JP2919946B2 - Laminated electrostrictive element and method of manufacturing the same - Google Patents
Laminated electrostrictive element and method of manufacturing the sameInfo
- Publication number
- JP2919946B2 JP2919946B2 JP2309520A JP30952090A JP2919946B2 JP 2919946 B2 JP2919946 B2 JP 2919946B2 JP 2309520 A JP2309520 A JP 2309520A JP 30952090 A JP30952090 A JP 30952090A JP 2919946 B2 JP2919946 B2 JP 2919946B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- electrostrictive
- laminated
- insulating
- internal electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000010410 layer Substances 0.000 claims description 126
- 239000000463 material Substances 0.000 claims description 47
- 229920005575 poly(amic acid) Polymers 0.000 claims description 43
- 230000000694 effects Effects 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 33
- 239000000945 filler Substances 0.000 claims description 30
- 238000001962 electrophoresis Methods 0.000 claims description 27
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 19
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 18
- 229920001721 polyimide Polymers 0.000 claims description 18
- 239000009719 polyimide resin Substances 0.000 claims description 17
- 239000011347 resin Substances 0.000 claims description 17
- 229920005989 resin Polymers 0.000 claims description 17
- 125000006267 biphenyl group Chemical group 0.000 claims description 16
- 239000010408 film Substances 0.000 claims description 14
- 239000010409 thin film Substances 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 8
- 229920006389 polyphenyl polymer Polymers 0.000 claims description 8
- 239000011247 coating layer Substances 0.000 claims description 7
- 239000011810 insulating material Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 6
- 239000011368 organic material Substances 0.000 claims description 6
- 125000002947 alkylene group Chemical group 0.000 claims description 4
- 125000006839 xylylene group Chemical group 0.000 claims description 4
- 238000007865 diluting Methods 0.000 claims description 3
- 239000011231 conductive filler Substances 0.000 claims description 2
- 239000000843 powder Substances 0.000 description 18
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 15
- 230000015556 catabolic process Effects 0.000 description 13
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- -1 tetracarboxylic anhydride Chemical class 0.000 description 6
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000004070 electrodeposition Methods 0.000 description 5
- 229910010272 inorganic material Inorganic materials 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 229910000679 solder Inorganic materials 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 150000004985 diamines Chemical class 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000002966 varnish Substances 0.000 description 4
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 3
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229960002887 deanol Drugs 0.000 description 3
- 239000012972 dimethylethanolamine Substances 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- QQGYZOYWNCKGEK-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)oxy]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(OC=2C=C3C(=O)OC(C3=CC=2)=O)=C1 QQGYZOYWNCKGEK-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 1
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- VDFVNEFVBPFDSB-UHFFFAOYSA-N 1,3-dioxane Chemical compound C1COCOC1 VDFVNEFVBPFDSB-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- NCXUNZWLEYGQAH-UHFFFAOYSA-N 1-(dimethylamino)propan-2-ol Chemical compound CC(O)CN(C)C NCXUNZWLEYGQAH-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- DZLUPKIRNOCKJB-UHFFFAOYSA-N 2-methoxy-n,n-dimethylacetamide Chemical compound COCC(=O)N(C)C DZLUPKIRNOCKJB-UHFFFAOYSA-N 0.000 description 1
- GWHLJVMSZRKEAQ-UHFFFAOYSA-N 3-(2,3-dicarboxyphenyl)phthalic acid Chemical compound OC(=O)C1=CC=CC(C=2C(=C(C(O)=O)C=CC=2)C(O)=O)=C1C(O)=O GWHLJVMSZRKEAQ-UHFFFAOYSA-N 0.000 description 1
- TYKLCAKICHXQNE-UHFFFAOYSA-N 3-[(2,3-dicarboxyphenyl)methyl]phthalic acid Chemical compound OC(=O)C1=CC=CC(CC=2C(=C(C(O)=O)C=CC=2)C(O)=O)=C1C(O)=O TYKLCAKICHXQNE-UHFFFAOYSA-N 0.000 description 1
- UCFMKTNJZCYBBJ-UHFFFAOYSA-N 3-[1-(2,3-dicarboxyphenyl)ethyl]phthalic acid Chemical compound C=1C=CC(C(O)=O)=C(C(O)=O)C=1C(C)C1=CC=CC(C(O)=O)=C1C(O)=O UCFMKTNJZCYBBJ-UHFFFAOYSA-N 0.000 description 1
- PAHZZOIHRHCHTH-UHFFFAOYSA-N 3-[2-(2,3-dicarboxyphenyl)propan-2-yl]phthalic acid Chemical compound C=1C=CC(C(O)=O)=C(C(O)=O)C=1C(C)(C)C1=CC=CC(C(O)=O)=C1C(O)=O PAHZZOIHRHCHTH-UHFFFAOYSA-N 0.000 description 1
- DKKYOQYISDAQER-UHFFFAOYSA-N 3-[3-(3-aminophenoxy)phenoxy]aniline Chemical compound NC1=CC=CC(OC=2C=C(OC=3C=C(N)C=CC=3)C=CC=2)=C1 DKKYOQYISDAQER-UHFFFAOYSA-N 0.000 description 1
- MFTFTIALAXXIMU-UHFFFAOYSA-N 3-[4-[2-[4-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropan-2-yl]phenoxy]aniline Chemical compound NC1=CC=CC(OC=2C=CC(=CC=2)C(C=2C=CC(OC=3C=C(N)C=CC=3)=CC=2)(C(F)(F)F)C(F)(F)F)=C1 MFTFTIALAXXIMU-UHFFFAOYSA-N 0.000 description 1
- NYRFBMFAUFUULG-UHFFFAOYSA-N 3-[4-[2-[4-(3-aminophenoxy)phenyl]propan-2-yl]phenoxy]aniline Chemical compound C=1C=C(OC=2C=C(N)C=CC=2)C=CC=1C(C)(C)C(C=C1)=CC=C1OC1=CC=CC(N)=C1 NYRFBMFAUFUULG-UHFFFAOYSA-N 0.000 description 1
- UCQABCHSIIXVOY-UHFFFAOYSA-N 3-[4-[4-(3-aminophenoxy)phenyl]phenoxy]aniline Chemical group NC1=CC=CC(OC=2C=CC(=CC=2)C=2C=CC(OC=3C=C(N)C=CC=3)=CC=2)=C1 UCQABCHSIIXVOY-UHFFFAOYSA-N 0.000 description 1
- WCXGOVYROJJXHA-UHFFFAOYSA-N 3-[4-[4-(3-aminophenoxy)phenyl]sulfonylphenoxy]aniline Chemical compound NC1=CC=CC(OC=2C=CC(=CC=2)S(=O)(=O)C=2C=CC(OC=3C=C(N)C=CC=3)=CC=2)=C1 WCXGOVYROJJXHA-UHFFFAOYSA-N 0.000 description 1
- AVCOFPOLGHKJQB-UHFFFAOYSA-N 4-(3,4-dicarboxyphenyl)sulfonylphthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1S(=O)(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 AVCOFPOLGHKJQB-UHFFFAOYSA-N 0.000 description 1
- IWXCYYWDGDDPAC-UHFFFAOYSA-N 4-[(3,4-dicarboxyphenyl)methyl]phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1CC1=CC=C(C(O)=O)C(C(O)=O)=C1 IWXCYYWDGDDPAC-UHFFFAOYSA-N 0.000 description 1
- GEYAGBVEAJGCFB-UHFFFAOYSA-N 4-[2-(3,4-dicarboxyphenyl)propan-2-yl]phthalic acid Chemical compound C=1C=C(C(O)=O)C(C(O)=O)=CC=1C(C)(C)C1=CC=C(C(O)=O)C(C(O)=O)=C1 GEYAGBVEAJGCFB-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZWXPDGCFMMFNRW-UHFFFAOYSA-N N-methylcaprolactam Chemical compound CN1CCCCCC1=O ZWXPDGCFMMFNRW-UHFFFAOYSA-N 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- SLINHMUFWFWBMU-UHFFFAOYSA-N Triisopropanolamine Chemical compound CC(O)CN(CC(C)O)CC(C)O SLINHMUFWFWBMU-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- MRSWDOKCESOYBI-UHFFFAOYSA-N anthracene-2,3,6,7-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C=C2C=C(C=C(C(C(=O)O)=C3)C(O)=O)C3=CC2=C1 MRSWDOKCESOYBI-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- GCAIEATUVJFSMC-UHFFFAOYSA-N benzene-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1C(O)=O GCAIEATUVJFSMC-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- TUQQUUXMCKXGDI-UHFFFAOYSA-N bis(3-aminophenyl)methanone Chemical compound NC1=CC=CC(C(=O)C=2C=C(N)C=CC=2)=C1 TUQQUUXMCKXGDI-UHFFFAOYSA-N 0.000 description 1
- BBRLKRNNIMVXOD-UHFFFAOYSA-N bis[4-(3-aminophenoxy)phenyl]methanone Chemical compound NC1=CC=CC(OC=2C=CC(=CC=2)C(=O)C=2C=CC(OC=3C=C(N)C=CC=3)=CC=2)=C1 BBRLKRNNIMVXOD-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 125000005265 dialkylamine group Chemical group 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- HDNHWROHHSBKJG-UHFFFAOYSA-N formaldehyde;furan-2-ylmethanol Chemical compound O=C.OCC1=CC=CO1 HDNHWROHHSBKJG-UHFFFAOYSA-N 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- AJFDBNQQDYLMJN-UHFFFAOYSA-N n,n-diethylacetamide Chemical compound CCN(CC)C(C)=O AJFDBNQQDYLMJN-UHFFFAOYSA-N 0.000 description 1
- OBKARQMATMRWQZ-UHFFFAOYSA-N naphthalene-1,2,5,6-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 OBKARQMATMRWQZ-UHFFFAOYSA-N 0.000 description 1
- DOBFTMLCEYUAQC-UHFFFAOYSA-N naphthalene-2,3,6,7-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C=C2C=C(C(O)=O)C(C(=O)O)=CC2=C1 DOBFTMLCEYUAQC-UHFFFAOYSA-N 0.000 description 1
- YTVNOVQHSGMMOV-UHFFFAOYSA-N naphthalenetetracarboxylic dianhydride Chemical compound C1=CC(C(=O)OC2=O)=C3C2=CC=C2C(=O)OC(=O)C1=C32 YTVNOVQHSGMMOV-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000004482 other powder Substances 0.000 description 1
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 1
- UMSVUULWTOXCQY-UHFFFAOYSA-N phenanthrene-1,2,7,8-tetracarboxylic acid Chemical compound OC(=O)C1=CC=C2C3=CC=C(C(=O)O)C(C(O)=O)=C3C=CC2=C1C(O)=O UMSVUULWTOXCQY-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- CLYVDMAATCIVBF-UHFFFAOYSA-N pigment red 224 Chemical compound C=12C3=CC=C(C(OC4=O)=O)C2=C4C=CC=1C1=CC=C2C(=O)OC(=O)C4=CC=C3C1=C42 CLYVDMAATCIVBF-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
- H10N30/872—Interconnections, e.g. connection electrodes of multilayer piezoelectric or electrostrictive devices
Landscapes
- Laminated Bodies (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低電圧で駆動できる積層型電歪効果素子及び
その素子の製造方法に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated electrostrictive element that can be driven at a low voltage and a method for manufacturing the element.
