JPH0338076A - Electrostriction effect element and its manufacture - Google Patents

Electrostriction effect element and its manufacture

Info

Publication number
JPH0338076A
JPH0338076A JP1171854A JP17185489A JPH0338076A JP H0338076 A JPH0338076 A JP H0338076A JP 1171854 A JP1171854 A JP 1171854A JP 17185489 A JP17185489 A JP 17185489A JP H0338076 A JPH0338076 A JP H0338076A
Authority
JP
Japan
Prior art keywords
group
internal electrode
electrostrictive
electrode plate
phenyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1171854A
Other languages
Japanese (ja)
Other versions
JP2865709B2 (en
Inventor
Atsushi Hagimura
厚 萩村
Mutsuo Nakajima
睦男 中島
Ikuo Inage
稲毛 育夫
Kunio Nishihara
邦夫 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1171854A priority Critical patent/JP2865709B2/en
Priority to DE69024863T priority patent/DE69024863T2/en
Priority to EP90307104A priority patent/EP0407099B1/en
Priority to CA002020367A priority patent/CA2020367A1/en
Priority to KR1019900010103A priority patent/KR930010420B1/en
Priority to US07/637,554 priority patent/US5173162A/en
Publication of JPH0338076A publication Critical patent/JPH0338076A/en
Application granted granted Critical
Publication of JP2865709B2 publication Critical patent/JP2865709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To make it possible to obtain a large amount of displacement in a low voltage by a method wherein an insulating layer consisting of a polyimide resin hating a specified repeat unit is formed only on the exposed part, which is located on the side end surface of an element, of an internal electrode plate and an electrostriction material in the vicinity of the exposed part. CONSTITUTION:The end surface of an internal electrode plate is exposed on the side end surface of an element and an insulating layer consisting of a polyimide resin having a repeat unit, which is shown in a formula (I), is formed only on the exposed part, which is located on the side end surface of the element, of the internal electrode plate and an electrostriction material in the vicinity of the exposed part. In the formula (I), X is a quadrivalent group, such as a phenyl group, a biphenyl group or the like, and Y is a dihydric group, such as a phenyl group, an alkylene group or the like. Thereby, it becomes possible to lessen an interlayer distance and a laminated electrostruction effect element capable of obtaining a large amount of displacement in a low voltage can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は低電圧で大変位量が生じ且つ眉間距離が極めて
小さい積層電歪効果素子及びその製造方法に関する。
[Industrial Field of Application] The present invention relates to a laminated electrostrictive element that produces a large amount of displacement at low voltage and has an extremely small distance between the eyebrows, and a method for manufacturing the same.

【従来の技術J 従来1アクチエエータとしては、電磁力で働くモータや
、この電磁モータの回転を歯車の組み合わせにより直進
的な動きに変換するものや、電磁コイルとバネとを組み
合わせたボイスコイル等が代表的なものである。これら
のアクチエエータは高速の連続回転や位置決めなどのた
めに、あらゆる機械において広く用いられているが、近
年、光学精密機械、半導体素子等の分野を中心として次
第に新しい変換素子へのニーズが急増している。 例えば、レーザやカメラ等の光学機器の加工精度や半導
体製造機器における位置決め精度に対する要求や、光学
、天文学などにおける光路長の調整に対する要求は既に
1ミクロン以下のレベルに達しており、その要求は今後
ますますシビアなものになっていくことは明らかである
