric capacitor to each D flip-flop circuit, and when the supply of the clock signal CK is resumed, when the clock signal CK is stopped. After restarting from the count “5”, the output Q increases to 6,7. As described above, in the semiconductor integrated circuit according to the present embodiment, the data at the storage nodes N2 and N1 are evacuated to the ferroelectric capacitors 8 and 9 connected to the storage nodes N2 and N1 before the power is turned off. Since the power supply is restored after the power is turned off, it is not necessary to use a nonvolatile memory having a peripheral circuit to realize the resume function. For this reason, the circuit configuration can be simplified, and there is no need for a dedicated circuit or software for accessing the nonvolatile memory. Further, the reading and writing time can be reduced by the amount by which the access to the nonvolatile memory becomes unnecessary.

【0006】[0006]

【実施例】上記実施の形態では,電源遮断前と電源再投
入直前にセルプレートCPをハイレベルに設定すること
により,強誘電体キャパシタにデータの書き込みを行っ
たが,これに限られるものではなく,例えばクロック信
号CK又は補クロック信号/CKをセルプレートCPに
接続して,クロックに同期して上記強誘電体キャパシタ
にデータを書き込みを行い,電源再投入時にも読み出し
を行うようにしてもよい。このような半導体集積回路も
本発明における半導体集積回路の一例である。また,上
記実施の形態では,セルプレートCPをハイレベル又は
ローレベルに設定することにより,強誘電体キャパシタ
へのデータの書き込み及び読み出しを行ったが,これに
限られるものではなく,セルプレートCPの電位を電源
電圧VDDと接地電位との中間に設定することにより,
入力Qの変化にともなって上記強誘電体キャパシタにデ
ータの書き込みを行い,電源再投入時にも読み出しを行
うようにしてもよい。このような半導体集積回路も本発
明における半導体集積回路の一例である。また,上記実
施の形態では,記憶ノードN2,N1と強誘電体キャパ
シタ8,9をそれぞれ直接接続していたが,これに限ら
れるものではなく,例えば図6に示す如く,記憶ノード
N2,N1と強誘電体キャパシタ8,9とを電気的に結
合又は分離するためのトランジスタ11,12をその間
に設け,上記強誘電体キャパシタ9,8のデータについ
て読み出し及び書き込みを行うときだけ,上記記憶ノー
ドN1,N2を上記強誘電体キャパシタ9,8に接続す
るようにしてもよい。この場合,強誘電体キャパシタ
9,8の分極反転回数を減少させることができ,上記強
誘電体キャパシタの疲労を長期に渡って抑えることがで
きる。この場合には,上記強誘電体キャパシタ8,9の
両端を短絡させる短絡トランジスタ13,14を設け
て,必要に応じて上記強誘電体キャパシタ8,9の分極
状態をクリアするようにしてもよい。このような半導体
集積回路も本発明における半導体集積回路の一例であ
る。また,上記実施の形態では,不揮発性素子に強誘電
体キャパシタを用いたが,これに限られるものではな
く,例えば図7に示す如く,ゲート電極に強誘電体を用
いた不揮発性トランジスタ2’,3’,8’,9’によ
り上記Dフリップフロップ回路を構成するようにしても
よい。この場合には,クロック信号CK毎に,上記ゲー
ト電極の強誘電体はデータに応じた分極状態となり,電
源が遮断されて記憶ノードN1,N2が接地電位となっ
ても,電源再投入後,ゲート電極の分極状態に応じた電
位が上記記憶ノードN1,N2に発生してデータが復帰
させられる。尚,上記Dフリップフロップ回路を構成す
る全てのトランジスタに上記不揮発性トランジスタを用
いる必要はなく,例えばP型MOSトランジスタ2’,
3’とN型MOSトランジスタ8’,9’のうち,少な
くとも1個のゲート電極に強誘電体を用いるようにすれ
ばよい。このような半導体集積回路も本発明における半
導体集積回路の一例である。また,上記実施の形態で
は,処理回路の順序回路にDフリップフロップ回路を用
いたが,これに限られるものではなく,他のフリップフ
ロップ回路やラッチ回路等,他の順序回路を用いること
も可能である。このような半導体集積回路も本発明にお
ける半導体集積回路の一例である。また,上記実施の形
態では,Dフリップフロップ回路を用いた3ビットカウ
ンタであったが,これに限られるものではなく,順序回
路を用いた他の回路に適用することも可能である。この
ような半導体集積回路も本発明における半導体集積回路
の一例である。
In the above embodiment, data is written to the ferroelectric capacitor by setting the cell plate CP to a high level before the power is turned off and immediately before the power is turned on again. However, the present invention is not limited to this. Instead, for example, the clock signal CK or the complementary clock signal / CK is connected to the cell plate CP, data is written to the ferroelectric capacitor in synchronization with the clock, and read even when the power is turned on again. Good. Such a semiconductor integrated circuit is also an example of the semiconductor integrated circuit in the present invention. Further, in the above embodiment, writing and reading of data to and from the ferroelectric capacitor were performed by setting the cell plate CP to the high level or the low level. However, the present invention is not limited to this. Is set at an intermediate level between the power supply voltage VDD and the ground potential,