メカトロニクスが発展するにつれ、小型且つ軽量で、
微細な位置決めが可能な素子や発生力が大きく応答速度
の早い素子が大量且つ安価に供給されることが望まれて
いる。かってはこうした素子はモータやソレノイド或は
ボイスコイル等に代表される電磁力を用いた素子がほと
んどであったが、最近ではセラミックスの電歪性を利用
した素子が開発されて注目されている。なかでも電歪縦
効果を利用した素子は発生力が大きく応答速度の早いも
のとして特に注目されている。しかしながらこの効果に
よる電歪材料の歪は10kV/cmの電界下でも高々10-3程度
と小さいため、変位を大きく得るために電極と薄い電歪
材料とを交互に積み重ね、力学的には直列で電気的には
並列になるような工夫が提案され、一部は実用化されて
いる。As mechatronics evolved, it became smaller and lighter,
It is desired that an element capable of fine positioning or an element having a large generating force and a high response speed be supplied in large quantities and at low cost. In the past, most of these elements used electromagnetic force typified by motors, solenoids, voice coils, and the like. Recently, however, elements using the electrostrictive properties of ceramics have been developed and are attracting attention. In particular, elements utilizing the electrostriction longitudinal effect have attracted particular attention because of their large generating force and high response speed. However, the strain of the electrostrictive material due to this effect is as small as 10-3 at most even under an electric field of 10 kV / cm, so that in order to obtain a large displacement, the electrodes and the thin electrostrictive material are alternately stacked, and mechanically in series. Some devices have been proposed to be electrically parallel, and some have been put to practical use.
このような積層型電歪縦効果素子のうち比較的初期に
提案されてたものはスタック型と呼ばれ、例えば厚さ0.
5〜1mmの電歪材料100枚とそれと同一形状の電極を交互
に積層し1000V前後の高電圧を印加した高々100μm程度
の変位を得るものであった(例えば山下修二,Jpn.J.App
l.Phys.vol.20(1981)Suppl.pp93−95。このスタック
型素子は比較的大型になり、しかも素子の駆動に当たっ
ては高電圧を必要とするため応用に限界があった。Among such stacked electrostrictive longitudinal effect elements, those proposed relatively early are called stack type, and have a thickness of, for example, 0.
100 sheets of 5 to 1 mm electrostrictive material and electrodes of the same shape were alternately laminated to obtain a displacement of at most about 100 μm when a high voltage of about 1000 V was applied (for example, Shuji Yamashita, Jpn. J. App.
l.Phys.vol.20 (1981) Suppl.pp93-95. This stack-type device has a relatively large size and requires a high voltage to drive the device, which limits its application.
これに対し高橋等は特開昭58−196068号でグリーンシ
ート法を用い、1枚1枚の電歪材料を薄くし、さらに電
歪材料に挟まれた多数の電極(内部電極)を電歪材料の
全面に形成することによってスタック型素子と同様の構
造を実現して低電圧で素子を駆動することを提案した。
このような素子を工業的に製造するには素子側端面に露
出した内部電極端面を1層おきに電気的に導通させる工
夫が必要であったが、越智等は特開昭59−115579号で電
気泳動法を利用してガラス系無機材料を内部電極の露出
部とその近傍の電歪材料上のみに電着して絶縁層とな
し、内部電極各層毎に独立した絶縁層を形成することに
よって上記困難を克服できると提案した。この提案によ
って電歪材料の厚みは0.1〜0.2mmにまで薄くなり、駆動
電圧も100V程度まで下げられるようになったと言われて
いる。しかしながらこのような方法を用いても信頼性の
ある絶縁の実現には困難があるようでその後も電気泳動
法に関する様々な改良が同一出願人から提案されてい
る。また、電気泳動法とは別の方法による内部電極絶縁
法も多数提案されている。On the other hand, Takahashi et al. Used the green sheet method in JP-A-58-196068 to reduce the thickness of each electrostrictive material, and to further reduce the number of electrodes (internal electrodes) sandwiched between the electrostrictive materials. It has been proposed to realize a structure similar to a stack type device by forming the device over the entire surface of the material and drive the device at a low voltage.
In order to industrially manufacture such an element, it was necessary to devise a method of electrically connecting the internal electrode end faces exposed on the element side end face to every other layer, but Ochi et al. Disclosed in JP-A-59-115579. By electro-depositing a glass-based inorganic material only on the exposed part of the internal electrode and the electrostrictive material in the vicinity of it using electrophoresis, an insulating layer is formed, and an independent insulating layer is formed for each internal electrode layer It suggested that the above difficulties could be overcome. It is said that this proposal has reduced the thickness of the electrostrictive material to 0.1 to 0.2 mm and reduced the driving voltage to about 100 V. However, even if such a method is used, it is difficult to realize reliable insulation, and various improvements regarding the electrophoresis method have been proposed by the same applicant. Also, many internal electrode insulation methods using a method different from the electrophoresis method have been proposed.
これらの提案は素子の小型化と低電圧駆動を狙ったも
のであるが、現在に至るまで電歪材料の厚みを0.1mm以
下に出来るようにした実用に供し得るものはない。These proposals aim at miniaturization of the element and low-voltage driving, but there is no practical use that can reduce the thickness of the electrostrictive material to 0.1 mm or less until now.
積層型電歪縦効果素子を従来品より低電圧で駆動する
ためには電歪材料をより薄くする必要がある。それには
素子の側端面に露出した内部電極端面を絶縁する絶縁層
を微細且つ正確に形成しなければならない。しかしなが
ら内部電極露出端面を1層おきに絶縁し、該絶縁層を内
部電極各層毎に独立した絶縁層にしようとすると、電歪
材料の厚みが薄くなるにつれて操業上の制約や絶縁物質
と電歪材料の濡れ性等の理由で本来は絶縁すべきではな
い内部電極をも絶縁するようになり、外部電極とは全く
導通しない内部電極が出来、その結果設計どうりの変位
量を実現できないといった問題がある。In order to drive the laminated electrostrictive longitudinal effect element at a lower voltage than conventional products, it is necessary to make the electrostrictive material thinner. To this end, an insulating layer for insulating the end face of the internal electrode exposed at the side end face of the element must be formed finely and accurately. However, if the exposed end face of the internal electrode is insulated every other layer and the insulating layer is made to be an independent insulating layer for each layer of the internal electrode, as the thickness of the electrostrictive material becomes thinner, there are restrictions on the operation, the insulating material and the electrostriction. Internal electrodes that should not be insulated due to wettability of the material are also insulated, and internal electrodes that do not conduct at all with the external electrodes are created. As a result, the amount of displacement as designed cannot be realized. There is.