。 最近、電磁力を使わない新アクチュエータとして圧電効
果、電歪効果を利用するアクチュエータかにわかに脚光
を浴びており、エレクトロニクスセラミックス市場にお
いても新たなジャンルを拡大すべくその将来性に対して
大きな期待が寄せられている。 従来、積層チップコンデンサ構造の電歪効果素子は以下
の方法で製造されていた。まず、原料組成物を混合し、
仮焼し、この仮焼粉に適当なバインダ及び溶剤を混合し
、この混合物を用いてドクターブレード法により薄膜を
作成する。この薄膜に金属電極を印刷し、積層する。こ
の積層体中の複数の金属電極板を一つ置きに外部電極に
接続して一方の系統を正、他方の系統を負とする。この
製造方法においては正、負の電極板の重なった部分の面
積が全断面積よりも小さくしなければならず、従って周
辺部では電極板の重ならない部分が生じる。このような
電歪効果素子の電極板間に電圧を印加すると、電極板の
重なった部分では電界強度が大きくなるが、周辺部分の
電界強度は弱い、このため周辺部分の変位量が小さくな
り、ひいては素子全体の変位量が所望のものに比べて小
さくなるという欠点を有している。また、このことに起
因して変形する部分と変形しない部分との境界で応力の
集中が発生し、長時間の印加もしくは繰返しの印加に起
因して素子自体が破壊するという欠点がある。このため
従来の積層チップコンデンサの製造法をそのまま利用す
ることは困難である。 上記のような欠点を解消する方法として、特開昭59−
115579号公報には、電気泳動法を利用して、積層
電歪効果素子の側端面に露出した電極に対してその全面
又は−層おきに無機絶縁層を形成することを特徴とする
電歪効果素子の製造方法が開示されている。そのような
製造方法を用いる場合には上記のような欠点は解消され
る。しかし、絶縁層が電歪効果を妨げたり絶縁層自体が
破壊したりすることがないように積層電歪効果素子の側
端面の電極近傍にのみ絶縁物が付着することが最も好ま
しいにもかかわらず、無機の絶縁層はセラミックス本体
とのなじみが良いため広範囲に付着し、従って側端面に
露出した各々の電極に付着した絶縁層が相互に連続しな
いように眉間の距離をlOOミクロン以上にしなければ
ならない、しかし、眉間が100ミクロン以上である場
合には、この電歪効果素子に10 kV/cmの電界を
印加するためには100Vの高電圧が必要になる。 【発明が解決しようとする課題J 近年、低電圧で駆動できしかも変位量の大きい電歪効果
素子が要求されているため層間の距離が小さい方が好ま
しいことは明らかである。しかしながら、上記したよう
に無機絶縁物を用いるかぎりは眉間距離は100ミクロ
ンが限度である。また、前記の特開昭59−11557
9号公報には、有機物による絶縁ではセラミックス、金
属などとの接着性が小さくまた高電界が加わる電歪効果
素子の絶縁として実用化は困難とされてきたことが記載
されている。このように低電圧で大変位量を得ることの
できる積層電歪効果素子及びその製造方法はいまだ実用
化されていない。 本発明の目的は、有機絶縁物を利用し、層間距離を10
〜100ミクロンとすることが可能であり、そのことに
よって低電圧で大変位量が可能となる積層電歪効果素子
ならびにその製造方法を提供することである。 【課題を解決するための手段1 本発明は上記の目的を達成するために成されたものであ
り、本発明の電歪効果素子は、電歪材料の膜又は薄板と
内部電極板とが交互に積層されている電歪効果素子であ
って、該素子の側端面に該内部電極板の端面が露出して
おり、該側端面上の゛数円部電極板の露出部とその近傍
の電歪材料上のみに、一般式(1) (式中、Xはフェニル基;ビフェニル基;及びフェニル
基及びビフェニル基の少なくとも1種が0、C02S、
CHm、C(CHm)*及びC(CFs)*の少なくと
も1種によって結合されたポリフェニル基からなる群か
ら選ばれた四価の基であり、Yはフェニル基;ビフェニ
ル基;フェニル基及びビフェニル基の少なくとも1種が
0、CO,S、 SOx、 CHx、C(CHs)*及
びc(cFs)aの少なくとも1種によって結合された
ポリフェニル基;アルキレン基;及びキシリレン基から
なる群から選ばれた二価の基である)で表わされる繰り
返し単位を有するポリイミド樹脂の絶縁層が形成されて
いることを特徴とする。 上記の電歪効果素子を製造する本発明の製造方法は、電
歪材料の膜又は薄板と内部電極板とが交互に積層されて
いる電歪効果素子の側端面に該内部電極板の端面が露出
している該電歪効果素子を、一般式(II) (式中、Xはフェニル基;ビフェニル基;及びフェニル
基及びビフェニル基の少なくとも1種が0、C01S、
CHx、C(CHs)a及びC(CFs) *の少なく
とも1種によって結合されたポリフェニル基からなる群
から選ばれた四価の基であり、Yはフェニル基;ビフェ
ニル基;フェニル基及びビフェニル基の少なくとも1種
が0、C01S、 SOx、 CH,、C(CHs)*
及びC(CFI)lの少なくとも1種によって結合され
たポリフェニル基;アルキレン基;及びキシリレン基か
らなる群から選ばれた二価の基である)で表わされる繰
り返し単位を有するポリアミド酸樹脂のカルボキシル基
を塩基で中和し、水で希釈して得た被膜形成用電気泳動
浴中に浸漬し、該電歪効果素子の内部電極板を陽極とし
て電気泳動を実施して該電歪効果素子の側端面上の該内
部電極板の露出部とその近傍のみに該ポリアミド酸を析
出させて被膜層を形成し、その後加熱処理して該被膜層
のポリアミド酸樹脂なイミド化させて一般式(I) (式中、X及びYは前記の通りである)で表わされる繰
り返し単位を有するポリイミド樹脂の絶縁層を形成させ
ることを特徴とする。 本発明の製造方法において用いられる上記のポリアミド
酸樹脂はその一部が予めイミド化されていてもよい。 上記の一般式(I)で表わされる繰り返し単位を有する
ボリイ゛ミド樹脂及び一般式(II)で表わされる繰り
返し単位を有するポリアミド樹脂において、Xの具体例
として次ぎのものがある:また、 Yの具体例としては次ぎのものがある:前記の一般式(
I)で表わされる繰り返し単位を有するポリイミド樹脂
の電歪効果素子基材への密着性及び耐熱性の観点からX
が であり、 Yが であることが特に好ましい。 本発明の製造方法において用られる前記の一般式(II
)で表わされる繰り返し単位を有するポリアミド酸樹脂
は一般式(III) (式中、Xは前記の通りである) を有するテトラカルボン酸無水物類と一般式() %式%() (式中1.Yは前記の通りである) を有するジアミン類との付加反応によって得られる。 上記のテトラカルボン酸無水物類としては、例えば、ピ
ロメリット酸二無水物、3.3°、4.4°−ベンゾフ
ェノンテトラカルボン酸二無水物、2.2“。 3.3°−ベンゾフェノンテトラカルボン酸二無水物、
3.3°14,4°−ビフェニルテトラカルボン酸二無
水物、2.2°、3,3°−ビフェニルテトラカルボン
酸二無水物、2.2−ビス(3,4−ジカルボキシフェ
ニル)ブロバンニ無水物、2,2−ビス(2,3−ジカ
ルボキシフェニル)ブロバンニ無水物、ビス(3,4−
ジカルボキシフェニル)エーテルニ無水物、ビス(3,
4−ジカルボキシフェニル)スルホン二無水物、 1.