Data may be written to the ferroelectric capacitor in accordance with a change in the input Q, and read out when the power is turned on again. Such a semiconductor integrated circuit is also an example of the semiconductor integrated circuit in the present invention. In the above embodiment, the storage nodes N2 and N1 and the ferroelectric capacitors 8 and 9 are directly connected. However, the present invention is not limited to this. For example, as shown in FIG. Transistors 11 and 12 for electrically coupling or separating the ferroelectric capacitors 8 and 9 are provided between them, and the storage node is used only when reading and writing data of the ferroelectric capacitors 9 and 8. N1 and N2 may be connected to the ferroelectric capacitors 9 and 8, respectively. In this case, the number of times of polarization reversal of the ferroelectric capacitors 9 and 8 can be reduced, and fatigue of the ferroelectric capacitors can be suppressed for a long time. In this case, short-circuit transistors 13 and 14 for short-circuiting both ends of the ferroelectric capacitors 8 and 9 may be provided to clear the polarization state of the ferroelectric capacitors 8 and 9 as necessary. . Such a semiconductor integrated circuit is also an example of the semiconductor integrated circuit in the present invention. Further, in the above embodiment, the ferroelectric capacitor is used for the non-volatile element. However, the present invention is not limited to this. For example, as shown in FIG. 7, the non-volatile transistor 2 ′ using the ferroelectric for the gate electrode is used. , 3 ′, 8 ′, 9 ′ may constitute the D flip-flop circuit. In this case, for each clock signal CK, the ferroelectric substance of the gate electrode is in a polarized state according to the data, and even if the power is cut off and the storage nodes N1 and N2 are set to the ground potential, after the power is turned on again, A potential corresponding to the polarization state of the gate electrode is generated at the storage nodes N1 and N2, and data is restored. It is not necessary to use the non-volatile transistors for all the transistors constituting the D flip-flop circuit.
A ferroelectric material may be used for at least one of the gate electrodes of the 3 ′ and the N-type MOS transistors 8 ′ and 9 ′. Such a semiconductor integrated circuit is also an example of the semiconductor integrated circuit in the present invention. In the above embodiment, the D flip-flop circuit is used as the sequential circuit of the processing circuit. However, the present invention is not limited to this, and another sequential circuit such as another flip-flop circuit or a latch circuit can be used. It is. Such a semiconductor integrated circuit is also an example of the semiconductor integrated circuit in the present invention. In the above embodiment, the 3-bit counter using the D flip-flop circuit is used. However, the present invention is not limited to this, and the present invention can be applied to other circuits using a sequential circuit. Such a semiconductor integrated circuit is also an example of the semiconductor integrated circuit in the present invention.