本発明者らは、上記の問題を解決する一手段として絶
縁物質について研究し、そしてポリアミド酸を電気泳動
により内部電極の素子端露出部に析出させて被膜層を形
成し、その後加熱によって該被膜層のポリアミド酸樹脂
をイミド化し、得られたポリイミド樹脂で絶縁層を形成
する方法を先に出願した(特願平1−171854)。この出
願した方法は、従来困難といわれていた有機物による絶
縁である点だけでなく、積層体の一層の厚さを100ミク
ロン以下にすることができるという点においても画期的
であった。しかしながら、この出願した方法においては
絶縁層中に泡が封入されやすく、泡が封入された場合に
はその泡の部分から絶縁が破壊するために製品の耐電圧
に大きなバラツキを生じるという欠点があった。The present inventors have studied an insulating material as one means for solving the above problem, and formed a coating layer by depositing polyamic acid by electrophoresis on the exposed end of the internal electrode, and then heating the coating layer by heating. A method of imidizing the polyamic acid resin of the layer and forming an insulating layer with the obtained polyimide resin was previously filed (Japanese Patent Application No. 1-171854). The method according to the present application is epoch-making not only in that it has been conventionally difficult to solve the problem with an organic material, but also in that the thickness of one layer of the laminate can be reduced to 100 microns or less. However, the method of this application has a disadvantage that bubbles are easily encapsulated in the insulating layer, and when the bubbles are encapsulated, insulation breaks down from the foam, resulting in a large variation in withstand voltage of the product. Was.
本発明の目的は、上記のような欠点のない積層電歪効
果素子ならびにその製造方法を提供することがある。An object of the present invention is to provide a laminated electrostrictive effect element free from the above-mentioned disadvantages and a method for manufacturing the same.
また、本発明者等は、前記問題点は内部電極各層毎に
独立した絶縁層を形成するために生じるということをつ
きとめた。本発明の目的は上記問題点を解決し電歪材料
を薄くしても内部電極露出部の必要な部分にのみ絶縁が
でき、従って設計どうりの変位量を取り出すことが出来
る素子構造とその絶縁方法を提供することにある。The present inventors have also found that the above-mentioned problem arises because an independent insulating layer is formed for each internal electrode layer. SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and to insulate only a necessary portion of an internal electrode exposed portion even if the electrostrictive material is thinned, and thus to obtain an element structure capable of taking out a displacement amount as designed and its insulation. It is to provide a method.
[課題を解決するための手段] 本発明者らは、上記の目的を達成するために鋭意検討
を重ねた結果、ポリアミド酸を内部電極の素子端露出部
に析出させる時に同時に絶縁性フィラーを析出させれば
よいことを見出し本発明を完成した。[Means for Solving the Problems] As a result of intensive studies to achieve the above object, the present inventors have found that, when polyamic acid is deposited on the element end exposed portion of the internal electrode, the insulating filler is deposited at the same time. The present inventors have found out what should be done and completed the present invention.
また、本発明者らは、連続した3個以上の奇数個の内
部電極を同一の絶縁層で絶縁するばよいことを見出し本
発明を完成した。In addition, the present inventors have found that it is sufficient to insulate three or more odd-numbered internal electrodes with the same insulating layer, and have completed the present invention.
即ち、本発明の第一の態様の積層型電歪効果素子は、
電歪材料の膜又は薄板と内部電極とが交互に積層されて
おり、該内部電極が該電歪材料の薄膜又は薄板の全面に
わたって形成されている積層型電歪効果素子において、
該素子の側端面に露出している該内部電極の露出端面及
びその近傍に電歪材料のみを絶縁する絶縁層が、一般式
(I) (式中、Xはフェニル基;ビフェニル基;及びフェニル
基及びビフェニル基の少なくとも1種がO,CO,S,CH2,C
(CH3)2及びC(CF3)2の少なくとも1種によって結合され
たポリフェニル基からなる群から選ばれた四価の基であ
り、Yはフェニル基;ビフェニル基;フェニル基及びビ
フェニル基の少なくとも1種がO,CO,S,SO2,CH2,C(C
H3)2及びC(CF3)2の少なくとも1種によって結合された
ポリフェニル基;アルキレン基;及びキシリレン基から
なる群から選ばれた二価の基である) で表わされる繰り返し単位を有するポリイミド樹脂と絶
縁性フィラーとからなることを特徴とする。That is, the laminated electrostrictive effect element of the first aspect of the present invention,
A film or thin plate of electrostrictive material and an internal electrode are alternately laminated, and in the laminated electrostrictive element in which the internal electrode is formed over the entire surface of the thin film or thin plate of the electrostrictive material,
An insulating layer that insulates only the electrostrictive material on the exposed end face of the internal electrode exposed on the side end face of the element and the vicinity thereof has a general formula (I) (Wherein X is a phenyl group; a biphenyl group; and at least one of the phenyl group and the biphenyl group is O, CO, S, CH 2 , C
A tetravalent group selected from the group consisting of a polyphenyl group linked by at least one of (CH 3 ) 2 and C (CF 3 ) 2 , wherein Y is a phenyl group; a biphenyl group; a phenyl group and a biphenyl group At least one of O, CO, S, SO 2 , CH 2 , C (C
H 3 ) 2 and a divalent group selected from the group consisting of a polyphenyl group, an alkylene group, and a xylylene group, which are linked by at least one of C (CF 3 ) 2. It is characterized by comprising a polyimide resin and an insulating filler.
また、本発明の第一の態様の積層型電歪効果素子の製
造方法は、電歪材料の膜又は薄板と内部電極とが交互に
積層されており、該内部電極が該電歪材料の薄膜又は薄
板の全面にわたって形成されている積層型電歪効果素子
の側端面に該内部電極の端面が露出している該電歪効果
素子を、一般式(II) (式中、Xはフェニル基;ビフェニル基;及びフェニル
基及びビフェニル基の少なくとも1種がO,CO,S,CH2,C
(CH3)2及びC(CF3)2の少なくとも1種によって結合され
たポリフェニル基からなる群から選ばれた四価の基であ
り、Yはフェニル基;ビフェニル基;フェニル基及びビ
フェニル基の少なくとも1種がO,CO,S,SO2,CH2,C(C
H3)2及びC(CF3)2の少なくとも1種によって結合された
ポリフェニル基;アルキレン基;及びキシリレン基から
なる群から選ばれた二価の基である) で表わされる繰り返し単位を有するポリアミド酸樹脂と
該樹脂中に分散した絶縁性フィラーとからなる組成物中
の該ポリアミド酸樹脂のカルボキシル基を塩基で中和
し、水で希釈して得た被膜形成用電気泳動浴中に浸漬
し、該電歪効果素子の内部電極を陽極として電気泳動を
実施して該電歪効果素子の側端面上の該内部電極の露出
部及びその近傍の電歪材料のみに該ポリアミド酸及び該
絶縁性フィラーを析出させて被膜層を形成し、その後加
熱処理して該被膜層のポリアミド酸樹脂をイミド化させ
て、一般式(I) (式中X及びYは前記の通りである) で表わされる繰り返し単位を有するポリイミド樹脂と絶
縁性フィラーとからなる絶縁層を形成させることを特徴
とする。Further, in the method for manufacturing a laminated electrostrictive effect element according to the first aspect of the present invention, a film or thin plate of an electrostrictive material and internal electrodes are alternately laminated, and the internal electrode is a thin film of the electrostrictive material. Alternatively, the electrostrictive element in which the end face of the internal electrode is exposed at the side end face of the laminated electrostrictive effect element formed over the entire surface of the thin plate is represented by the general formula (II): (Wherein X is a phenyl group; a biphenyl group; and at least one of the phenyl group and the biphenyl group is O, CO, S, CH 2 , C
A tetravalent group selected from the group consisting of a polyphenyl group linked by at least one of (CH 3 ) 2 and C (CF 3 ) 2 , wherein Y is a phenyl group; a biphenyl group; a phenyl group and a biphenyl group At least one of O, CO, S, SO 2 , CH 2 , C (C
H 3 ) 2 and a divalent group selected from the group consisting of a polyphenyl group, an alkylene group, and a xylylene group, which are linked by at least one of C (CF 3 ) 2. A carboxyl group of the polyamic acid resin in a composition comprising a polyamic acid resin and an insulating filler dispersed in the resin is neutralized with a base, and immersed in a film-forming electrophoresis bath obtained by diluting with water. Electrophoresis is performed using the internal electrode of the electrostrictive effect element as an anode, and only the exposed portion of the internal electrode on the side end surface of the electrostrictive effect element and the electrostrictive material in the vicinity thereof are exposed to the polyamic acid and the insulating material. The conductive filler is precipitated to form a coating layer, which is then subjected to a heat treatment to imidize the polyamic acid resin of the coating layer. (Wherein X and Y are as defined above). An insulating layer comprising a polyimide resin having a repeating unit represented by the following formula and an insulating filler is formed.