.1−ビス(2,3−ジカルボキシフェニル)エタンニ
無水物、ビス(2,3−ジカルボキジフェニル)メタン
ニ無水物、ビス(3,4−ジカルボキシフェニル)メタ
ンニ無水物、2,3,6.7−ナフタレンテトラカルボ
ン酸二無水物、1,4,5.8−ナフタレンテトラカル
ボン酸二無水物、1,2,5.6−ナフタレンテトラカ
ルボン酸二無水物、1,2,3゜4−′ベンゼンテトラ
カルボン酸二無水物、3,4,9゜lO−ペリレンテト
ラカルボン酸二無水物、2,3,6゜7−アントラセン
テトラカルポン酸二無水物% L2、7.8−フェナン
トレンテトラカルボン酸二無水物等が好ましいものとし
て挙げられる。これらのうちで特に好ましいテトラカル
ボン酸二無水物は、ピロメリット酸二無水物、3.3°
、4.4°−ベンゾフェノンテトラカルボン酸二無水物
、3.3°、4゜4°−ビフ各ニルテトラカルボン酸二
無水物、およびビス(3,4−ジカルボキシフェニル)
エーテル二無水物である。 上記のジアミン類としては、3,3°−ジアミノベンゾ
フェノン、1.3−ビス(3−アミノフェノキシ)ベン
ゼン、4.4°−ビス(3−アミノフェノキシ)ビフェ
ニル、2.2−ビス[4−(3−アミノフェノキシ)フ
ェニル】プロパン、2.2−ビス[4−(3−アミノフ
ェノキシ)フェニル】−1,1,1,3,3,3−へキ
サフルオロプロパン、ビス(4−(3−アミノフェノキ
シ)フェニル]スルフィド、・ビス[4−(3−アミノ
フェノキシ)フェニル1ケトン、ビス(4−(3−アミ
ノフェノキシ)フェニル]スルホン等の、メタ位のジア
ミンが挙げられ、これらは単独で、或いは2種以上混合
して用いられる。 上記したテトラカルボン酸無水物とジアミンとの反応は
通常、有機溶媒中で実施する。有機溶媒としては、例え
ば、N−メチル−2−ピロリドン、N、N−ジメチルア
セトアミド、N、N−ジメチルホルムアミド、1.3−
ジメチル−2−イミダゾリジノン、N、N−ジエチルア
セトアミド、N、N −ジメチルメトキシアセトアミド
、ジメチルスルホキシド、ピリジン、ジメチルスルホン
、ヘキサメチルホスホルアミド、テトラメチル尿素、N
−メチルカプロラクタム、テトラヒドロフラン、m−ジ
オキサン、p−ジオキサン、1.2−ジメトキシエタン
、ビス(2−メトキシエチル)エーテル、1.2−ビス
(2−メトキシエトキシ)エタン、ビス[2−(2−メ
トキシエトキシ)エチル1エーテル等があげられる。こ
れらの有機溶媒は単独でも或いは2種以上混合して用い
ても構わない1反応温度は通常200℃以下−20℃以
上、好ましくは50℃以下−lO℃以上、さらに好まし
くは0℃以上である室温程度である1反応圧力は特に限
定されず、常圧で十分実施できる0反応時間は溶剤の種
類、反応温度および用いられるジアミンや酸二無水物に
より異なりうるが、ポリアミド酸の生成が完了するのに
十分な時間反応させるには通常2〜40時間、好ましく
は4〜24時間程度で十分である。 斯くして得られるポリアミド酸溶液はポリアミド酸を5
〜40重量%、特に好ましくは10〜30重量%含有す
る溶液であり、対数粘度が0.5〜4dl/g(35℃
、温度0.5g/ml %N、N−ジメチルアセトアミ
ドで測定した値)、特に好ましくは0.6〜2.5dl
/gであるものが後述する水溶化性。 及び加熱処理後のポリイミドの被膜物性に優れるので望
ましい。 本発明の製造方法においては、前記の一般式(II)で
表わされる繰り返し単位を有するポリアミド酸樹脂は水
の存在下で塩基、例えばアミン又はアルカリ金属イオン
の添加によって、そのC0OH基がC00−イオンに解
離して水に可溶となるか又は安定にコロイド分散するこ
とができ、電気泳動によって陽極である積層電歪効果素
子上に析出し、不溶化することができる。 上記の塩基としては、アンモニア:ジアルキルアミン、
ジェタノールアミン、モルホリン等の二級アミン類ニト
リエチルアミン、トリブチルアミン、トリエタノールア
ミン、トリイソプロパノールアミン、ジメチルエタノー
ルアミン、ジメチルイソプロパノールアミン、ジエチル
エタノールアミン、ジメチルベンジルアミン等の三級ア
ミン類:苛性ソーダ、苛性カリ等の無機塩基類が用いら
れるが、水希釈後の安定性や得られる被膜の性質から三
級アミン類が特に好ましい。 水稀釈性を付与する為に必要な塩基量は中和すべきポリ
アミド酸のカルボキシル当量に対して30〜110モル
%が一般的であり、特に40〜100モル%であること
が好ましい、斯くして中和を行うことによって、ポリア
ミド酸は完全に水溶性となるか或いは部分的に水溶化し
て懸濁状態となり水稀釈性を有するようになる。いづれ
の場合においても、ポリアミド酸を中和し、これを下記
の程度の樹脂濃度となるように水希釈することにより、
電気泳動処理が可能なポリアミド酸水溶液からなる、被
膜形成用電気泳動浴とすることが出来るのである。 このようにして析出したポリアミド酸樹脂は加熱処理に
よって一般式(1) (式中、Xは前記の通りである) で表わされる繰り返し単位を有するポリイミド樹脂に変
換される。 上記のようにして得られたポリイミド樹脂絶縁層は絶縁
層厚50μ程度で絶縁耐力が10OOv以上であり且つ
金属との接着も非常に優れている。また、これまで問題
であったセラミックスとの濡れ性も無機絶縁層よりも小
さいため側端面の近傍付近にのみ絶縁層が付着し、層間
の距離を従来のものより極端に小さくすることが可能で
ある。 実施例1 撹拌器、還流冷却器及び窒素導入管を備えた反応容器中
で、3.3°−ジアミノ、ベンゾフェノン53.0g 
(0,25モル)をN、N−ジメチルアセトアミド24
0鳳1に溶解した。この溶液に3.3°、4,4゜ベン
ゾフェノンテトラカルボン酸二無水物78.6 g(0
,244モル)の粉末を添加し、10℃で24時間撹拌
してポリアミド酸溶液を得た。得られたポリアミド酸の
対数粘度は0.6dl/gであった。このポリアミド酸
溶液中にジメチルエタノールアミン39.1g (対カ
ルボキシル当量90モル%)を除々に加え、20分間室
温にて撹拌後、水905.3 gを撹拌しつつ徐々に室
温にて加え水希釈してポリアミド酸水溶液を調製した(
樹脂濃度10重量%)。 また積層体の試料については一方の端面ば一層おきに金
属電極が露出しておりもう一方の端面ば全金属電極が露
出しているものを予め作っておいた。−層おきに金属電
極が露出した側に銀電極を焼付け、半田でリード線を接
続した。前記水溶液をプラスチックの槽へ入れ、被膜形
成用電気泳動浴とし、被膜対象となる前記積層体を陽極
として浸潤しリード線を陽極に接続した。1OOvで2
0秒間電圧を印加して電気泳動を行った。その後積層体
を取り出し、水洗後150℃で2時間、280℃で2時
間の加熱処理により乾燥イミド化を行った0次に積層体
をまん中で切断し、イミド樹脂絶縁膜付着側に銀電極を
塗布しリード線を付けた。同様の操作を行うことにより
電極−枚毎に左右に絶縁層を有する積層体が得られた。 この絶縁層の厚さは50ミクロン程度で絶縁耐力は10
00V以上であることが確認された。 実施例2 撹拌機、還流冷却器及び窒素導入管を備えた容器に、2
.2−ビス(4−(3−アミノフェノキシ)フェニル】
プロパン41.Og (0,1モル)とN、N−ジメチ
ルアセトアミド200m1を装填し、0℃付近まで冷却
し、窒素雰囲気下に於いてピロメリット酸二無水物21
.8g (0,1モル)の粉末を加え、0℃付近で2時
間撹拌した0次に上記溶液を室温に戻し、窒素雰囲気下
で約20時間の撹拌を行った。こうして得られたポリア
ミド酸の対数粘度は1.5dl/gであった。このポリ
アミド酸溶液中にトリエチルアミン20.2g (対カ
ルボキシル当量100モル%)を徐々に加え1時間室温
にて撹拌後、水973gを撹拌しつつ徐々に加えて希釈
しポリアミド酸水溶液を調整した(樹脂濃度5重量%)
。 実施例1と同様にして積層体の試料を作成し、この試料
及び上記のポリアミド酸水溶液を用いて、実施例1と同
様にして絶縁層を設けた。この絶縁層は厚さ50μでt
ooov以上の絶縁耐力を有していた。 実施例3 撹拌機、還流冷却器及び窒素導入管を備えた容器に、2
.2−ビス[4−(3−アミノフェノキシ)フェニル】
プロパン41.Og (0,1モル)とN、N−ジメチ
ルアセトアミド219.6 gをくわえ、室温で窒素雰
囲気下に、3.3°、4.4’−ベンゾフェノンテトラ
カルボン酸二無水物31.6g (0,098モル)を
乾燥固体のまま、溶液温度の上昇に注意しながら、少量
づつ加え、室温で23時間反応した。こうして得られた
ポリアミド酸の対数粘度は0、70dl/gであった。 このポリアミド酸溶液中にトリエタノールアミン14.
6g (対カルボキシル当量50モル%)を徐々に加え
、2時間40℃にて撹拌、水117.2 gを撹拌しつ
つ徐々に加えて希釈しポリアミド酸水溶液を調製した(
樹脂濃度15重量%)。 実施例1と同様にして積層体の試料を作成し、この試料
及び上記のポリアミド酸水溶液を用いて、実施例1と同
様にして絶縁層を設けた。この絶縁層は厚さ50μでl
 0OOV以上の絶縁耐力を有していた。 実施例4〜19 ジアミンの種類と量、N、N−ジメチルアセトアミドの
量、テトラカルボン酸二無水物の種類と量、中和に使用
するジメチルエタノールアミンの量、稀釈に用いる水の
量をかえる他は総て実施例1と同様の操作で行った。 尚、中和に使用するジメチルエタノールアミンの量は対
カルボキシル当量90重量%より算出されたものとし、
稀釈に用いる水の量は樹脂“濃度10重量%となるよう
に算出されたものとした。又、表中PMDAは無水ピロ
メリット酸、BTDAは3.3°、4.4°−ベンゾフ
ェノンテトラカルボン酸二無水物、0DPAはビス(3
,4−ジカルボキシフェニル)エーテルニ無水物、BP
DAは3,3°、4.4’−ビフェニルテトラカルボン
酸二無水物を示す。 いずれの場合にも、絶縁層は厚さ50μで1000V以
上の絶縁耐力を有していた。 [発明の効果] 本発明により、これまで積層体の一層の厚さを100ミ
クロン以下にすることが不可能であったものを20〜l
OOミクロンにすることが可能になった。また、これま
で有機物においては絶縁性が悪いとして注目されていな
かったが、驚くべきことにポリイミド樹脂を用いると絶
縁体力が無機物に匹敵するところまで上昇した。