【0007】[0007]

【発明の効果】上記請求項1〜6のいずれか1項に記載
の半導体集積回路によれば,処理回路の順序回路の記憶
ノードに対応して不揮発性素子を設けることにより,電
源遮断時にデータを待避させるレジューム機能を実現す
るために,周辺回路を備えた不揮発性メモリ等を用いる
必要がなくなる。このため,回路構成をより簡素なもの
とすることができ,上記不揮発性メモリにアクセスする
ための専用回路やソフトウェアも必要ない。更に,周辺
回路を備えた不揮発性メモリにアクセスする必要がない
分だけ書き込み及び読み出しの時間を短縮することがで
きる。
According to the semiconductor integrated circuit according to any one of the first to sixth aspects, a nonvolatile element is provided corresponding to a storage node of a sequential circuit of a processing circuit so that data can be stored when power is cut off. It is not necessary to use a nonvolatile memory or the like having a peripheral circuit in order to realize a resume function for saving the data. For this reason, the circuit configuration can be simplified, and there is no need for a dedicated circuit or software for accessing the nonvolatile memory. Further, the time for writing and reading can be reduced by the amount that it is not necessary to access the nonvolatile memory having the peripheral circuit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施の形態に係る半導体集積回路
の概略構成を示す図。
FIG. 1 is a diagram showing a schematic configuration of a semiconductor integrated circuit according to an embodiment of the present invention.

【図2】 強誘電体材料のヒステリシス特性を説明する
ための図。
FIG. 2 is a diagram for explaining hysteresis characteristics of a ferroelectric material.

【図3】 上記半導体集積回路のレジューム時の動作を
説明するための図。
FIG. 3 is a diagram for explaining the operation of the semiconductor integrated circuit at the time of resume.

【図4】 3ビットカウンタの概略構成例を示す図。FIG. 4 is a diagram showing a schematic configuration example of a 3-bit counter.

【図5】 上記3ビットカウンタの動作を説明するため
の図。
FIG. 5 is a diagram for explaining the operation of the 3-bit counter.

【図6】 本発明の一実施例に係る半導体集積回路の概
略構成を示す図。
FIG. 6 is a diagram showing a schematic configuration of a semiconductor integrated circuit according to one embodiment of the present invention.

【図7】 本発明の他の実施例に係る半導体集積回路の
概略構成を示す図。
FIG. 7 is a diagram showing a schematic configuration of a semiconductor integrated circuit according to another embodiment of the present invention.

【図8】 従来の不揮発性メモリの概略構成を示す図。FIG. 8 is a diagram showing a schematic configuration of a conventional nonvolatile memory.

【符号の説明】[Explanation of symbols]

8,9…強誘電体キャパシタ 11,12…結合分離トランジスタ 13,14…短絡トランジスタ N1,N2…記憶ノード 8, 9 ... ferroelectric capacitor 11, 12 ... coupling / separation transistor 13, 14 ... short-circuit transistor N1, N2 ... storage node

