JPH0339032B2 - - Google Patents

Info

Publication number
JPH0339032B2
JPH0339032B2 JP58075391A JP7539183A JPH0339032B2 JP H0339032 B2 JPH0339032 B2 JP H0339032B2 JP 58075391 A JP58075391 A JP 58075391A JP 7539183 A JP7539183 A JP 7539183A JP H0339032 B2 JPH0339032 B2 JP H0339032B2
Authority
JP
Japan
Prior art keywords
molded body
cement
cement molded
metal oxide
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58075391A
Other languages
Japanese (ja)
Other versions
JPS59199592A (en
Inventor
Kazuo Shimomura
Norio Tamaki
Akio Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP7539183A priority Critical patent/JPS59199592A/en
Publication of JPS59199592A publication Critical patent/JPS59199592A/en
Publication of JPH0339032B2 publication Critical patent/JPH0339032B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5031Alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はセメント成形体の製造方法に関し、詳
しくは、表面に金属酸化物被覆を有する耐久性に
すぐれたセメント成形体を製造する方法に関す
る。 セメント成形体の表面に無機塗料や釉薬を焼付
けた表面化粧セメント成形体が既に知られている
が、セメント成形体は、一般に水を含有している
と共に、水硬性であるために、高温に加熱される
と、内部に含まれている水分が揮発し、収縮を起
こして、その機械的強度が著しく低下する。一
方、溶射被覆は、一般に金属酸化物ほかセラミツ
ク材料を熱溶融状態で被着体表面に吹き付けて接
着させる方法であるが、この方法をセメント成形
体に適用すると、成形体表面が高温に加熱される
ため、一般には前記したように、セメント成形体
基体に微細な亀裂が多数生じて、強度低下が避け
られず、従つて、従来、特に金属酸化物粒子をセ
メント成形体に高温で溶射被覆したセメント成形
体を得ることは困難であるとみられていた。 本発明は上記した問題を解決するためになされ
たものであつて、成形体基体に亀裂を生じさせる
ことなく、セメント成形体に金属酸化物を溶射す
し、表面に強固に金属酸化物粒子が接着された耐
久性にすぐれるセメント成形体を製造する方法を
提供することを目的とする。 本発明のセメント成形体の製造方法は、セメン
ト成形体が完全に硬化する前に、少なくともその
表面層を含水率が2%以下となるように乾燥し、
その表面に金属酸化物粒子を溶射して金属酸化物
被覆を形成した後、水和養生することを特徴とす
るものである。 本発明の方法において、セメント成形体は、ポ
ルトランドセメントやアルミナセメント等のよう
な水硬性無機材料に水のほか、必要に応じて骨
材、充填材、繊維等を添加混合してなるセメント
混練物を所要形状に成形して得られ、ここに、通
常、骨材としては砂、軽量骨材、シヤモツト等、
充填材としては鉱滓スラグ、粘土、フライアツシ
ユ等、また、繊維としては石綿、ガラス繊維、ビ
ニロン繊維、パルプ繊維等が用いられるが、しか
し、これらに限定されるものではない。 本発明の方法によれば、溶射するセメント成形
体は、少なくとも溶射作業に必要な程度に硬化し
ているが、完全には硬化していないことを要す
る。ここに、完全に硬化するとは、通常、4週養
生による最終強度を有するに至ることを意味する
ものとし、本発明においては、好ましくは、溶射
されるセメント成形体が、上記4週強度に比較し
て、その70%以下の強度を有するとき、これを完
全に硬化する前とする。このように、セメント成
形体が4週強度の70%以下の強度を有すれば、通
常、金属酸化物を接着性よく成形体表面に溶射被
覆させることができるが、特に50%以下がよい。 上記のように、セメント成形体の硬化度を調整
した後、本発明によれば、少なくとも溶射する側
の表面層を含水率が2%以下となるように乾燥す
る。このような乾燥は例えば、赤外線ヒーターに
より表面を加熱することにより行なうことができ
る。詳細な実験の結果によれば、特に、溶射側表
面を少なくとも2mm厚みにわたつて、含水率を2
%以下に乾燥するときに良好な結果が得られる。 本発明の方法において、溶射物質としては、ア
ルミナやジルコニア等のような金属酸化物が用い
られる。ガラス粉末や釉薬フリツトはセメント成
形体表面への接着が良好でなく、用いるには適し
ない。上記金属酸化物を溶射するには、好ましく
は、高温溶射できるガスプラズマ溶射や水プラズ
マ溶射による。この溶射によれば、金属酸化物は
1000℃以上にも加熱され、溶融状態でセメント成
形体表面に接着性のよい被覆を形成する。溶射被
覆の厚みは、通常、10〜2000μ、好ましくは30〜
500μである。被覆厚みが薄すぎるときは、被覆
による効果が十分ではなく、一方、厚すぎるとき
は不経済であると共に、溶射被覆に歪が生じるの
で好ましくない。 このようにして、セメント成形体表面に金属酸
化物を溶射した後、通常の方法によつて、成形体
を水和養生させることにより、耐久性にすぐれた
表面化粧セメント成形体を得ることができる。こ
の水和養生は、必要な水分が供給される限りは、
特に方法は限定されず、例えば、水中、蒸気中或
いはオートクレーブ中での加圧下で行なわれる。 本発明の方法は、以上のように、その理由は明
らかではないが、セメント成形体の硬化度を調整
すると共に、少なくとも溶射側表面の含水率を所
定値以下に乾燥することにより、金属酸化物を高
温溶射しても、セメント成形体基体には何ら亀裂
が生じず、しかも、得られる金属酸化物被覆は強
固に形成体表面に接着しており、耐久性にすぐれ
た表面化粧セメント成形体を得ることができる。 尚、本発明の方法において、セメント成形体の
少なくとも溶射側表面層を上記したように乾燥す
ると共に、更に、少なくとも溶射側表面層に銅粉
や炭素繊維等のような熱の良伝導体材料を分散さ
せておくことによつて、溶射時に成形体が受ける
高熱を拡散し、表面層における急激な体積変化を
防止することにより、一層、接着性、耐久性にす
ぐれた金属酸化物の溶射被覆を形成することがで
きる。 以下に本発明の実施例を挙げる。尚、各例にお
いて、得られたシート成形体の曲げ強度はJIS A
1408による建築ボード類の曲げ試験法に準じて
測定した。 実施例 第1表に示す組成のポルトランドセメント混練
物を縦横各15cm、厚み6mmのシートに成形し、そ
のシートの硬化度及び溶射側の厚み2mmにわたる
表面層の含水率を第2表に示すA乃至Hのいずれ
かに調整した。ここに、硬化度の調整は、成形さ
れたシートの養生を中断し、その圧縮強度を最終
強度(4週強度)と比較することにより行ない、