[Prior art J] Conventional 1 actuators include motors that operate using electromagnetic force, those that convert the rotation of this electromagnetic motor into linear motion using a combination of gears, and voice coils that combine an electromagnetic coil and a spring. It is representative. These actuators are widely used in all types of machinery for high-speed continuous rotation and positioning, but in recent years, the need for new conversion elements has rapidly increased, mainly in fields such as optical precision machinery and semiconductor devices. There is. For example, requirements for processing accuracy in optical equipment such as lasers and cameras, and positioning accuracy in semiconductor manufacturing equipment, as well as requirements for adjusting optical path length in optics and astronomy, have already reached a level of 1 micron or less, and these requirements will continue to increase in the future. It is clear that things are becoming more and more severe. Recently, actuators that use piezoelectric and electrostrictive effects have suddenly been in the spotlight as new actuators that do not use electromagnetic force, and there are great expectations for their future potential in expanding new genres in the electronics ceramics market. It is being Conventionally, an electrostrictive effect element having a multilayer chip capacitor structure has been manufactured by the following method. First, mix the raw material composition,
After calcining, a suitable binder and solvent are mixed with the calcined powder, and a thin film is formed using this mixture by a doctor blade method. Metal electrodes are printed on this thin film and laminated. A plurality of metal electrode plates in this laminate are connected to external electrodes every other time, so that one system is positive and the other system is negative. In this manufacturing method, the area of the overlapping portion of the positive and negative electrode plates must be smaller than the total cross-sectional area, and therefore, there is a portion where the electrode plates do not overlap at the periphery. When a voltage is applied between the electrode plates of such an electrostrictive element, the electric field strength increases in the part where the electrode plates overlap, but the electric field strength in the peripheral part is weak, so the amount of displacement in the peripheral part becomes small, This has the disadvantage that the amount of displacement of the entire element is smaller than desired. Further, due to this, stress concentration occurs at the boundary between the deformed part and the non-deformed part, and there is a drawback that the element itself is destroyed due to long-term application or repeated application. Therefore, it is difficult to use the conventional manufacturing method of multilayer chip capacitors as is. As a method to eliminate the above drawbacks,
No. 115579 discloses an electrostrictive effect characterized in that an inorganic insulating layer is formed on the entire surface or every other layer of an electrode exposed on a side end surface of a laminated electrostrictive effect element using an electrophoresis method. A method of manufacturing the device is disclosed. When such a manufacturing method is used, the above-mentioned drawbacks are eliminated. However, in order to prevent the insulating layer from interfering with the electrostrictive effect or destroying the insulating layer itself, it is most preferable that the insulating material be attached only near the electrodes on the side end surfaces of the laminated electrostrictive element. Since the inorganic insulating layer has good compatibility with the ceramic body, it adheres over a wide range, so the distance between the eyebrows must be set to 100 microns or more so that the insulating layers attached to each electrode exposed on the side end face are not continuous with each other. However, if the distance between the eyebrows is 100 microns or more, a high voltage of 100V is required to apply an electric field of 10 kV/cm to this electrostrictive element. [Problem to be Solved by the Invention J] In recent years, there has been a demand for electrostrictive elements that can be driven at low voltage and have a large amount of displacement, so it is clear that it is preferable that the distance between layers be small. However, as mentioned above, as long as an inorganic insulator is used, the distance between the eyebrows is limited to 100 microns. Also, the above-mentioned Japanese Patent Application Laid-Open No. 59-11557
Publication No. 9 states that insulation using organic materials has poor adhesion to ceramics, metals, etc., and has been difficult to put into practical use as insulation for electrostrictive elements to which a high electric field is applied. A laminated electrostrictive element capable of obtaining a large amount of displacement with such a low voltage and a method for manufacturing the same have not yet been put to practical use. The purpose of the present invention is to utilize organic insulators and increase the interlayer distance to 10