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 順序回路と組合せ回路とからなる処理回
路を含み,上記処理回路の上記順序回路に含まれるデー
タを電源遮断前に予め不揮発性素子に待避させて電源を
遮断し,電源の再投入時に上記不揮発性素子に待避させ
られたデータを上記処理回路の上記順序回路に復帰させ
得る半導体集積回路において,上記処理回路の順序回路
の記憶ノードに対応して上記不揮発性素子を設けてなる
ことを特徴とする半導体集積回路。
An information processing apparatus comprising: a processing circuit comprising a sequential circuit and a combinational circuit, wherein data included in the sequential circuit of the processing circuit is saved in a nonvolatile element in advance before power is turned off, and the power is cut off. In a semiconductor integrated circuit capable of returning data saved in the nonvolatile element at the time of input to the sequential circuit of the processing circuit, the nonvolatile element is provided corresponding to a storage node of the sequential circuit of the processing circuit. A semiconductor integrated circuit characterized by the above.
【請求項2】 上記処理回路の順序回路が,フリップフ
ロップ回路又はラッチ回路である請求項1に記載の半導
体集積回路。
2. The semiconductor integrated circuit according to claim 1, wherein the sequential circuit of the processing circuit is a flip-flop circuit or a latch circuit.
【請求項3】 上記不揮発性素子が上記フリップフロッ
プ回路の記憶ノードに接続されてなる請求項2に記載の
半導体集積回路。
3. The semiconductor integrated circuit according to claim 2, wherein said nonvolatile element is connected to a storage node of said flip-flop circuit.
【請求項4】 上記不揮発性素子と上記フリップフロッ
プ回路を結合又は分離する結合分離素子と,上記不揮発
性素子を短絡させる短絡素子とが備えられた請求項3に
記載の半導体集積回路。
4. The semiconductor integrated circuit according to claim 3, further comprising: a coupling / separation element for coupling or separating said nonvolatile element and said flip-flop circuit; and a short-circuit element for short-circuiting said nonvolatile element.
【請求項5】 上記フリップフロップ回路を構成するト
ランジスタが,ゲート電極に強誘電体を用いたものであ
る請求項2に記載の半導体集積回路。
5. The semiconductor integrated circuit according to claim 2, wherein the transistor constituting the flip-flop circuit uses a ferroelectric for a gate electrode.
【請求項6】 クロック又は入力データに同期して上記
不揮発性素子に上記処理回路の順序回路に含まれるデー
タを保存してなる請求項1〜5のいずれか1項に記載の
半導体集積回路。
6. The semiconductor integrated circuit according to claim 1, wherein data contained in a sequential circuit of said processing circuit is stored in said nonvolatile element in synchronization with a clock or input data.
JP10241701A 1998-08-27 1998-08-27 Semiconductor integrated circuit Pending JP2000077982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10241701A JP2000077982A (en) 1998-08-27 1998-08-27 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10241701A JP2000077982A (en) 1998-08-27 1998-08-27 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JP2000077982A true JP2000077982A (en) 2000-03-14

Family

ID=17078253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10241701A Pending JP2000077982A (en) 1998-08-27 1998-08-27 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP2000077982A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044953A1 (en) * 2001-11-19 2003-05-30 Rohm Co., Ltd. Data holding apparatus and data read out method
US6650158B2 (en) 2001-02-21 2003-11-18 Ramtron International Corporation Ferroelectric non-volatile logic elements
US6738281B2 (en) 2001-12-28 2004-05-18 Fujitsu Limited Semiconductor integrated circuit and semiconductor memory
US6885575B2 (en) 2001-10-16 2005-04-26 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device
CN100350500C (en) * 2002-08-30 2007-11-21 海力士半导体有限公司 Ferroelectric memory device and its programming method
WO2011062075A1 (en) * 2009-11-20 2011-05-26 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
JP2011123987A (en) * 2009-12-09 2011-06-23 Samsung Electronics Co Ltd Nonvolatile logic circuit, integrated circuit including the same, and operating method of the same
CN102195618A (en) * 2010-02-15 2011-09-21 罗姆股份有限公司 Data holding device
JP2012134961A (en) * 2010-12-03 2012-07-12 Semiconductor Energy Lab Co Ltd Circuit, driving method for circuit, and semiconductor device
JP2012191455A (en) * 2011-03-10 2012-10-04 Toshiba Corp Semiconductor integrated circuit
US8314637B2 (en) 2009-12-18 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Non-volatile latch circuit and logic circuit, and semiconductor device using the same
JP2012257192A (en) * 2011-01-27 2012-12-27 Semiconductor Energy Lab Co Ltd Memory circuit
JP2013009323A (en) * 2011-05-20 2013-01-10 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2013009297A (en) * 2011-01-05 2013-01-10 Semiconductor Energy Lab Co Ltd Memory element, memory device, and signal processing circuit
JP2013062846A (en) * 2009-12-11 2013-04-04 Semiconductor Energy Lab Co Ltd Semiconductor device
US8508276B2 (en) 2010-08-25 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including latch circuit
JP2013214958A (en) * 2012-03-05 2013-10-17 Semiconductor Energy Lab Co Ltd Latch circuit and semiconductor device
US8564331B2 (en) 2011-05-13 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2013236344A (en) * 2012-05-11 2013-11-21 Semiconductor Energy Lab Co Ltd Method for driving semiconductor device
US8630130B2 (en) 2011-03-31 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Memory circuit, memory unit, and signal processing circuit
WO2014073374A1 (en) * 2012-11-06 2014-05-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US8760903B2 (en) 2011-03-11 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Storage circuit
US8779798B2 (en) 2011-05-19 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Arithmetic circuit and method of driving the same
JP2014139853A (en) * 2012-12-17 2014-07-31 Toppan Printing Co Ltd Non-volatile flip flop, non-volatile latch and non-volatile memory element
JP2014142805A (en) * 2013-01-24 2014-08-07 Semiconductor Energy Lab Co Ltd Semiconductor device, and driving method thereof
US8873308B2 (en) 2012-06-29 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Signal processing circuit
JP2014207434A (en) * 2013-02-12 2014-10-30 株式会社半導体エネルギー研究所 Semiconductor device
JP2014209714A (en) * 2013-01-24 2014-11-06 株式会社半導体エネルギー研究所 Memory device and semiconductor device
JP2014212551A (en) * 2014-06-23 2014-11-13 株式会社東芝 Semiconductor integrated circuit
US9054678B2 (en) 2012-07-06 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US9058892B2 (en) 2012-03-14 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and shift register
US9083327B2 (en) 2012-07-06 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
JP2015529996A (en) * 2012-07-06 2015-10-08 レイディアント テクノロジーズ, インコーポレイテッドRadianttechnologies, Inc. Embedded non-volatile memory circuit for performing logic functions throughout a power interruption
US9245589B2 (en) 2013-03-25 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having Schmitt trigger NAND circuit and Schmitt trigger inverter
TWI547945B (en) * 2011-03-30 2016-09-01 半導體能源研究所股份有限公司 Semiconductor device and driving method thereof
US9502094B2 (en) 2012-05-25 2016-11-22 Semiconductor Energy Laboratory Co., Ltd. Method for driving memory element
US9608005B2 (en) 2013-08-19 2017-03-28 Semiconductor Energy Laboratory Co., Ltd. Memory circuit including oxide semiconductor devices
JP2018107806A (en) * 2016-12-27 2018-07-05 株式会社半導体エネルギー研究所 Semiconductor device
WO2020068322A1 (en) * 2018-09-27 2020-04-02 Intel Corporation Save-restore circuitry with metal-ferroelectric-metal devices

