JPH0339882Y2 - - Google Patents

Info

Publication number
JPH0339882Y2
JPH0339882Y2 JP16788586U JP16788586U JPH0339882Y2 JP H0339882 Y2 JPH0339882 Y2 JP H0339882Y2 JP 16788586 U JP16788586 U JP 16788586U JP 16788586 U JP16788586 U JP 16788586U JP H0339882 Y2 JPH0339882 Y2 JP H0339882Y2
Authority
JP
Japan
Prior art keywords
magnetic field
anode
cylindrical
cylindrical anode
high vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16788586U
Other languages
Japanese (ja)
Other versions
JPS6373855U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16788586U priority Critical patent/JPH0339882Y2/ja
Publication of JPS6373855U publication Critical patent/JPS6373855U/ja
Application granted granted Critical
Publication of JPH0339882Y2 publication Critical patent/JPH0339882Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案はスパツタイオンポンプの改良に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an improvement of a spat tie ion pump.

[従来技術] 第3図は従来のスパツタイオンポンプを例示し
たもので、第4図は第3図のA−A′断面を示す
図である。図中1a,1bは互いに平行に配置さ
れた例えばチタン(Ti)で形成された陰極であ
り、該陰極1a,1b間には、ステンレススチー
ルで形成された多数の筒状陽極2がその軸方向を
該陰極と垂直を成すように配置されている。該陰
極1a,1bは接地されている。又、陽極2は電
源3の正極に接続されており、これらの陰陽極間
には放電に必要な電圧を印加できるようになつて
いる。該陰極1a,1bの外側には、マグネツト
4a,4bが配置されており、陽極2の軸方向に
沿つて磁場が存在するようになつている。
[Prior Art] FIG. 3 shows an example of a conventional sputter ion pump, and FIG. 4 is a cross-sectional view taken along line A-A' in FIG. In the figure, 1a and 1b are cathodes made of titanium (Ti), for example, which are arranged parallel to each other, and between the cathodes 1a and 1b, a large number of cylindrical anodes 2 made of stainless steel are arranged in the axial direction. is arranged perpendicular to the cathode. The cathodes 1a, 1b are grounded. Further, the anode 2 is connected to the positive electrode of a power source 3, so that a voltage necessary for discharge can be applied between these cathodes and anodes. Magnets 4a and 4b are arranged outside the cathodes 1a and 1b, so that a magnetic field exists along the axial direction of the anode 2.

このように構成されたスパツタイオンポンプに
おいては、磁場強度B(ガウス:G)と筒状陽極
の径d(cm)との間には密接な関係があり、高真
空(10-6〜10-8Torr)用イオンポンプとして動
作させるためには、 B×d1.2(KG・cm) …(1) 超高真空(10-3〜10Torr)用イオンポンプと
して動作させるためには、 B×d≧2.54(KG・cm) …(2) の関係が成立しなければならないことが知られて
いる。
In the Spattzite ion pump configured in this way, there is a close relationship between the magnetic field strength B (Gauss: G) and the diameter d (cm) of the cylindrical anode, and there is a high vacuum (10 -6 to 10 -8 Torr), B x d1.2 (KG cm)...(1) In order to operate as an ion pump for ultra-high vacuum (10 -3 to 10 Torr), B x d≧2.54 (KG・cm) It is known that the following relationship (2) must hold.

従つて、高真空用イオンポンプや超高真空用イ
オンポンプは夫々上記(1)式及び(2)式を満たすよう
に最適磁場強度B、最適径dを設定して制作され
ている。
Therefore, high-vacuum ion pumps and ultra-high vacuum ion pumps are manufactured by setting the optimum magnetic field strength B and the optimum diameter d so as to satisfy the above equations (1) and (2), respectively.

[考案が解決しようとする問題点] ところで、このように構成された装置では、マ
グネツト4a,4bで形成される磁場分布はマグ
ネツト全体に亘つて一様でなく、第5図に示すよ
うにマグネツトの端部になる程磁場強度が減少す
る。そのため、従来の超高真空用イオンポンプに
おいては、マグネツト中心部の磁場強度に合せて
筒状陽極の最適径dを設計し、第4図の点線の範
囲aに示すようなこの中心部の磁場強度が維持さ
れる一定の部分のみに筒状陽極を配置し、磁場強
度が減少する範囲bには筒状陽極を配置していな
い。そのため、範囲aで超高真空排気用の陰陽極
間の放電が成されるだけであるため超高真空での
排気はできても、高真空領域において良好な排気
特性を有することができなかつた。
[Problems to be solved by the invention] By the way, in the device configured as described above, the magnetic field distribution formed by the magnets 4a and 4b is not uniform over the entire magnet, and as shown in FIG. The magnetic field strength decreases towards the edge of the field. Therefore, in conventional ultra-high vacuum ion pumps, the optimum diameter d of the cylindrical anode is designed in accordance with the magnetic field strength at the center of the magnet, and the magnetic field at the center as shown in the dotted line area a in Figure 4 is The cylindrical anode is placed only in a certain part where the magnetic field strength is maintained, and is not placed in the area b where the magnetic field strength decreases. Therefore, only a discharge occurs between the cathode and anode for ultra-high vacuum evacuation in range a, so even if evacuation is possible in ultra-high vacuum, it is not possible to have good evacuation characteristics in the high vacuum region. .