It is an object of the present invention to provide a laminated electrostrictive element and a method for manufacturing the same, in which the thickness can be set to 100 microns, thereby allowing a large amount of displacement at low voltage. [Means for Solving the Problems 1] The present invention has been made to achieve the above object, and the electrostrictive effect element of the present invention has a film or thin plate of electrostrictive material and an internal electrode plate alternately. It is an electrostrictive effect element laminated on the inner electrode plate, and the end face of the internal electrode plate is exposed on the side end face of the element, and the exposed part of the circular electrode plate on the side end face and the electric current in the vicinity are The general formula (1) (wherein, X is a phenyl group; a biphenyl group; and at least one of the phenyl group and the biphenyl group is 0, C02S,
A tetravalent group selected from the group consisting of polyphenyl groups bonded by at least one of CHm, C(CHm)* and C(CFs)*, and Y is a phenyl group; a biphenyl group; a phenyl group and a biphenyl group. At least one of the groups is selected from the group consisting of a polyphenyl group bonded by at least one of 0, CO, S, SOx, CHx, C(CHs)* and c(cFs)a; an alkylene group; and a xylylene group The invention is characterized in that an insulating layer of polyimide resin having a repeating unit represented by (a divalent group) is formed. The manufacturing method of the present invention for manufacturing the above-mentioned electrostrictive effect element is such that the end face of the internal electrode plate is attached to the side end face of the electrostrictive effect element in which films or thin plates of electrostrictive material and internal electrode plates are alternately laminated. The exposed electrostrictive element is expressed by the general formula (II) (wherein, X is a phenyl group; a biphenyl group; and at least one of the phenyl group and the biphenyl group is 0, C01S,
A tetravalent group selected from the group consisting of a polyphenyl group bonded by at least one of CHx, C(CHs)a and C(CFs)*, and Y is a phenyl group; a biphenyl group; a phenyl group and a biphenyl group. At least one of the groups is 0, CO1S, SOx, CH,, C(CHs)*
and a polyphenyl group; an alkylene group; and a divalent group selected from the group consisting of a xylylene group) bonded by at least one of C(CFI) and carboxyl of a polyamic acid resin. The electrostrictive element is immersed in an electrophoresis bath for film formation obtained by neutralizing the group with a base and diluting with water, and electrophoresis is performed using the internal electrode plate of the electrostrictive element as an anode. The polyamic acid is precipitated only on the exposed portion of the internal electrode plate on the side end face and its vicinity to form a coating layer, and then heat-treated to imidize the polyamic acid resin of the coating layer to form a polyamic acid resin of the general formula (I). ) (wherein X and Y are as described above) is characterized by forming an insulating layer of polyimide resin having a repeating unit represented by the above formula. A part of the polyamic acid resin used in the production method of the present invention may be imidized in advance. In the above polyimide resin having a repeating unit represented by the general formula (I) and the polyamide resin having a repeating unit represented by the general formula (II), specific examples of X include the following: Specific examples include the following: General formula (
From the viewpoint of adhesion and heat resistance of the polyimide resin having the repeating unit represented by
It is particularly preferred that Y is . The general formula (II) used in the production method of the present invention
) A polyamic acid resin having a repeating unit represented by the general formula (III) (wherein, X is as described above) and a tetracarboxylic acid anhydride having the general formula () 1. Y is as described above). Examples of the above-mentioned tetracarboxylic anhydrides include pyromellitic dianhydride, 3.3°, 4.4°-benzophenonetetracarboxylic dianhydride, 2.2"; 3.3°-benzophenonetetra carboxylic dianhydride,
3.3°14,4°-biphenyltetracarboxylic dianhydride, 2.2°,3,3°-biphenyltetracarboxylic dianhydride, 2.2-bis(3,4-dicarboxyphenyl)brovani anhydride, 2,2-bis(2,3-dicarboxyphenyl)brovani anhydride, bis(3,4-
dicarboxyphenyl)ether dianhydride, bis(3,
4-dicarboxyphenyl)sulfone dianhydride, 1.