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6650158B2 (en) 2001-02-21 2003-11-18 Ramtron International Corporation Ferroelectric non-volatile logic elements
US6894549B2 (en) 2001-02-21 2005-05-17 Ramtron International Corporation Ferroelectric non-volatile logic elements
US6885575B2 (en) 2001-10-16 2005-04-26 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device
US6937498B2 (en) * 2001-10-16 2005-08-30 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device
EP1447909A4 (en) * 2001-11-19 2006-05-24 Rohm Co Ltd Data holding apparatus and data read out method
EP1447909A1 (en) * 2001-11-19 2004-08-18 Rohm Co., Ltd. Data holding apparatus and data read out method
US6944045B2 (en) 2001-11-19 2005-09-13 Rohm Co., Ltd. Data holding apparatus and data read out method
WO2003044953A1 (en) * 2001-11-19 2003-05-30 Rohm Co., Ltd. Data holding apparatus and data read out method
US6738281B2 (en) 2001-12-28 2004-05-18 Fujitsu Limited Semiconductor integrated circuit and semiconductor memory
CN100350500C (en) * 2002-08-30 2007-11-21 海力士半导体有限公司 Ferroelectric memory device and its programming method
US10505520B2 (en) 2009-11-20 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
WO2011062075A1 (en) * 2009-11-20 2011-05-26 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
US9350334B2 (en) 2009-11-20 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
US8860485B2 (en) 2009-11-20 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
US8410838B2 (en) 2009-11-20 2013-04-02 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
JP2013021700A (en) * 2009-11-20 2013-01-31 Semiconductor Energy Lab Co Ltd Nonvolatile latch circuit
JP2011123987A (en) * 2009-12-09 2011-06-23 Samsung Electronics Co Ltd Nonvolatile logic circuit, integrated circuit including the same, and operating method of the same
JP2013062846A (en) * 2009-12-11 2013-04-04 Semiconductor Energy Lab Co Ltd Semiconductor device
US8994400B2 (en) 2009-12-11 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
US8432187B2 (en) 2009-12-11 2013-04-30 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
US10382016B2 (en) 2009-12-11 2019-08-13 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
US9692421B2 (en) 2009-12-18 2017-06-27 Semiconductor Energy Laboratory Co., Ltd. Non-volatile latch circuit and logic circuit, and semiconductor device using the same
JP2013055653A (en) * 2009-12-18 2013-03-21 Semiconductor Energy Lab Co Ltd Semiconductor device
US8314637B2 (en) 2009-12-18 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Non-volatile latch circuit and logic circuit, and semiconductor device using the same
CN102195618A (en) * 2010-02-15 2011-09-21 罗姆股份有限公司 Data holding device
US8508276B2 (en) 2010-08-25 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including latch circuit
JP2012134961A (en) * 2010-12-03 2012-07-12 Semiconductor Energy Lab Co Ltd Circuit, driving method for circuit, and semiconductor device
US9257971B2 (en) 2010-12-03 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Integrated circuit, method for driving the same, and semiconductor device
JP2016029851A (en) * 2010-12-03 2016-03-03 株式会社半導体エネルギー研究所 circuit
TWI632551B (en) * 2010-12-03 2018-08-11 半導體能源研究所股份有限公司 Integrated circuit, method for driving the same, and semiconductor device
JP2013009297A (en) * 2011-01-05 2013-01-10 Semiconductor Energy Lab Co Ltd Memory element, memory device, and signal processing circuit
US9818749B2 (en) 2011-01-05 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Storage element, storage device, and signal processing circuit
US8575985B2 (en) 2011-01-05 2013-11-05 Semiconductor Energy Laboratory Co., Ltd. Storage element, storage device, and signal processing circuit
US9330759B2 (en) 2011-01-05 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Storage element, storage device, and signal processing circuit
US9024669B2 (en) 2011-01-05 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Storage element, storage device, and signal processing circuit
TWI562142B (en) * 2011-01-05 2016-12-11 Semiconductor Energy Lab Co Ltd Storage element, storage device, and signal processing circuit
JP2012257192A (en) * 2011-01-27 2012-12-27 Semiconductor Energy Lab Co Ltd Memory circuit