本考案は以上の欠点を解消すべくなされたもの
で、磁場強度が減少する周辺部には小さな径d′の
陽極なら配置できると共に、この周辺部における
磁場強度は小さくなるが前記陽極径d′との間に前
記(2)式を満足させることはできることに鑑みなさ
れたもので、超高真空、高真空領域において良好
な排気特性を有するイオンポンプを提供すること
を目的としている。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and it is possible to arrange an anode with a small diameter d' in the peripheral area where the magnetic field strength decreases. This was done considering that it is possible to satisfy the above formula (2) between the above conditions, and the purpose is to provide an ion pump having good pumping characteristics in the ultra-high vacuum and high vacuum regions.

[問題点を解決するための手段] そのため本考案は、一対の互いに平行に配置さ
れた隠極と、該陰極間にその軸方向が前記陰極と
垂直を成すように配置された複数の筒状陽極と、
該陰陽極間に電圧を印加するための手段と、該陽
極の軸方向に沿つて磁場を印加するための手段と
を具備したスパツタイオンポンプにおいて、前記
筒状陽極は径の大小異なる複数種類の筒状陽極よ
り成り、大きな径を有する筒状陽極は前記磁場印
加手段により最大磁場が発生するポンプ中心領域
に配置されており、小さな径を有する筒状陽極は
前記磁場印加手段により発生する磁場が減衰する
ポンプ周辺部に配置されており、前記径の大きな
筒状陽極での放電により超高真空領域での排気が
為され、径の小さな筒状陽極での放電により高真
空領域での排気が成されることを特徴としてい
る。
[Means for Solving the Problems] Therefore, the present invention includes a pair of hidden poles arranged parallel to each other, and a plurality of cylindrical poles arranged between the cathodes so that their axial directions are perpendicular to the cathodes. an anode;
In the sputtering ion pump, the cylindrical anode includes a plurality of types having different diameters. The cylindrical anode with a large diameter is arranged in the center region of the pump where the maximum magnetic field is generated by the magnetic field applying means, and the cylindrical anode with a small diameter is arranged in the pump central region where the maximum magnetic field is generated by the magnetic field applying means. The cylindrical anode with a large diameter is used to discharge air in an ultra-high vacuum region, and the small diameter cylindrical anode is used to discharge air in a high vacuum region. It is characterized by the fact that

[実施例] 以下本考案の実施例を図面に基づき詳述する。[Example] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本考案の一実施例の筒状陽極部を示す
ためのもので、第1図の実施例では、比較的大口
径の筒状陽極10aと、それより小口径の筒状陽
極10bを備えている。又、筒状陽極10aは(2)
式の条件を満すように制作され、筒状陽極10b
は(1)式を満すように制作されている。更に、マグ
ネツトの磁場分布を考慮して、筒状陽極10aは
最大磁場が発生するポンプ中心領域で比較的磁場
強度が一定の部分aに配置し、ポンプ周辺部で磁
場強度が減衰する範囲bには筒状陽極10bを配
置している。ここで、例えばマグネツトの比較的
磁場強度が一定の部分aの磁場強度を1000ガウ
ス、筒状陽極10aの径dを30mmφ、小口径の筒
状陽極10bの径dを15mmφとすると、 超高真空(10-9〜10Torr)用イオンポンプに
対して B×d=1.0×3=3(KG・cm)となり(2)式を
満足する。
FIG. 1 is for showing the cylindrical anode portion of one embodiment of the present invention. In the embodiment shown in FIG. It is equipped with Moreover, the cylindrical anode 10a is (2)
The cylindrical anode 10b is manufactured to satisfy the conditions of the formula.
is produced to satisfy equation (1). Furthermore, in consideration of the magnetic field distribution of the magnet, the cylindrical anode 10a is arranged in a region a where the magnetic field strength is relatively constant in the center region of the pump where the maximum magnetic field is generated, and in a region b where the magnetic field strength is attenuated in the peripheral region of the pump. A cylindrical anode 10b is arranged. Here, for example, if the magnetic field strength of the part a of the magnet where the magnetic field strength is relatively constant is 1000 Gauss, the diameter d of the cylindrical anode 10a is 30 mmφ, and the diameter d of the small diameter cylindrical anode 10b is 15 mmφ, then ultra-high vacuum For an ion pump for (10 -9 to 10 Torr), B x d = 1.0 x 3 = 3 (KG cm), which satisfies equation (2).