.. 1-bis(2,3-dicarboxyphenyl)ethane dianhydride, bis(2,3-dicarboxydiphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, 2,3,6. 7-Naphthalenetetracarboxylic dianhydride, 1,4,5.8-naphthalenetetracarboxylic dianhydride, 1,2,5.6-naphthalenetetracarboxylic dianhydride, 1,2,3゜4- 'Benzenetetracarboxylic dianhydride, 3,4,9゜O-perylenetetracarboxylic dianhydride, 2,3,6゜7-anthracenetetracarboxylic dianhydride% L2, 7.8-phenanthrenetetra Preferred examples include carboxylic dianhydrides. Among these, particularly preferred tetracarboxylic dianhydride is pyromellitic dianhydride, 3.3°
, 4.4°-benzophenonetetracarboxylic dianhydride, 3.3°, 4°4°-bif-nyltetracarboxylic dianhydride, and bis(3,4-dicarboxyphenyl)
It is an ether dianhydride. The above diamines include 3,3°-diaminobenzophenone, 1,3-bis(3-aminophenoxy)benzene, 4.4°-bis(3-aminophenoxy)biphenyl, 2.2-bis[4- (3-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, bis(4-(3 -aminophenoxy)phenyl] sulfide, bis[4-(3-aminophenoxy)phenyl 1 ketone, bis(4-(3-aminophenoxy)phenyl]sulfone, etc.), and these diamines may be used alone. or a mixture of two or more. The reaction between the above-mentioned tetracarboxylic anhydride and diamine is usually carried out in an organic solvent. Examples of the organic solvent include N-methyl-2-pyrrolidone, N-methyl-2-pyrrolidone, N-methyl-2-pyrrolidone, , N-dimethylacetamide, N,N-dimethylformamide, 1.3-
Dimethyl-2-imidazolidinone, N,N-diethylacetamide, N,N-dimethylmethoxyacetamide, dimethylsulfoxide, pyridine, dimethylsulfone, hexamethylphosphoramide, tetramethylurea, N
-Methylcaprolactam, tetrahydrofuran, m-dioxane, p-dioxane, 1,2-dimethoxyethane, bis(2-methoxyethyl)ether, 1,2-bis(2-methoxyethoxy)ethane, bis[2-(2- Examples include methoxyethoxy)ethyl 1 ether. These organic solvents may be used alone or in combination of two or more.The reaction temperature is usually 200°C or lower - 20°C or higher, preferably 50°C or lower - 10°C or higher, and more preferably 0°C or higher. The reaction pressure, which is about room temperature, is not particularly limited, and can be sufficiently carried out at normal pressure.The reaction time may vary depending on the type of solvent, reaction temperature, and diamine or acid dianhydride used, but the reaction time is sufficient to complete the production of polyamic acid. Generally, 2 to 40 hours, preferably 4 to 24 hours, is sufficient for the reaction. The polyamic acid solution obtained in this way contains 5% polyamic acid.
It is a solution containing ~40% by weight, particularly preferably 10~30% by weight, and has a logarithmic viscosity of 0.5~4dl/g (35°C
, temperature 0.5 g/ml %N, value measured with N-dimethylacetamide), particularly preferably 0.6 to 2.5 dl
/g indicates the water solubility described below. It is also desirable because the polyimide film has excellent physical properties after heat treatment. In the production method of the present invention, the polyamic acid resin having the repeating unit represented by the general formula (II) is added with a base such as an amine or an alkali metal ion in the presence of water, so that the C0OH group is converted into a C00- ion. It can be dissociated into water and become soluble in water, or it can be stably colloidally dispersed, and it can be deposited on the laminated electrostrictive element, which is an anode, by electrophoresis, and can be made insolubilized. The above bases include ammonia: dialkylamine,
Secondary amines such as jetanolamine and morpholine Tertiary amines such as nitriethylamine, tributylamine, triethanolamine, triisopropanolamine, dimethylethanolamine, dimethylisopropanolamine, diethylethanolamine, and dimethylbenzylamine: caustic soda, caustic potassium Inorganic bases such as these are used, but tertiary amines are particularly preferred from the viewpoint of stability after dilution with water and the properties of the resulting film. The amount of base necessary to impart water dilutability is generally 30 to 110 mol%, particularly preferably 40 to 100 mol%, based on the carboxyl equivalent of the polyamic acid to be neutralized. By neutralizing the polyamic acid, the polyamic acid becomes completely water-soluble or partially water-soluble, becoming suspended and dilutable with water. In either case, by neutralizing the polyamic acid and diluting it with water to the following resin concentration,
An electrophoresis bath for forming a film can be made of an aqueous polyamic acid solution that can be subjected to electrophoresis treatment. The polyamic acid resin thus precipitated is converted into a polyimide resin having a repeating unit represented by the general formula (1) (wherein X is as described above) by heat treatment. The polyimide resin insulating layer obtained as described above has an insulating layer thickness of about 50 μm, a dielectric strength of 10 OOv or more, and excellent adhesion to metals. In addition, the wettability with ceramics, which has been a problem until now, is lower than that of inorganic insulating layers, so the insulating layer adheres only to the vicinity of the side edges, making it possible to make the distance between the layers much smaller than with conventional methods. be. Example 1 In a reaction vessel equipped with a stirrer, reflux condenser and nitrogen inlet tube, 53.0 g of 3.3°-diamino, benzophenone
(0.25 mol) to N,N-dimethylacetamide 24
It was dissolved in 0 and 1. To this solution was added 78.6 g (0
, 244 mol) was added thereto and stirred at 10° C. for 24 hours to obtain a polyamic acid solution. The logarithmic viscosity of the obtained polyamic acid was 0.6 dl/g. 39.1 g of dimethylethanolamine (carboxyl equivalent: 90 mol%) was gradually added to this polyamic acid solution, and after stirring at room temperature for 20 minutes, 905.3 g of water was gradually added at room temperature while stirring to dilute with water. A polyamic acid aqueous solution was prepared by
resin concentration 10% by weight). In addition, samples of the laminate were prepared in advance such that metal electrodes were exposed on every other layer on one end surface and all metal electrodes were exposed on the other end surface. - Silver electrodes were baked on the side where the metal electrodes were exposed every other layer, and lead wires were connected with solder. The aqueous solution was put into a plastic tank to serve as an electrophoresis bath for film formation, and the laminate to be coated was infiltrated as an anode, and a lead wire was connected to the anode. 2 in 1OOv
Electrophoresis was performed by applying a voltage for 0 seconds. Thereafter, the laminate was taken out, washed with water, and then dried and imidized by heat treatment at 150°C for 2 hours and 280°C for 2 hours.The laminate was cut in the middle, and a silver electrode was attached to the side where the imide resin insulating film was attached. I applied it and attached the lead wire. By performing the same operation, a laminate having insulating layers on the left and right sides of each electrode was obtained. The thickness of this insulating layer is about 50 microns, and the dielectric strength is 10
It was confirmed that the voltage was 00V or more. Example 2 In a container equipped with a stirrer, a reflux condenser and a nitrogen inlet tube, 2
.. 2-bis(4-(3-aminophenoxy)phenyl)
Propane 41. Og (0.1 mol) and 200 ml of N,N-dimethylacetamide were charged, cooled to around 0°C, and pyromellitic dianhydride 21
.. 8 g (0.1 mol) of powder was added and stirred at around 0°C for 2 hours.Then, the above solution was returned to room temperature and stirred for about 20 hours under a nitrogen atmosphere. The logarithmic viscosity of the polyamic acid thus obtained was 1.5 dl/g. To this polyamic acid solution, 20.2 g of triethylamine (carboxyl equivalent: 100 mol%) was gradually added and stirred at room temperature for 1 hour, and then 973 g of water was gradually added with stirring to dilute it to prepare a polyamic acid aqueous solution (resin (concentration 5% by weight)
. A sample of a laminate was prepared in the same manner as in Example 1, and an insulating layer was provided in the same manner as in Example 1 using this sample and the above polyamic acid aqueous solution. This insulating layer has a thickness of 50μ and t
It had a dielectric strength of ooov or more. Example 3 In a container equipped with a stirrer, a reflux condenser and a nitrogen inlet tube, two
.. 2-bis[4-(3-aminophenoxy)phenyl]
Propane 41. Add Og (0.1 mol) and 219.6 g of N,N-dimethylacetamide, and add 31.6 g of 4.4'-benzophenonetetracarboxylic dianhydride at room temperature under a nitrogen atmosphere. , 098 mol) as a dry solid was added little by little while being careful not to increase the solution temperature, and the mixture was reacted at room temperature for 23 hours. The logarithmic viscosity of the polyamic acid thus obtained was 0.70 dl/g. Triethanolamine 14.