更に、本発明の第二の態様の積層型電歪効果素子は、
電歪材料の薄膜又は薄板と内部電極が交互に積層されて
おり、該内部電極が該電歪材料の薄膜又は薄板の全面に
わたって形成されている積層型電歪効果素子において、
該素子の側端面に露出している該内部電極の露出端面及
びその近傍の電歪材料のみを絶縁する絶縁層がm個(m
は4以上の偶数である)のグループからなり、第1グル
ープの絶縁層は第(m×n+1)番目(nは0又は正の
整数である)以外の内部電極を絶縁しており、第2グル
ープの絶縁層は第(m×n+2)番目以外の内部電極を
絶縁しており、第3グループの絶縁層は第(m×n+
3)番目以外の内部電極を絶縁しており、以下同様に第
mグループの絶縁層は第(m×n+m)番目以外の内部
電極を絶縁しており、更に該積層されているm個の層毎
の内部電極に導通する外部電極が各々のグループの絶縁
層の上から設けられていることを特徴とする。Further, the laminated electrostrictive effect element of the second aspect of the present invention,
In a laminated electrostrictive element in which the thin film or thin plate of the electrostrictive material and the internal electrode are alternately laminated, and the internal electrode is formed over the entire surface of the thin film or the thin plate of the electrostrictive material,
There are m (m) insulating layers that insulate only the exposed end face of the internal electrode exposed on the side end face of the element and the electrostrictive material in the vicinity thereof.
Is an even number of 4 or more), and the insulating layer of the first group insulates the (m × n + 1) th (n is 0 or a positive integer) other internal electrode, The insulating layers of the group insulate the internal electrodes other than the (m × n + 2) -th internal electrode, and the insulating layers of the third group form the (m × n +
3) The other internal electrodes are insulated. Similarly, the m-th group of insulating layers insulates the (m × n + m) -th internal electrodes, and furthermore, the m stacked layers. An external electrode electrically connected to each internal electrode is provided on the insulating layer of each group.
また、本発明の第二の態様の積層型電歪効果素子の製
造方法は、電歪材料の薄膜又は薄板と内部電極が交互に
積層されている積層焼結体にm個(mは4以上の偶数で
ある)の仮の外部電極を形成し、この際に、第1の仮の
外部電極は第(m×n+1)番目(nは0又は正の整数
である)以外の内部電極に導通し、第2の仮の外部電極
は第(m×n+2)番目以外の内部電極に導通し、第3
の仮の外部電極は第(m×n+3)番目以外の内部電極
に導通し、以下同様に第mの仮の外部電極は第(m×n
+m)番目以外の内部電極に導通するように外部電極を
形成し、そして各々の仮の外部電極にリード線を設ける
第1工程、 上記第1工程で得られたリード線付き積層焼結体の内
部電極の露出端面及びその近傍の電歪材料上に電気泳動
法によってm個のグループの絶縁層を形成し、この際
に、第1グループの絶縁層は第(m×n+1)番目(n
は0又は正の整数である)以外の内部電極に絶縁し、第
2グループの絶縁層は第(m×n+2)番目以外の内部
電極を絶縁し、第3グループの絶縁層は第(m×n+
3)番目以外の内部電極を絶縁し、以下同様に第mグル
ープの絶縁層は第(m×n+m)番目以外の内部電極を
絶縁するように絶縁層を形成する第2工程、 上記第2工程で得られたm個のグループの絶縁層の各
々の上から、該積層されているm個の層毎の内部電極に
導通する外部電極を形成し、更に該外部電極にリード線
を取り付ける工程、 上記第1工程で取り付けたm個の仮の外部電極とリー
ド線を切り離す工程 を結う巣うことを特徴とする。Further, the method for manufacturing a laminated electrostrictive effect element according to the second aspect of the present invention is characterized in that m laminated sintered bodies in which thin films or thin plates of an electrostrictive material and internal electrodes are alternately laminated (m is 4 or more) Are formed, and at this time, the first temporary external electrode is electrically connected to the (m × n + 1) -th (n is 0 or a positive integer) other internal electrode. Then, the second temporary external electrode is electrically connected to the (m × n + 2) -th internal electrodes,
Of the (m × n + 3) -th internal electrode is electrically connected to the (m × n + 3) -th internal electrode.
+ M) a first step of forming external electrodes so as to conduct to the internal electrodes other than the (m) -th internal electrode, and providing a lead wire to each temporary external electrode; M groups of insulating layers are formed by electrophoresis on the exposed end face of the internal electrode and the electrostrictive material in the vicinity thereof, and at this time, the first group of insulating layers is the (m × n + 1) th (n
Is an integer other than 0 or a positive integer), the second group of insulating layers insulates other than the (m × n + 2) th internal electrode, and the third group of insulating layers is the (mx n +
3) a second step of forming an insulating layer so as to insulate the other internal electrodes other than the (m × n + m) th inner electrode, and the second step; Forming, from above each of the m groups of insulating layers obtained above, external electrodes that are electrically connected to the internal electrodes of each of the stacked m layers, and further attaching a lead wire to the external electrodes; The method is characterized in that a step of separating the lead wire from the m temporary external electrodes attached in the first step is performed.
本発明で言う電歪材料とは電圧を印加した時に物質が
歪む材料全てをいい、具体的には歪が電界の大きさにほ
ぼ比例する圧電材料と歪が電界の大きさの自乗にほぼ比
例する電歪材料を意味する。The electrostrictive material referred to in the present invention refers to any material in which a substance is distorted when a voltage is applied, and more specifically, a piezoelectric material in which the strain is substantially proportional to the magnitude of the electric field and a strain in which the strain is substantially proportional to the square of the magnitude of the electric field. Electrostrictive material.
本発明の製造方法において用いられる上記のポリアミ
ド酸樹脂はその一部が予めイミド化されていてもよい。The polyamic acid resin used in the production method of the present invention may be partially imidized in advance.
上記の一般式(I)で表わされる繰り返し単位を有す
るポリイミド樹脂及び一般式(II)で表わされる繰り返
し単位を有するポリアミド樹脂において、Xの具体例と
して次ぎのものがある: また、Yの具体例としては次のものがある: 前記の一般式(I)で表わされる繰り返し単位を有す
るポリイミド樹脂の電歪効果素子基材への密着性及び耐
熱性の観点からXが であることが特に好ましい。In the polyimide resin having the repeating unit represented by the general formula (I) and the polyamide resin having the repeating unit represented by the general formula (II), specific examples of X include the following: Further, specific examples of Y include the following: From the viewpoint of adhesion and heat resistance of the polyimide resin having the repeating unit represented by the general formula (I) to the electrostrictive element substrate, X is Is particularly preferred.
本発明の製造方法において用いられる前記の一般式
(II)で表わされる繰り返し単位を有するポリアミド酸
樹脂は一般式(III) (式中、Xは前記の通りである) を有するテトラカルボン酸無水物類と一般式(IV) (式中、Yは前記の通りである) を有するジアミン類との付加反応によって得られる。The polyamic acid resin having a repeating unit represented by the general formula (II) used in the production method of the present invention is represented by the general formula (III) (Wherein X is as defined above) and a tetracarboxylic anhydride having the general formula (IV) (Wherein Y is as defined above).