The present invention relates to a method for manufacturing a cement molded body, and more particularly, to a method for manufacturing a highly durable cement molded body having a metal oxide coating on its surface. Surface-decorated cement molded products are already known, in which an inorganic paint or glaze is baked onto the surface of a cement molded product, but since cement molded products generally contain water and are hydraulic, they cannot be heated to high temperatures. When this occurs, the moisture contained inside the material evaporates, causing contraction and significantly reducing its mechanical strength. On the other hand, thermal spray coating is generally a method of spraying metal oxides or other ceramic materials in a hot molten state onto the surface of the adherend to bond them. However, when this method is applied to cement molded bodies, the surface of the molded body is heated to high temperatures. Generally, as mentioned above, a large number of microscopic cracks occur in the base of the cement molded product, resulting in an unavoidable decrease in strength. Obtaining cement compacts was seen as difficult. The present invention has been made in order to solve the above-mentioned problems, and it is possible to thermally spray metal oxide onto a cement molded body without causing cracks in the base of the molded body, and to firmly adhere the metal oxide particles to the surface. An object of the present invention is to provide a method for manufacturing a cement molded body with excellent durability. The method for producing a cement molded body of the present invention includes drying at least the surface layer of the cement molded body to a moisture content of 2% or less before the cement molded body is completely hardened.
It is characterized by spraying metal oxide particles onto the surface to form a metal oxide coating, followed by hydration and curing. In the method of the present invention, the cement compact is a cement mixture obtained by mixing a hydraulic inorganic material such as Portland cement or alumina cement with water and, if necessary, aggregate, filler, fiber, etc. It is obtained by molding into the desired shape, and the aggregate is usually sand, lightweight aggregate, siyamoto, etc.
As the filler, slag, clay, fly ash, etc. are used, and as the fiber, asbestos, glass fiber, vinylon fiber, pulp fiber, etc. are used, but the present invention is not limited to these. According to the method of the present invention, the cement molded body to be thermally sprayed must be hardened at least to the extent necessary for the thermal spraying operation, but not completely hardened. Here, "completely hardened" usually means that it has a final strength after 4 weeks of curing, and in the present invention, preferably, the thermally sprayed cement molded product has a strength that is higher than the above 4-week strength. If the strength is 70% or less of that value, this is considered to be before it is completely cured. As described above, if the cement molded body has a strength of 70% or less of the 4-week strength, it is usually possible to thermally spray coat the surface of the molded body with a metal oxide with good adhesion, but it is particularly preferable that the strength is 50% or less. As described above, after adjusting the degree of hardening of the cement molded body, according to the present invention, at least the surface layer on the side to be thermally sprayed is dried so that the moisture content becomes 2% or less. Such drying can be performed, for example, by heating the surface with an infrared heater. Detailed experimental results have shown that, in particular, the sprayed surface should be coated with a moisture content of 2 mm over a thickness of at least 2 mm.