又、高真空用(10-6〜10-8Torr)用イオンポ
ンプに対して B×d=0.8×1.5=1.2(KG・cm)となり(1)式を
満足する。
Also, for an ion pump for high vacuum (10 -6 to 10 -8 Torr), B x d = 0.8 x 1.5 = 1.2 (KG cm), which satisfies equation (1).

更に、筒状陽極10aと筒状陽極10aの間、
つまり、第1図の斜線イで示した部分は、 B×d=1.0×1.24=1.24(KG・cm)となり(1)式
を満足する。
Furthermore, between the cylindrical anode 10a and the cylindrical anode 10a,
In other words, the area indicated by the diagonal line A in Figure 1 is B x d = 1.0 x 1.24 = 1.24 (KG cm), which satisfies equation (1).

従つて、このように構成された装置では、大口
径の円筒陽極10aでは超高真空用のイオンポン
プとして働き、又、該円筒陽極10aの周囲に配
置された小口径の円筒陽極10bは高真空領域で
のイオンポンプとして働く。更に、斜線イで示す
筒状陽極10aと筒状陽極10aとの間でも放電
して高真空領域でのイオンポンプとして働く。従
つて、このような陽極が配置されたイオンポンプ
は第2図の実線で示すように超高真空、高真空
領域において良好な排気特性が得られる。
Therefore, in the device configured as described above, the large diameter cylindrical anode 10a functions as an ion pump for ultra-high vacuum, and the small diameter cylindrical anode 10b arranged around the cylindrical anode 10a functions as an ion pump for high vacuum. Acts as an ion pump in the area. Furthermore, electric discharge occurs between the cylindrical anodes 10a shown by diagonal lines A, thereby functioning as an ion pump in a high vacuum region. Therefore, an ion pump in which such an anode is arranged can obtain good pumping characteristics in ultra-high vacuum and high vacuum regions, as shown by the solid line in FIG.

尚、第2図において、は小さい口径の筒状陽
極のみが存在した場合の高真空用イオンポンプの
排気特性を示しており、は従来のように大口径
の筒状陽極のみが存在する場合の超高真空用イオ
ンポンプの排気特性を示している。
In Fig. 2, indicates the pumping characteristics of a high vacuum ion pump when only a small-diameter cylindrical anode is present, and indicates the pumping characteristics when only a large-diameter cylindrical anode is present, as in the conventional case. This shows the pumping characteristics of an ultra-high vacuum ion pump.

尚、上記実施例は例示である。上記実施例では
大口径の筒状陽極10aと、小口径の筒状陽極1
0bで形成したが、磁場強度に合せて最適径dを
求めて2種以上の径を有する筒状陽極で構成して
も良い。
Note that the above embodiments are merely illustrative. In the above embodiment, a large diameter cylindrical anode 10a and a small diameter cylindrical anode 1 are used.
Although the anode is formed with cylindrical anodes having two or more diameters, the optimum diameter d may be determined in accordance with the magnetic field strength.