上記のテトラカルボン酸無水物類としては、例えば、
ピロメリット酸二無水物、3,3′,4,4′−ベンゾフェノ
ンテトラカルボン酸二無水物、2,2′,3,3′−ベンゾフ
ェノンテトラカルボン酸二無水物、3,3′,4,4′−ビフ
ェニルテトラカルボン酸二無水物、2,2′,3,3′−ビフ
ェニルテトラカルボン酸二無水物、2,2−ビス(3,4−ジ
カルボキシフェニル)プロパン二無水物、2,2−ビス
(2,3−ジカルボキシフェニル)プロパン二無水物、ビ
ス(3,4−ジカルボキシフェニル)エーテル二無水物、
ビス(3,4−ジカルボキシフェニル)スルホン二無水
物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二
無水物、ビス(2,3−ジカルボキシフェニル)メタン二
無水物、ビス(3,4−ジカルボキシフェニル)メタン二
無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水
物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、
1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,2,
3,4−ベンゼンテトラカルボン酸二無水物、3,4,9,10−
ペリレンテトラカルボン酸二無水物、2,3,6,7−アント
ラセンテトラカルボン酸二無水物、1,2,7,8−フェナン
トレンテトラカルボン酸二無水物等が好ましいものとし
て挙げられる。これらのうちで特に好ましいテトラカル
ボン酸二無水物は、ピロメリット酸二無水物、3,3′,4,
4′−ベンゾフエノンテトラカルボン酸二無水物、3,
3′,4,4′−ビフェニルテトラカルボン酸二無水物、お
よびビス(3,4−ジカルボキシフェニル)エーテル二無
水物である。As the above tetracarboxylic anhydrides, for example,
Pyromellitic dianhydride, 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, 2,2', 3,3'-benzophenonetetracarboxylic dianhydride, 3,3 ', 4, 4'-biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2, 2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride,
Bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride,
1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,2,
3,4-benzenetetracarboxylic dianhydride, 3,4,9,10-
Preferred are perylenetetracarboxylic dianhydride, 2,3,6,7-anthracenetetracarboxylic dianhydride, 1,2,7,8-phenanthrenetetracarboxylic dianhydride and the like. Of these, particularly preferred tetracarboxylic dianhydrides are pyromellitic dianhydride, 3,3 ′, 4,
4'-benzophenonetetracarboxylic dianhydride, 3,
3 ', 4,4'-biphenyltetracarboxylic dianhydride and bis (3,4-dicarboxyphenyl) ether dianhydride.
上記のジアミン類としては、3,3′−ジアミノベンゾ
フェノン、1,3−ビス(3−アミノフェノキシ)ベンゼ
ン、4,4′−ビス(3−アミノフェノキシ)ビフェニ
ル、2,2−ビス[4−(3−アミノフェノキシ)フェニ
ル]プロパン、2,2−ビス[4−(3−アミノフェノキ
シ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパ
ン、ビス[4−(3−アミノフェノキシ)フェニル]ス
ルフィド、ビス[4−(3−アミノフェノキシ)フェニ
ル]ケトン、ビス[4−(3−アミノフェノキシ)フェ
ニル]スルホン等の、メタ位のジアミンが挙げられ、こ
れらは単独で、或いは2種以上混合して用いられる。Examples of the above diamines include 3,3'-diaminobenzophenone, 1,3-bis (3-aminophenoxy) benzene, 4,4'-bis (3-aminophenoxy) biphenyl, and 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, bis [4- (3- Meta-position diamines such as amino [phenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) phenyl] ketone, and bis [4- (3-aminophenoxy) phenyl] sulfone; Alternatively, two or more kinds are used in combination.
上記したテトラカルボン酸無水物とジアミンとの反応
は通常、有機溶媒中で実施する。有機溶媒としては、例
えば、N−メチル−2−ピロリドン、N,N−ジメチルア
セトアミド、N,N−ジメチルホルムアミド、1,3−ジメチ
ル−2−イミダゾリジノン、N,N−ジエチルアセトアミ
ド、N,N−ジメチルメトキシアセトアミド、ジメチルス
ルホキシド、ピリジン、ジメチルスルホン、ヘキサメチ
ルホスホルアミド、テトラメチル尿素、N−メチルカプ
ロラクタム、テトラヒドロフラン、m−ジオキサン、p
−ジオキサン、1,2−ジメトキシエタン、ビス(2−メ
トキシエチル)エーテル、1,2−ビス(2−メトキシエ
トキシ)エタン、ビス[2−(2−メトキシエトキシ)
エチル]エーテル等があげられる。これらの有機溶媒は
単独でも或いは2種以上混合して用いても構わない。反
応温度は通常200℃以下−20℃以上、好ましくは50℃以
下−10℃以上、さらに好ましくは0℃以下室温程度まで
である。反応圧力は特に限定されず、常圧で十分実施で
きる。反応時間は溶剤の種類、反応温度および用いられ
るジアミンや酸二無水物により異なりうるが、ポリアミ
ド酸の生成が完了するのに十分な時間反応させるのに通
常2〜40時間、このましくは4〜24時間程度で十分であ
る。The reaction between the tetracarboxylic anhydride and the diamine is usually performed in an organic solvent. As the organic solvent, for example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, dimethylsulfoxide, pyridine, dimethylsulfone, hexamethylphosphoramide, tetramethylurea, N-methylcaprolactam, tetrahydrofuran, m-dioxane, p
-Dioxane, 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, bis [2- (2-methoxyethoxy)
Ethyl] ether and the like. These organic solvents may be used alone or in combination of two or more. The reaction temperature is generally 200 ° C or lower and -20 ° C or higher, preferably 50 ° C or lower and -10 ° C or higher, more preferably 0 ° C or lower and about room temperature. The reaction pressure is not particularly limited, and the reaction can be sufficiently performed at normal pressure. The reaction time may vary depending on the type of the solvent, the reaction temperature and the diamine or acid dianhydride used, but it is usually 2 to 40 hours, preferably 4 hours, for reacting for a time sufficient to complete the formation of the polyamic acid. About 24 hours is enough.
斯くして得られるポリアミド酸溶液はポリアミド酸を
5〜40重量%程度含有する溶液であり、対数粘度が0.5
〜4dl/g(温度35℃、N,N−ジメチルアセトアミド溶液と
して溶液1ml当り0.5gの濃度として測定した値)程度で
あるものが後述する水溶化性、及び加熱処理後のポリイ
ミドの被膜物性に優れるので望ましい。The polyamic acid solution thus obtained is a solution containing about 5 to 40% by weight of polyamic acid, and has a logarithmic viscosity of 0.5 to 0.5%.
About 4 dl / g (temperature measured at 35 ° C., a value measured as a concentration of 0.5 g per ml of N, N-dimethylacetamide solution) as the water solubility and the physical properties of the polyimide film after heat treatment. It is desirable because it is excellent.
本発明の核心は上記のようにして得られたポリアミド
酸に絶縁性フィラーを添加する点である。添加の方法と
しては、絶縁性フィラーがポリアミド酸中に十分に分散
される方法であれば、ロール混練やボールミル等のいず
れの方法でもよい。絶縁性フィラーの添加量は2〜70容
量%程度が好ましい。添加量があまりに少ないと添加効
果は現われず、逆に多すぎると最終的な電気泳動浴中で
絶縁性フィラーが沈澱してしまうので好ましくない。The core of the present invention is that an insulating filler is added to the polyamic acid obtained as described above. As a method of addition, any method such as roll kneading and a ball mill may be used as long as the insulating filler is sufficiently dispersed in the polyamic acid. The addition amount of the insulating filler is preferably about 2 to 70% by volume. If the addition amount is too small, the effect of addition will not appear, and if it is too large, the insulating filler will precipitate in the final electrophoresis bath, which is not preferable.
本発明で用いる絶縁性フィラーは、抵抗率105Ω・cm
程度以上の電気抵抗を示すものであれば無機化合物であ
っても、有機化合物であってもよい。このような絶縁性
フィラーとして用いられる無機化合物としてはベリリウ
ム、マグネシウム、カルシウム、アルミニウム、ホウ
素、珪素、スカンジウム、イットリウム、ランタン、チ
タン、ジルコニウム、ハフニウム及び希土類の酸化物や
複合酸化物、アルミニウム、ホウ素、珪素、チタン、ジ
ルコニウム、ハフニウム等の窒化物や酸窒化物、炭化珪
素のような炭化物が例示される。又、有機化合物として
は、電気泳動浴中で溶解しないものである必要があり、
そのようなものとしてはシリコーン樹脂、テフロンで代
表されるフッ素系樹脂、フェノール樹脂、フラン樹脂、
エポキシ樹脂、アクリル樹脂等が例示される。The insulating filler used in the present invention has a resistivity of 10 5 Ωcm
An inorganic compound or an organic compound may be used as long as it exhibits an electrical resistance of at least a certain level. As inorganic compounds used as such an insulating filler, beryllium, magnesium, calcium, aluminum, boron, silicon, scandium, yttrium, lanthanum, titanium, zirconium, hafnium and rare earth oxides and composite oxides, aluminum, boron, Examples thereof include nitrides such as silicon, titanium, zirconium, and hafnium, oxynitrides, and carbides such as silicon carbide. Also, the organic compound must be one that does not dissolve in the electrophoresis bath,
Such materials include silicone resins, fluororesins represented by Teflon, phenolic resins, furan resins,
Epoxy resins, acrylic resins and the like are exemplified.
本発明においては絶縁性フィラーの形状は、粒子状、
繊維状等を問わず任意であるが、寸法については必要と
される絶縁層膜の厚さとの関係で決定される。つまり、
絶縁性フィラーの最大径が絶縁層膜の最小厚みより小さ
いことが必要である。更に、工業的には電気泳動浴中で
良好な分散状態を保つことが重要である点を考慮すれ
ば、絶縁性フィラーの平均径は20ミクロン以下、好まし
くは10ミクロン以下であることが望ましい。In the present invention, the shape of the insulating filler is particulate,
The size is arbitrary irrespective of the fibrous shape or the like, but the dimensions are determined in relation to the required thickness of the insulating layer film. That is,
It is necessary that the maximum diameter of the insulating filler is smaller than the minimum thickness of the insulating layer film. Further, considering that it is important to maintain a good dispersion state in an electrophoresis bath from an industrial viewpoint, it is desirable that the average diameter of the insulating filler is 20 μm or less, preferably 10 μm or less.