Good results are obtained when drying below %. In the method of the present invention, metal oxides such as alumina, zirconia, etc. are used as the spray material. Glass powder and glaze frit do not adhere well to the surface of cement molded bodies and are not suitable for use. The metal oxide is preferably thermally sprayed by gas plasma spraying or water plasma spraying, which can be thermally sprayed at a high temperature. According to this thermal spraying, metal oxides are
It is heated to over 1000°C and forms a highly adhesive coating on the surface of the cement compact in its molten state. The thickness of the thermal spray coating is usually 10~2000μ, preferably 30~
It is 500μ. If the thickness of the coating is too thin, the effect of the coating will not be sufficient, while if it is too thick, it will be uneconomical and distortion will occur in the sprayed coating, which is not preferable. After spraying the metal oxide onto the surface of the cement molded body in this way, the molded body is hydrated and cured using a normal method, thereby making it possible to obtain a surface-decorated cement molded body with excellent durability. . This hydration regimen, as long as the necessary water is supplied,
The method is not particularly limited, and for example, it may be carried out under pressure in water, steam, or in an autoclave. As described above, although the reason is not clear, the method of the present invention adjusts the degree of hardening of the cement molded body and dries the water content of at least the sprayed side surface to a predetermined value or less. Even when sprayed at high temperature, no cracks occur on the cement molded body base, and the resulting metal oxide coating firmly adheres to the surface of the molded body, making it possible to create surface-coated cement molded bodies with excellent durability. Obtainable. In addition, in the method of the present invention, at least the surface layer on the sprayed side of the cement molded body is dried as described above, and at least the surface layer on the sprayed side is further coated with a good thermal conductor material such as copper powder or carbon fiber. By dispersing it, the high heat that the molded object receives during thermal spraying is diffused, and rapid volume changes in the surface layer are prevented, resulting in a thermally sprayed metal oxide coating with even better adhesion and durability. can be formed. Examples of the present invention are listed below. In each example, the bending strength of the sheet molded product obtained was JIS A.
Measurements were made according to the bending test method for architectural boards according to 1408. Example A Portland cement kneaded material having the composition shown in Table 1 was formed into a sheet with a length and width of 15 cm and a thickness of 6 mm, and the degree of hardening of the sheet and the water content of the surface layer over a thickness of 2 mm on the sprayed side were shown in Table 2. It was adjusted to either H. Here, the degree of hardening is adjusted by interrupting the curing of the molded sheet and comparing its compressive strength with the final strength (4-week strength),