US9202567B2 (en) 2011-01-27 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Memory circuit
JP2012191455A (en) * 2011-03-10 2012-10-04 Toshiba Corp Semiconductor integrated circuit
US8760903B2 (en) 2011-03-11 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Storage circuit
US9355687B2 (en) 2011-03-11 2016-05-31 Semiconductor Energy Laboratory Co., Ltd. Storage circuit
TWI547945B (en) * 2011-03-30 2016-09-01 半導體能源研究所股份有限公司 Semiconductor device and driving method thereof
US8923076B2 (en) 2011-03-31 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Memory circuit, memory unit, and signal processing circuit
US8630130B2 (en) 2011-03-31 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Memory circuit, memory unit, and signal processing circuit
US8564331B2 (en) 2011-05-13 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8779798B2 (en) 2011-05-19 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Arithmetic circuit and method of driving the same
US10090333B2 (en) 2011-05-19 2018-10-02 Semiconductor Energy Laboratory Co., Ltd. Arithmetic circuit and method of driving the same
US9336845B2 (en) 2011-05-20 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Register circuit including a volatile memory and a nonvolatile memory
JP2013009323A (en) * 2011-05-20 2013-01-10 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2013214958A (en) * 2012-03-05 2013-10-17 Semiconductor Energy Lab Co Ltd Latch circuit and semiconductor device
US8754693B2 (en) 2012-03-05 2014-06-17 Semiconductor Energy Laboratory Co., Ltd. Latch circuit and semiconductor device
US9058892B2 (en) 2012-03-14 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and shift register
JP2013236344A (en) * 2012-05-11 2013-11-21 Semiconductor Energy Lab Co Ltd Method for driving semiconductor device
US9502094B2 (en) 2012-05-25 2016-11-22 Semiconductor Energy Laboratory Co., Ltd. Method for driving memory element
US8873308B2 (en) 2012-06-29 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Signal processing circuit
US9083327B2 (en) 2012-07-06 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
US9312851B2 (en) 2012-07-06 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US9054678B2 (en) 2012-07-06 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
JP2015529996A (en) * 2012-07-06 2015-10-08 レイディアント テクノロジーズ, インコーポレイテッドRadianttechnologies, Inc. Embedded non-volatile memory circuit for performing logic functions throughout a power interruption
US9064574B2 (en) 2012-11-06 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
CN104769842A (en) * 2012-11-06 2015-07-08 株式会社半导体能源研究所 Semiconductor device and driving method thereof
WO2014073374A1 (en) * 2012-11-06 2014-05-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
JP2014139853A (en) * 2012-12-17 2014-07-31 Toppan Printing Co Ltd Non-volatile flip flop, non-volatile latch and non-volatile memory element
JP2014142805A (en) * 2013-01-24 2014-08-07 Semiconductor Energy Lab Co Ltd Semiconductor device, and driving method thereof
US9165632B2 (en) 2013-01-24 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
JP2014209714A (en) * 2013-01-24 2014-11-06 株式会社半導体エネルギー研究所 Memory device and semiconductor device
JP2014207434A (en) * 2013-02-12 2014-10-30 株式会社半導体エネルギー研究所 Semiconductor device
US9064596B2 (en) 2013-02-12 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9245589B2 (en) 2013-03-25 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having Schmitt trigger NAND circuit and Schmitt trigger inverter
JP2019047519A (en) * 2013-03-25 2019-03-22 株式会社半導体エネルギー研究所 Semiconductor device
US9608005B2 (en) 2013-08-19 2017-03-28 Semiconductor Energy Laboratory Co., Ltd. Memory circuit including oxide semiconductor devices
JP2014212551A (en) * 2014-06-23 2014-11-13 株式会社東芝 Semiconductor integrated circuit
JP2018107806A (en) * 2016-12-27 2018-07-05 株式会社半導体エネルギー研究所 Semiconductor device
JP7264590B2 (en) 2016-12-27 2023-04-25 株式会社半導体エネルギー研究所 Semiconductor devices and programmable logic devices
WO2020068322A1 (en) * 2018-09-27 2020-04-02 Intel Corporation Save-restore circuitry with metal-ferroelectric-metal devices
US10777250B2 (en) 2018-09-27 2020-09-15 Intel Corporation Save-restore circuitry with metal-ferroelectric-metal devices