本発明の製造方法においては、絶縁性フィラーを分散
含有する、前記の一般式(II)で表わされる繰り返し単
位を有するポリアミド酸樹脂は水の存在下で塩基、例え
ばアミン又はアルカリ金属イオンの添加によって、その
COOH基がCOO−イオンに解離して水に可溶となるか又は
安定にコロイド分散することができ、これは電気泳動に
よって陽極である積層電歪効果素子上に析出し、不溶化
することができる。In the production method of the present invention, the polyamic acid resin having a repeating unit represented by the general formula (II) containing an insulating filler dispersed therein is prepared by adding a base such as an amine or an alkali metal ion in the presence of water. ,That
COOH groups can be dissociated into COO- ions and become soluble in water or can be stably colloidally dispersed, and can be precipitated and insolubilized by electrophoresis on a laminated electrostrictive element as an anode. .
上記の塩基としては、アンモニア:ジアルキルアミ
ン、ジエタノールアミン、モルホリン等の二級アミン
類:トリエチルアミン、トリブチルアミン、トリエタノ
ールアミン、トリイソプロパノールアミン、ジメチルエ
タノールアミン、ジメチルイソプロパノールアミン、ジ
エチルエタノールアミン、ジメチルベンジルアミン等の
三級アミン類:苛性ソーダ、苛性カリ等の無機塩基類が
用いられるが、水希釈後の安定性や得られる被膜の性質
から三級アミン類が特に好ましい。Examples of the base include ammonia: secondary amines such as dialkylamine, diethanolamine, and morpholine: triethylamine, tributylamine, triethanolamine, triisopropanolamine, dimethylethanolamine, dimethylisopropanolamine, diethylethanolamine, dimethylbenzylamine, and the like. Tertiary amines: Inorganic bases such as caustic soda and caustic potash are used, but tertiary amines are particularly preferable in view of stability after dilution with water and properties of a coating film obtained.
水稀釈性を付与する為に必要な塩基量は中和すべきポ
リアミド酸のカルボキシル当量に対して30〜110モル%
が一般的であり、特に40〜100モル%であることが好ま
しい。斯くして中和を行うことによって、ポリアミド酸
は完全に水溶性となるか或いは部分的に水溶化して懸濁
状態となり水稀釈性を有するようになる。The amount of base required for imparting water dilutability is 30 to 110 mol% based on the carboxyl equivalent of the polyamic acid to be neutralized.
In general, and particularly preferably 40 to 100 mol%. By performing the neutralization in this manner, the polyamic acid becomes completely water-soluble or partially solubilized to become a suspended state and becomes water-dilutable.
上記の中和した組成物を水で希釈することにより、電
気泳動処理が可能なポリアミド酸及び該ポリアミド酸で
被覆された絶縁性フィラーを含む懸濁液からなる、被膜
形成用電気泳動浴とすることが出来るのである。By diluting the neutralized composition with water, a suspension containing a polyamic acid capable of being subjected to electrophoresis and an insulating filler coated with the polyamic acid is provided as a film-forming electrophoresis bath. You can do it.
このようにして析出したポリアミド酸樹脂と絶縁性フ
ィラーとからなる被膜層は加熱処理によって一般式
(I) (式中、Xは前記の通りである) で表わされる繰り返し単位を有するポリイミド樹脂と絶
縁性フィラーとからなる絶縁層に変換される。この際の
加熱温度は80〜300℃程度、好ましくは150〜280℃程度
である。The coating layer composed of the polyamic acid resin and the insulating filler thus precipitated is subjected to a heat treatment to obtain the general formula (I) (Where X is as described above) is converted into an insulating layer composed of a polyimide resin having a repeating unit represented by the following formula and an insulating filler. The heating temperature at this time is about 80 to 300 ° C, preferably about 150 to 280 ° C.
上記のようにして得られるポリイミド樹脂と絶縁性フ
ィラーとからなる絶縁層は絶縁耐力が優れており且つ金
属との接着も非常に優れているという点で、本発明者ら
が先に出願した(特願平1−171854)ポリイミド樹脂単
独の絶縁層の性能と同様であるが、後記の実施例からの
明らかなように低電圧で絶縁破壊する不良品の発生率が
ポリイミド樹脂単独の場合に比べて著しく低いという利
点を有している。The inventors of the present invention have previously filed an application in that the insulating layer composed of the polyimide resin and the insulating filler obtained as described above has excellent dielectric strength and very good adhesion to metal ( Japanese Patent Application No. 1-1171854) The performance is the same as that of the insulating layer made of polyimide resin alone, but as is clear from the examples described later, the rate of occurrence of defective products that cause dielectric breakdown at low voltage is lower than that of polyimide resin alone. And has the advantage of being significantly lower.
尚、本発明でいう積層体はいわゆるグリーンシート法
で作られたもののみでなく、スタック型といわれる燒結
体薄板を接着剤等で張り合せたものも勿論包含する。The laminate according to the present invention includes not only a laminate formed by a so-called green sheet method but also a laminate obtained by laminating a sintered thin plate called a stack type with an adhesive or the like.
本発明において絶縁性フィラーが不良率の低減にどの
ようにして機能しているかは未だ明確ではない。しか
し、低電圧で絶縁破壊するポリイミド樹脂単独系膜には
往々にして細かい気泡が数多く見られるが、絶縁性フィ
ラーを添加した系では気泡が少ないか又はほとんど見ら
れないことから考えて、絶縁性フィラーが電気泳動中に
おける気泡の絶縁膜内封じ込めを防止し、均一厚みの絶
縁膜の形成を助長していると想像される。In the present invention, it is not yet clear how the insulating filler functions to reduce the defective rate. However, many small air bubbles are often seen in a polyimide resin alone film that breaks down at low voltage, but considering that there are few or almost no air bubbles in a system with an insulating filler added, It is supposed that the filler prevents bubbles from being trapped in the insulating film during electrophoresis, and promotes the formation of an insulating film having a uniform thickness.
図−1は本発明による積層型電歪縦効果素子の一例で
ある。本発明の素子においては絶縁層はm個、例えば4
グループ存在し、各絶縁層グループでは絶縁物質は(m
−1)個の内部電極とその近傍の電歪材料上に連続して
形成され、m層毎に絶縁されていない内部電極が存在す
る。このような構造の絶縁層は後述の電気泳動法により
実現するが、従来型素子(図−2)のように1層おきに
独立した絶縁層が2グループ存在するのと比較すると絶
縁物質が必要な部分にだけ局所的に付着するため微細な
形状の絶縁が可能になる。本発明者等は特別な論を用い
るものではないが、このように絶縁層を(m−1)層毎
に連続にすると、従来型素子の1層毎に独立した絶縁層
を形成する場合よりも露出されるべき内部電極端面を絶
縁層で覆うことがなく、必要部分にのみ絶縁が出来るよ
うになったと推定している。このようにして得られたm
グループの絶縁層の上から各々外部電極を形成し、この
m個の外部電極を電源につなげる際に上記内部電極の極
性が1層毎に逆になるように結線して(図−1では第1
グループ(G1)と第3グループ(G3)、第2グループ
(G2)と第4グループ(G4)が同じ極性になる)使用さ
れる。FIG. 1 shows an example of a laminated electrostrictive longitudinal effect element according to the present invention. In the device of the present invention, the number of the insulating layers is m, for example, 4
Group exists, and the insulating material is (m
-1) There are internal electrodes that are continuously formed on the internal electrodes and the electrostrictive material in the vicinity thereof and are not insulated for every m layers. The insulating layer having such a structure is realized by an electrophoresis method described later, but requires an insulating material as compared with the conventional device (FIG. 2) in which two independent insulating layers are provided every other layer. Since it is locally attached only to a critical part, insulation of a fine shape is possible. Although the present inventors do not use a special theory, if the insulating layers are made continuous every (m-1) layers in this way, compared to the case where an independent insulating layer is formed for each layer of the conventional element, It is presumed that the end face of the internal electrode to be exposed is not covered with an insulating layer, and only a necessary portion can be insulated. The m obtained in this way
An external electrode is formed on each of the insulating layers of the group, and when the m external electrodes are connected to a power source, the external electrodes are connected such that the polarity of the internal electrodes is reversed for each layer (FIG. 1
The group (G 1 ) and the third group (G 3 ), and the second group (G 2 ) and the fourth group (G 4 ) have the same polarity.