6 g (carboxyl equivalent: 50 mol%) was gradually added, stirred at 40°C for 2 hours, and diluted by gradually adding 117.2 g of water with stirring to prepare an aqueous polyamic acid solution (
resin concentration 15% by weight). A sample of a laminate was prepared in the same manner as in Example 1, and an insulating layer was provided in the same manner as in Example 1 using this sample and the above polyamic acid aqueous solution. This insulating layer has a thickness of 50μ
It had a dielectric strength of 0OOV or more. Examples 4 to 19 Changing the type and amount of diamine, the amount of N,N-dimethylacetamide, the type and amount of tetracarboxylic dianhydride, the amount of dimethylethanolamine used for neutralization, and the amount of water used for dilution All other operations were the same as in Example 1. In addition, the amount of dimethylethanolamine used for neutralization is calculated from the carboxyl equivalent of 90% by weight,
The amount of water used for dilution was calculated to give a resin concentration of 10% by weight. In the table, PMDA is pyromellitic anhydride, and BTDA is 3.3°, 4.4°-benzophenone tetracarboxylic acid. Acid dianhydride, 0DPA is bis(3
,4-dicarboxyphenyl)ether dianhydride, BP
DA represents 3,3°,4,4'-biphenyltetracarboxylic dianhydride. In both cases, the insulating layer had a thickness of 50 μm and a dielectric strength of 1000 V or more. [Effects of the invention] According to the present invention, it has been impossible to reduce the thickness of one layer of a laminate to 100 microns or less, but it can be
It became possible to make it OO micron. Furthermore, until now, organic materials have not attracted attention due to their poor insulation properties, but surprisingly, when polyimide resins are used, their insulating strength has increased to a level comparable to that of inorganic materials.

Claims (2)

【特許請求の範囲】[Claims] 1.電歪材料の膜又は薄板と内部電極板とが交互に積層
されている電歪効果素子であって、該素子の側端面に該
内部電極板の端面が露出しており、該側端面上の該内部
電極板の露出部とその近傍の電歪材料上のみに、一般式
(I) ▲数式、化学式、表等があります▼ (式中、Xはフェニル基;ビフェニル基;及びフェニル
基及びビフェニル基の少なくとも1種がO、CO、S、
CH_2、C(CH_3)_2及びC(CF_3)_2
の少なくとも1種によって結合されたポリフェニル基か
らなる群から選ばれた四価の基であり、Yはフエニル基
;ビフェニル基;フェニル基及びビフェニル基の少なく
とも1種がO、CO、S、SO_2、CH_2、C(C
H_3)_2及びC(CF_3)_2の少なくとも1種
によって結合されたポリフェニル基;アルキレン基;及
びキシリレン基からなる群から選ばれた二価の基である
) で表わされる繰り返し単位を有するポリイミド樹脂の絶
縁層が形成されていることを特徴とする電歪効果素子。
1. An electrostrictive effect element in which films or thin plates of electrostrictive material and internal electrode plates are alternately laminated, and the end face of the internal electrode plate is exposed on the side end face of the element, and the end face of the internal electrode plate is exposed on the side end face of the element. General formula (I) ▲Mathematical formula, chemical formula, table, etc. are provided only on the exposed part of the internal electrode plate and the electrostrictive material in the vicinity▼ (wherein, X is a phenyl group; a biphenyl group; and a phenyl group and a biphenyl group) At least one of the groups is O, CO, S,
CH_2, C(CH_3)_2 and C(CF_3)_2
is a tetravalent group selected from the group consisting of polyphenyl groups bonded by at least one of the following, Y is a phenyl group; a biphenyl group; at least one of the phenyl group and the biphenyl group is O, CO, S, SO_2 , CH_2, C(C
A polyimide resin having a repeating unit represented by An electrostrictive effect element characterized by comprising an insulating layer formed thereon.