【表】 次いで、各シート表面にガスプラズマ溶射法に
より、粒子径10〜50μのアルミナ粒子を厚み100μ
に溶射し、この後、温度90℃、湿度100%の蒸気
雰囲気中で24時間養生した。
[Table] Next, alumina particles with a particle size of 10 to 50μ are applied to the surface of each sheet using a gas plasma spraying method to a thickness of 100μ.
After that, it was cured for 24 hours in a steam atmosphere at a temperature of 90°C and a humidity of 100%.

【表】【table】

【表】 また、溶射側の表面層の含水率は、は赤外線ヒ
ーターにより溶射側表面を加熱乾燥した後、厚み
2mmの表面層を採取し、105℃で2時間加熱した
後、その重量減少から求めた。このようにして得
られた表面溶射シートを目視により異常の有無を
観察すると共に、ASTM法による耐凍害性を評
価した。 以上において、実施例により得られたシートの
場合、すべてについて溶射被覆層に亀裂の発生等
の異常は何ら認められなかつた。また、耐凍害性
はすべて100サイクル以上であつた。一方、比較
例については、5−I処理品(第1表の番号5の
混練物からのセメント成形体を第2表の条件Iに
示す硬化度及び表面層含水率を有するように調整
して得た成形体を意味する。以下、同じ。)は溶
射被覆が剥離し、5−J処理品及び5−K処理品
は成形体基体に亀裂が生じた。また、5−I、5
−J及び5−K処理品の耐凍害性はそれぞれ5、
8及び8サイクルであつた。
[Table] Also, the water content of the surface layer on the sprayed side is determined by heating and drying the surface on the spraying side with an infrared heater, then taking a 2 mm thick surface layer, heating it at 105℃ for 2 hours, and determining its weight loss. I asked for it. The surface sprayed sheet thus obtained was visually observed for the presence or absence of abnormalities, and its frost damage resistance was evaluated using the ASTM method. In all of the sheets obtained in the examples above, no abnormalities such as cracks were observed in the thermally sprayed coating layers. In addition, all of them had frost damage resistance of 100 cycles or more. On the other hand, as for the comparative example, the 5-I treated product (the cement molded body from the kneaded material of No. 5 in Table 1 was adjusted to have the degree of hardening and surface layer moisture content shown in Condition I of Table 2). The thermal spray coating of the obtained molded product (hereinafter the same shall apply) peeled off, and cracks occurred in the molded product base of the 5-J treated product and the 5-K treated product. Also, 5-I, 5
-J and 5-K treated products have frost damage resistance of 5, respectively.
There were 8 and 8 cycles.

Claims (1)

【特許請求の範囲】[Claims] 1 セメント成形体が完全に硬化する前に、少な
くともその表面層を含水率が2%以下となるよう
に乾燥し、その表面に金属酸化物粒子を溶射して
金属酸化物被覆を形成した後、水和養生すること
を特徴とするセメント成形体の製造方法。
1. Before the cement molded body is completely cured, at least its surface layer is dried to a moisture content of 2% or less, and after spraying metal oxide particles on the surface to form a metal oxide coating, A method for producing a cement molded body characterized by hydration curing.
JP7539183A 1983-04-27 1983-04-27 Manufacture of cement formed body Granted JPS59199592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7539183A JPS59199592A (en) 1983-04-27 1983-04-27 Manufacture of cement formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7539183A JPS59199592A (en) 1983-04-27 1983-04-27 Manufacture of cement formed body

Publications (2)

Publication Number Publication Date
JPS59199592A JPS59199592A (en) 1984-11-12
JPH0339032B2 true JPH0339032B2 (en) 1991-06-12

Family

ID=13574837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7539183A Granted JPS59199592A (en) 1983-04-27 1983-04-27 Manufacture of cement formed body

Country Status (1)

Country Link
JP (1) JPS59199592A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246186A (en) * 1987-11-05 1989-10-02 Keihan Concrete Kogyo Kk Colored concrete block

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161382A (en) * 1984-01-27 1985-08-23 株式会社イナックス Manufacture of glazed cement product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161382A (en) * 1984-01-27 1985-08-23 株式会社イナックス Manufacture of glazed cement product

Also Published As

Publication number Publication date
JPS59199592A (en) 1984-11-12

Similar Documents

Publication Publication Date Title
US20100304041A1 (en) Method For Coating Honeycomb Bodies
KR102593723B1 (en) High-temperature wear-resistant ceramic glaze, high-temperature wear-resistant ceramic coating layer preform and its manufacturing method and application
US6632540B2 (en) Cementitious ceramic surface having controllable reflectance and texture
JPH0339032B2 (en)
US2813305A (en) Method of vitreous coating nonmetallic articles
JP6598932B1 (en) Insulating material and manufacturing method thereof
JPH0920578A (en) Ceramic panel and its production
JPH0214307B2 (en)
JPH032830B2 (en)
JPS646150B2 (en)
RU2193545C2 (en) Method of forming protective coating on chamotte objects
JPS6129788B2 (en)
JPH01301547A (en) Production of cement product
EP3006421A1 (en) Method for manufacturing ceramic foam articles with a facing layer
JPS6325283A (en) Manufacture of glazed calcium silicate body
JPH05270925A (en) Refractory material for ceramic burning
JP2629116B2 (en) Manufacturing method of glazed cement products
JPH04243948A (en) Heat-resistant and heat-insulating composition
JPH0424315B2 (en)
JPH05296671A (en) Baking jig
JPH0254291B2 (en)
JPS63295460A (en) Production of cement molding for decorating heating surface
JPS6150919B2 (en)
JPH0632683A (en) Production of inorganic backed body
JPH03271176A (en) Glazed calcium silicate heat-insulating board and preparation thereof