本発明の第二の態様で用いる絶縁材料は無機系の材料
でもよいが好ましくは有機系の材料である。無機系の材
料は伸縮性に欠けるため素子の駆動中にクラック等が発
生しやすく、信頼性に不安を残すが、有機系材料ではそ
のような欠点もなく好ましい。有機系材料の中でも絶縁
フィラーを含有したポリイミド樹脂ははんだ耐熱性にも
優れ特に好ましい。本発明の第二の態様で用いることの
できるポリイミド樹脂及び絶縁性フィラーは前記したも
のである。The insulating material used in the second embodiment of the present invention may be an inorganic material, but is preferably an organic material. An inorganic material lacks elasticity, so that cracks and the like are likely to occur during driving of the element, leaving unreliability in reliability. However, an organic material is preferable without such a defect. Among organic materials, a polyimide resin containing an insulating filler is also excellent in solder heat resistance and is particularly preferable. The polyimide resin and the insulating filler that can be used in the second embodiment of the present invention are as described above.
尚、本発明においては素子形状は例えば円柱、円錐
台、4角錐台、8角柱、8角錐台等のいずれでもよく、
また、m個、例えば4個の絶縁層グループの形成位置も
任意である。更にまた、図−1では4つの絶縁層グルー
プ及びその近傍以外の内部電極側端面は露出している
が、本発明ではこれらの部分を絶縁層で覆っても全く問
題はない。In the present invention, the element shape may be, for example, any of a cylinder, a truncated cone, a truncated pyramid, an octagonal prism, and a truncated octagonal pyramid.
Further, the formation position of m, for example, four insulating layer groups is also arbitrary. Furthermore, in FIG. 1, the inner electrode side end faces other than the four insulating layer groups and the vicinity thereof are exposed, but in the present invention, there is no problem even if these parts are covered with the insulating layer.
本発明の電歪効果素子の製造方法は概略次の通りであ
る。まず積層焼結体を作るにはほとんど公知の方法によ
って行われる。即ち、ドクターブレード法による場合
は、まず電歪材料のグリーンシートを作り、得られたグ
リーンシートに銀、銀−パラジウム合金、白金、ニッケ
ル、または銅等の内部電極用ペーストを印刷した後、こ
れを複数枚積層し熱圧着し、その積層体を脱脂後焼結し
て積層焼結体とする。The manufacturing method of the electrostrictive effect element of the present invention is roughly as follows. First, the production of a laminated sintered body is performed by an almost known method. That is, in the case of the doctor blade method, first, a green sheet of an electrostrictive material is made, and a paste for an internal electrode such as silver, a silver-palladium alloy, platinum, nickel, or copper is printed on the obtained green sheet. Are laminated and thermocompression-bonded, and the laminated body is degreased and sintered to form a laminated sintered body.
貼合わせ法で行う場合には、まず電歪材料の成形体を
つくり焼結してブロック状焼結体とする。次いでこれを
薄板状に切り出し所定の厚みにした後これを金属薄膜ま
たは薄板と交互に接着剤で貼合わせて積層焼結体とす
る。In the case of performing the bonding method, first, a molded body of the electrostrictive material is formed and sintered to obtain a block-shaped sintered body. Next, this is cut out into a thin plate shape to have a predetermined thickness, and this is alternately laminated with a metal thin film or a thin plate with an adhesive to obtain a laminated sintered body.
いずれの方法においても積層焼結体を作る時に重要な
ことは、後述の第1工程におけるm個、例えば4個の仮
の外部電極を設ける部分に例えば図−4に示すような積
層方向に沿ってm層毎に1層、積層焼結体の側端面に内
部電極が到達しない部分ができるような形状に内部電極
を形成することである。What is important when producing a laminated sintered body in any of the methods is that, in a first step to be described later, m parts, for example, four temporary external electrodes are provided along a laminating direction as shown in FIG. In other words, the internal electrode is formed in such a shape that a portion where the internal electrode does not reach the side end face of the laminated sintered body is formed for every m layers.
本発明の素子はこのようにして得られた積層焼結体
に、前記したように、m個の仮の外部電極を形成し、各
々の仮の外部電極にリード線を設ける第1工程、電気泳
動法によってm個のグループの絶縁層を形成する第2工
程、m個のグループの絶縁層の上から外部電極を形成し
更に各々の外部電極にリード線を取り付ける工程、第1
工程で取り付けたm個の仮の外部電極とリード線を切り
離す工程を経て製造される。In the element of the present invention, as described above, m temporary external electrodes are formed on the laminated sintered body thus obtained, and a first step of providing a lead wire to each temporary external electrode, A second step of forming m groups of insulating layers by electrophoresis, a step of forming external electrodes from above the m groups of insulating layers, and attaching a lead wire to each external electrode;
It is manufactured through a process of separating the lead wires from the m temporary external electrodes attached in the process.
以下の記載においては、説明を簡単化するためにmが
4の場合について説明する。In the following description, a case where m is 4 will be described for simplicity.
第1工程では前記のようにして作られた積層焼結体に
導電性ペーストを4カ所塗布して仮の外部電極を設け
る。その際に、第1の仮の外部電極は第(4n+1)番目
(nは0又は正の整数である)以外の内部電極に導通
し、第2の仮の外部電極は第(4n+2)番目以外の内部
電極に導通し、第3の仮の外部電極は第(4n+3)番目
以外の内部電極に導通し、以下同様に第mの仮の外部電
極は第(4n+m)番目以外の内部電極に導通するように
する。次いで各々の仮の外部電極にリード線を設ける。In the first step, a temporary external electrode is provided by applying a conductive paste to the laminated sintered body prepared as described above at four locations. At this time, the first temporary external electrode is electrically connected to the (4n + 1) th (n is 0 or a positive integer) other internal electrode, and the second temporary external electrode is other than the (4n + 2) th internal electrode. , The third temporary external electrode is conductive to the (4n + 3) -th internal electrode, and so on, and the m-th temporary external electrode is conductive to the (4n + m) -th internal electrode. To do it. Next, a lead wire is provided for each temporary external electrode.
第2工程では1つの仮の外部電極が正極、対向電極が
負極になるように直流電源に結線し、電着槽中で電気泳
動法を用いてポリアミド酸樹脂及びフィラーを内部電極
の露出端面及びその近傍の電歪材料に3層分連続して析
出せしめる。次いでその得られたものを加熱してポリア
ミド酸樹脂をポリイミド樹脂に変化させて1つの絶縁層
グループを形成する。この手順を各々の仮の外部電極に
ついて合計4回行い4グループの絶縁層を形成する。そ
の際各回の操作でポリアミド酸樹脂及びフィラーを析出
させたくない部分にはテープ等を用いて覆いをしておく
ことが必要である。この工程が終了した段階で素子には
4グループの絶縁層が存在し、各絶縁層グループでは絶
縁層は内部電極の露出端面を3層分連続に絶縁し、4層
毎に1層絶縁されていない内部電極の露出端面が存在す
る。尚、ひとつのグループの絶縁層を形成した後、直ち
に第3工程に移り外部電極を絶縁層の上から形成し更に
リード線を設けてから次の絶縁層グループの形成に入る
こともできる。In the second step, one temporary external electrode is connected to a DC power source such that the positive electrode and the counter electrode are negative, and the polyamic acid resin and the filler are exposed to the exposed end face of the internal electrode by electrophoresis in an electrodeposition tank. Three layers are continuously deposited on the electrostrictive material in the vicinity. Next, the resulting product is heated to change the polyamic acid resin into a polyimide resin to form one insulating layer group. This procedure is repeated four times for each temporary external electrode to form four groups of insulating layers. At that time, it is necessary to cover a portion where the polyamic acid resin and the filler are not desired to be precipitated in each operation using a tape or the like. At the end of this step, the element has four groups of insulating layers, and in each of the insulating layer groups, the insulating layer continuously insulates the exposed end faces of the internal electrodes by three layers and insulates one layer for every four layers. There are no exposed end faces of the internal electrodes. After forming one group of insulating layers, it is also possible to immediately proceed to the third step, to form external electrodes from above the insulating layer, and to provide lead wires before starting the formation of the next insulating layer group.
第2工程までは後述の実施例で述べるように複数個の
素子を同時に製造することが可能なので次工程に入る前
に1個ずつの素子に切り出してもよい。また仮の外部電
極をこの段階で切り離してもよい。第3工程では前工程
で形成された4つの絶縁層グループの各々に上から外部
電極を形成して4層毎に内部電極と導通するようにし、
更に各々の外部電極にリード線を設ける。従ってリード
線は通常4本であるが、相対する内部電極が互いに逆の
極性を持つように4つの外部電極を2つずつ接続し電気
的には2組の外部電極とすればリード線は2本にするこ
ともできる。Up to the second step, a plurality of devices can be manufactured at the same time as described in the embodiments described later. Therefore, the devices may be cut out one by one before starting the next process. Further, the temporary external electrodes may be separated at this stage. In the third step, external electrodes are formed from above on each of the four insulating layer groups formed in the previous step so as to be electrically connected to the internal electrodes every four layers,
Further, a lead wire is provided for each external electrode. Therefore, the number of lead wires is usually four, but if two external electrodes are connected two by two so that opposing internal electrodes have polarities opposite to each other and two sets of external electrodes are electrically used, the number of lead wires is two. It can be a book.