[考案の効果] 以上詳述したように本考案によれば、前記筒状
陽極は径の大小異なる2種類の筒状陽極より成
り、大きな径を有する筒状陽極は前記磁場印加手
段により最大磁場が発生するポンプ中心領域に配
置されており、小さな径を有する筒状陽極は前記
磁場印加手段により発生する磁場が減衰するポン
プ周辺部に配置したため、超高真空、高真空領域
において良好な排気特性を有するイオンポンプが
提供される。
[Effects of the invention] As detailed above, according to the invention, the cylindrical anode is made up of two types of cylindrical anodes with different diameters, and the cylindrical anode with a large diameter is applied with the maximum magnetic field by the magnetic field applying means. The cylindrical anode with a small diameter is placed in the periphery of the pump where the magnetic field generated by the magnetic field application means is attenuated, resulting in good pumping characteristics in ultra-high vacuum and high vacuum areas. An ion pump having the following is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例の筒状陽極部を示す
ための図、第2図は本考案によるイオンポンプの
排気特性を説明するための図、第3図は従来のス
パツタイオンポンプを説明するための図、第4図
は第3図のA−A′断面図である。第5図はマグ
ネツトの磁場分布を説明するための図である。 1a,1b:陰極、3:電源、4a,4b:マ
グネツト、10a,10b:円筒状陽極。
Fig. 1 is a diagram showing a cylindrical anode portion of an embodiment of the present invention, Fig. 2 is a diagram illustrating the exhaust characteristics of the ion pump according to the present invention, and Fig. 3 is a diagram of a conventional sputtering ion pump. FIG. 4 is a sectional view taken along line A-A' in FIG. 3. FIG. 5 is a diagram for explaining the magnetic field distribution of the magnet. 1a, 1b: cathode, 3: power supply, 4a, 4b: magnet, 10a, 10b: cylindrical anode.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 一対の互いに平行に配置された陰極と、該陰極
間にその軸方向が前記陰極と垂直を成すように配
置された複数の筒状陽極と、該陰陽極間に電圧を
印加するための手段と、該陽極の軸方向に沿つて
磁場を印加するための手段とを具備したスパツタ
イオンポンプにおいて、前記筒状陽極は径の大小
異なる複数種類の筒状陽極より成り、大きな径を
有する筒状陽極は前記磁場印加手段により最大磁
場が発生するポンプ中心領域に配置されており、
小さな径を有する筒状陽極は前記磁場印加手段に
より発生する磁場が減衰するポンプ周辺部に配置
されており、前記径の大きな筒状陽極での放電に
より超高真空領域での排気が為され、径の小さな
筒状陽極での放電により高真空領域での排気が成
されることを特徴とするスパツタイオンポンプ。
a pair of cathodes arranged parallel to each other; a plurality of cylindrical anodes arranged between the cathodes so that the axial direction thereof is perpendicular to the cathodes; and means for applying a voltage between the cathodes. , a sputtering ion pump comprising means for applying a magnetic field along the axial direction of the anode, wherein the cylindrical anode is composed of a plurality of types of cylindrical anodes with different diameters, and the cylindrical anode has a large diameter. The anode is disposed in the central region of the pump where the maximum magnetic field is generated by the magnetic field applying means,
A cylindrical anode with a small diameter is arranged around the pump where the magnetic field generated by the magnetic field applying means is attenuated, and the discharge in the cylindrical anode with a large diameter causes exhaust in the ultra-high vacuum region, A sputtering ion pump is characterized by evacuation in a high vacuum region by discharge with a small-diameter cylindrical anode.
JP16788586U 1986-10-31 1986-10-31 Expired JPH0339882Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16788586U JPH0339882Y2 (en) 1986-10-31 1986-10-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16788586U JPH0339882Y2 (en) 1986-10-31 1986-10-31

Publications (2)

Publication Number Publication Date
JPS6373855U JPS6373855U (en) 1988-05-17
JPH0339882Y2 true JPH0339882Y2 (en) 1991-08-22

Family

ID=31100239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16788586U Expired JPH0339882Y2 (en) 1986-10-31 1986-10-31

Country Status (1)

Country Link
JP (1) JPH0339882Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10255582B2 (en) 2016-08-18 2019-04-09 Amazon Technologies, Inc. AGV traffic management system

Also Published As

Publication number Publication date
JPS6373855U (en) 1988-05-17

Similar Documents

Publication Publication Date Title
JP2556637B2 (en) Deposition system on substrate by magnetron cathode
GB1420061A (en) Sputtering method and apparatus
GB2051877A (en) Magnetically Enhanced Sputtering Device and Method
JPH0339882Y2 (en)
JPH0689446B2 (en) Thin film forming equipment
US6733642B2 (en) System for unbalanced magnetron sputtering with AC power
JPH0941135A (en) Magnetron sputtering cathode
JPS5943546B2 (en) sputtering equipment
JP3126405B2 (en) Sputter deposition equipment
GB905737A (en) Improvements in vacuum pumps
JPS6331481Y2 (en)
JP2714826B2 (en) Magnetron sputtering equipment
JP3766569B2 (en) Magnetron sputtering equipment
JPH0734244A (en) Magnetron type sputtering cathode
JPH0592953U (en) Sputter ion pump
JP2001152332A (en) Sputter deposition apparatus
JPH11354071A (en) Sputter-ion pump
JPS6142903Y2 (en)
JPH0633957U (en) Sputter cathode structure
KR20030048750A (en) Sputter gun of sputtering system for film deposition
JPS608369Y2 (en) Spatsutai ion pump
JP2978676B2 (en) Multi-cell sputter ion pump
JP4219925B2 (en) Magnetron sputtering equipment
JPS6026095Y2 (en) Cooling device for plasma discharge electrode
JPS6154870B2 (en)