2.電歪材料の膜又は薄板と内部電極板とが交互に積層
されている電歪効果素子の側端面に該内部電極板の端面
が露出している該電歪効果素子を、一般式(II) ▲数式、化学式、表等があります▼ (式中、Xはフェニル基;ビフェニル基;及びフェニル
基及びビフェニル基の少なくとも1種がO、CO、S、
CH_2、C(CH_3)_2及びC(CF_3)_2
少なくとも1種によって結合されたポリフェニル基から
なる群から選ばれた四価の基であり、Yはフェニル基;
ビフェニル基;フェニル基及びビフェニル基の少なくと
も1種がO、CO、S、SO_2CH_2、C(CH_
2)_2及びC(CF_3)_2の少なくとも1種によ
って結合されたポリフェニル基;アルキレン基;及びキ
シリレン基からなる群から選ばれた二価の基である) で表わされる繰り返し単位を有するポリアミド酸樹脂の
カルボキシル基を塩基で中和し、水で希釈して得た被膜
形成用電気泳動浴中に浸漬し、該電歪効果素子の内部電
極板を陽極として電気泳動を実施して該電歪効果素子の
側端面上の該内部電極板の露出部とその近傍のみに該ポ
リアミド酸を析出させて被膜層を形成し、その後加熱処
理して該被膜層のポリアミド酸樹脂をイミド化させて一
般式(I) ▲数式、化学式、表等があります▼ (式中、X及びYは前記の通りである) で表わされる繰り返し単位を有するポリイミド樹脂の絶
縁層を形成させることを特徴とする請求項1記載の電歪
効果素子の製造方法。
2. An electrostrictive element in which films or thin plates of electrostrictive material and internal electrode plates are alternately laminated, and the end face of the internal electrode plate is exposed at the side end face of the electrostrictive element is expressed by the general formula (II). ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, X is a phenyl group; a biphenyl group; and at least one of the phenyl group and biphenyl group is O, CO, S,
CH_2, C(CH_3)_2 and C(CF_3)_2
a tetravalent group selected from the group consisting of polyphenyl groups bonded by at least one type, Y is a phenyl group;
Biphenyl group; At least one of phenyl group and biphenyl group is O, CO, S, SO_2CH_2, C(CH_
2) A polyamic acid having a repeating unit represented by a divalent group selected from the group consisting of a polyphenyl group; an alkylene group; and a xylylene group bonded by at least one of _2 and C(CF_3)_2. The carboxyl groups of the resin are neutralized with a base, and the resin is immersed in an electrophoresis bath for forming a film obtained by diluting with a base, and electrophoresis is performed using the internal electrode plate of the electrostrictive element as an anode. The polyamic acid is deposited only on the exposed portion of the internal electrode plate on the side end surface of the effect element and its vicinity to form a coating layer, and then heat treatment is performed to imidize the polyamic acid resin of the coating layer. A claim characterized by forming an insulating layer of polyimide resin having a repeating unit represented by formula (I) ▲A mathematical formula, a chemical formula, a table, etc.▼ (wherein X and Y are as described above) 1. A method for manufacturing an electrostrictive element according to 1.
JP1171854A 1989-07-05 1989-07-05 Electrostrictive effect element and method of manufacturing the same Expired - Lifetime JP2865709B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1171854A JP2865709B2 (en) 1989-07-05 1989-07-05 Electrostrictive effect element and method of manufacturing the same
DE69024863T DE69024863T2 (en) 1989-07-05 1990-06-28 Multi-layer ceramic element and method for its production
EP90307104A EP0407099B1 (en) 1989-07-05 1990-06-28 Multi-layered ceramic elements and method for producing same
CA002020367A CA2020367A1 (en) 1989-07-05 1990-07-04 Multi-layered ceramic elements and method for producing same
KR1019900010103A KR930010420B1 (en) 1989-07-05 1990-07-04 Multi-layered ceramic element and method for producing the same
US07/637,554 US5173162A (en) 1989-07-05 1991-01-04 Multi-layered electrostrictive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1171854A JP2865709B2 (en) 1989-07-05 1989-07-05 Electrostrictive effect element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0338076A true JPH0338076A (en) 1991-02-19
JP2865709B2 JP2865709B2 (en) 1999-03-08

Family

ID=15931014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1171854A Expired - Lifetime JP2865709B2 (en) 1989-07-05 1989-07-05 Electrostrictive effect element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2865709B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015521793A (en) * 2012-06-19 2015-07-30 エプコス アクチエンゲゼルシャフトEpcos Ag Method for manufacturing ceramic device and ceramic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015521793A (en) * 2012-06-19 2015-07-30 エプコス アクチエンゲゼルシャフトEpcos Ag Method for manufacturing ceramic device and ceramic device
US9873952B2 (en) 2012-06-19 2018-01-23 Epos Ag Method of producing a ceramic component having a main body with internal electrodes

Also Published As

Publication number Publication date
JP2865709B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
CN107325285B (en) Polyimide, polyimide-based adhesive, adhesive material, adhesive layer, adhesive sheet, laminate, wiring board, and method for producing same
US9462688B2 (en) Flexible metal laminate containing fluoropolymer
EP0424805B1 (en) Copolyimide ODPA/BPDA/4,4'-ODA/p-PDA
US20040010062A1 (en) Polyimide copolymer and methods for preparing the same
JP7446741B2 (en) Metal-clad laminates and circuit boards
EP0243507A1 (en) Flexible laminate for printed circuit board and process for its production
US11859038B2 (en) Method for manufacturing a block copolymer of polyamide acid
DE69822918T2 (en) Electronic part and method for its production
JP2016121295A (en) Polyimide precursor composition, polyimide molded article, and method for preparing polyimide molded article
CN106947079B (en) Modified polyimide, adhesive composition, copper foil with resin, copper-clad laminate, printed wiring board, and multilayer substrate
JP4265048B2 (en) Aqueous dispersion for electrodeposition, high dielectric constant film and electronic component
JP6988094B2 (en) Method for manufacturing polyimide precursor composition and polyimide molded product
DE102020115671A1 (en) POLYMER FILMS AND ELECTRONIC DEVICES
JP2007281361A (en) Polyimide printed circuit board and polyimide printed wiring board
JPH11292968A (en) Electronic part and its production
KR900003810B1 (en) Flexible printed circuit board and process for its production
JP6007809B2 (en) Method for producing polyimide molded body, polyimide molded body, liquid crystal alignment film, passivation film, wire coating material, and adhesive film
JPH09174756A (en) Polyimide-metal foil composite film
JP2865709B2 (en) Electrostrictive effect element and method of manufacturing the same
TW202146232A (en) Metal-clad polymer films and electronic devices
KR930010420B1 (en) Multi-layered ceramic element and method for producing the same
JP2021068847A (en) Circuit board and manufacturing method thereof
JP2004335764A (en) Dielectric film and method for manufacturing the same
JP2895141B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2919946B2 (en) Laminated electrostrictive element and method of manufacturing the same