Similar Documents

Publication Publication Date Title
JP2000077982A (en) Semiconductor integrated circuit
US5619470A (en) Non-volatile dynamic random access memory
US7038930B2 (en) Memory device with function to perform operation, and method of performing operation and storage
US9812204B1 (en) Ferroelectric memory cell without a plate line
JP3784229B2 (en) Nonvolatile semiconductor memory device and system LSI using the same
US7133306B2 (en) Semiconductor memory device for securely retaining data
US6967891B2 (en) Information processing apparatus and semiconductor memory
US6510071B2 (en) Ferroelectric memory having memory cell array accessibility safeguards
JPH05250870A (en) Refresh timer in semiconductor memory device
JPH10106272A (en) Semiconductor memory
US7889541B2 (en) 2T SRAM cell structure
US6924999B2 (en) Ferroelectric memory
JP2762971B2 (en) Semiconductor storage device and data access method
US6741489B2 (en) Data holding device and electronic circuit having data holding device
JPH11273362A (en) Non-volatile semiconductor memory device
JP2000048577A (en) Ferroelectric memory
US6587368B1 (en) Non-volatile memory circuit
JPH117780A (en) Ferroelectrics memory and writing method thereof
JP2724212B2 (en) Memory circuit
US20050146915A1 (en) Storage circuit, semiconductor device, and electronic apparatus
JP2019215941A (en) Non-volatile SRAM with ferroelectric capacitor
JPH04228191A (en) Semiconductor integrated circuit
JPH1011976A (en) Semiconductor storage device and its data reading method
JP3193972B2 (en) Semiconductor storage device
JP3737487B2 (en) Data holding device