外部電極の形成は導電性ペーストを塗る方法でもよい
し、または蒸着法によってもよい。外部電極とリード線
の接続は通常はんだを用いるが、導電性接着剤を用いて
もかまわない。The external electrodes may be formed by applying a conductive paste or by a vapor deposition method. Normally, solder is used to connect the external electrode and the lead wire, but a conductive adhesive may be used.
一般には第3工程の終了後4つの仮の外部電極とリー
ド線を切り離す。また、後述の実施例1のように多数の
素子をまとめて作った場合には1個1個の素子に切り離
す。以下に実施例を上げて本発明をさらに詳しく説明す
る。勿論、本発明はこれらの実施例に限定されるもので
はない。Generally, after the third step is completed, the four temporary external electrodes are separated from the lead wires. Further, when a large number of elements are formed together as in Example 1 described later, each element is separated into individual elements. Hereinafter, the present invention will be described in more detail by way of examples. Of course, the present invention is not limited to these examples.
実施例1 撹拌器、還流冷却器及び窒素導入管を備えた反応容器
中で、3,3′−ジアミンベンゾフェノン53.0g(0.25モ
ル)をN,N−ジメチルアセトアミド240mlに溶解した。こ
の溶液に3,3′,4,4′−ベンゾフェノンテトラカルボン
酸二無水物78.6g(0.244モル)の粉末を添加し、10℃で
24時間撹拌してポリアミド酸溶液を得た。この溶液にア
ルミナ粉末(住友化学(株)製、商品名AKP−30)を620
g添加し、3本ロールにより混練してアルミナ分散ポリ
アミド酸ワニスを調製した。このワニスにジメチルエタ
ノールアミン21.7g(対カルボキシル当量50モル%)を
除々に添加し、20分間室温にて撹拌した後、撹拌しつつ
水905.3gを徐々に室温にて添加して水希釈し、アルミナ
粉末含有ポリアミド酸懸濁液を調製した。Example 1 In a reaction vessel equipped with a stirrer, a reflux condenser and a nitrogen inlet tube, 53.0 g (0.25 mol) of 3,3'-diaminebenzophenone was dissolved in 240 ml of N, N-dimethylacetamide. To this solution was added powder of 78.6 g (0.244 mol) of 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride,
The mixture was stirred for 24 hours to obtain a polyamic acid solution. Alumina powder (AKP-30, manufactured by Sumitomo Chemical Co., Ltd.) was added to this solution for 620 minutes.
g was added and kneaded with a three-roll mill to prepare an alumina-dispersed polyamic acid varnish. 21.7 g of dimethylethanolamine (relative to carboxyl equivalent: 50 mol%) was gradually added to the varnish, and the mixture was stirred at room temperature for 20 minutes. Then, while stirring, 905.3 g of water was gradually added at room temperature to dilute with water. A polyamic acid suspension containing alumina powder was prepared.
また積層体(一層の厚みが約100μmで50層)の試料
については一方の端面は一層おきに内部電極が露出して
おりもう一方の端面は全内部電極が露出しているものを
予め作っておいた。一層おきに内部電極が露出した側に
銀電極を焼付け、半田でリード線を接続した。前記懸濁
液をプラスチックの槽へ入れ、被膜形成用電気泳動浴と
し、被膜対象となる前記積層体を陽極として浸潤し、リ
ード線を陽極に接続した。20Vで5秒間電圧を印加して
電気泳動を行った。その後積層体を取り出し、N,N−ジ
メチルアセトアミドを20重量%含有した水溶液で積層体
を洗浄した後150℃で2時間、280℃で2時間の加熱処理
によりイミド化を行った。次に積層体をまん中で切断
し、イミド樹脂絶縁膜付着側に銀電極を塗布しリード線
を付けた。同様の操作を行うことにより電極一枚毎に左
右に絶縁層を有する積層体が得られた。この絶縁層の厚
さは50ミクロン程度であった。In the case of a sample of a laminated body (one layer having a thickness of about 100 μm and 50 layers), one end face is exposed in every other layer, and the other end face is exposed in advance so that all internal electrodes are exposed. Oita. Silver electrodes were baked on the side where the internal electrodes were exposed every other layer, and lead wires were connected with solder. The suspension was put into a plastic tank, used as an electrophoresis bath for forming a film, and the laminate to be coated was infiltrated as an anode, and a lead wire was connected to the anode. Electrophoresis was performed by applying a voltage at 20 V for 5 seconds. Thereafter, the laminate was taken out, washed with an aqueous solution containing 20% by weight of N, N-dimethylacetamide, and then imidized by heat treatment at 150 ° C. for 2 hours and 280 ° C. for 2 hours. Next, the laminate was cut in the middle, a silver electrode was applied to the side where the imide resin insulating film was attached, and a lead wire was attached. By performing the same operation, a laminate having insulating layers on the left and right for each electrode was obtained. The thickness of this insulating layer was about 50 microns.
このようにして得られた積層体100個について絶縁耐
力を測定したところ、98個が絶縁破壊電圧1000V以上で
あり、残りの2個は約90V、310Vで絶縁破壊が生じた。When the dielectric strength was measured for 100 laminates obtained in this manner, 98 of them had a dielectric breakdown voltage of 1000 V or more, and the other two had dielectric breakdown at about 90 V and 310 V.
比較例1 アルミナ粉末を添加せずにワニスを調製し、このワニ
スにジメチルエタノールアミンを21.7gではなく39.1g添
加した以外は実施例1と全く同様にして電気泳動用ポリ
アミド酸水溶液を調製した。このポリアミド酸水溶液を
利用し、電気泳動条件を100Vで20秒間とした以外は実施
例1と全く同様にして積層体に絶縁被膜を形成した(絶
縁層の厚さは50μm程度であった)。Comparative Example 1 A varnish was prepared without adding alumina powder, and a polyamic acid aqueous solution for electrophoresis was prepared in exactly the same manner as in Example 1 except that 39.1 g of dimethylethanolamine was added to the varnish instead of 21.7 g. Using this polyamic acid aqueous solution, an insulating film was formed on the laminate in exactly the same manner as in Example 1 except that the electrophoresis conditions were set to 100 V for 20 seconds (the thickness of the insulating layer was about 50 μm).
このようにして得られた積層体100個について絶縁耐
力を測定したところ、絶縁破壊電圧が1000V以上のもの
は78個であり、残りは100V以下が17個、100〜200Vが3
個、200〜300Vが2個であった。When the dielectric strength was measured for 100 laminates obtained in this way, 78 had a dielectric breakdown voltage of 1000 V or more, and 17 had 100 V or less, and 3 had 100 to 200 V.
And 200-300V.
実施例2 実施例1の方法において、イミド化加熱処理を180℃
又は250℃で実施したが、何れの場合も実施例1と同様
な結果が得られた。Example 2 In the method of Example 1, the imidization heat treatment was performed at 180 ° C.
Alternatively, the test was performed at 250 ° C., and in each case, the same result as in Example 1 was obtained.
実施例3 アルミナ粉末の代わりにチタニア粉末(平均粒径0.8
μm)を用いた以外は実施例1と全く同様にして実験を
行なった。絶縁破壊電圧が1000V以上のものは97個であ
り、残りは200〜300Vに2個、500〜600Vに1個であっ
た。Example 3 Instead of alumina powder, titania powder (average particle size 0.8
An experiment was performed in exactly the same manner as in Example 1 except that μm) was used. There were 97 pieces with a dielectric breakdown voltage of 1000 V or more, and the rest were two pieces at 200 to 300 V and one piece at 500 to 600 V.
実施例4 アルミナ粉末の代わりにシリカ粉末(平均粒径0.5μ
m)を用いた以外は実施例1と全く同様にして実験を行
なった。絶縁破壊電圧が1000V以上のものは99個であ
り、残りの1個は273Vで絶縁が破壊した。Example 4 Instead of alumina powder, use silica powder (average particle size 0.5 μm).
The experiment was performed in exactly the same manner as in Example 1 except that m) was used. 99 pieces had a breakdown voltage of 1000 V or more, and the remaining one had a breakdown of 273 V.
実施例5 アルミナ粉末の代わりに窒化珪素粉末(平均粒径0.8
μm)を用いた以外は実施例1と全く同様にして実験を
行なった。絶縁破壊電圧が1000V以上のものは98個であ
り、残りの2個は各々260、543Vで絶縁が破壊した。Example 5 Instead of alumina powder, silicon nitride powder (average particle size 0.8
An experiment was performed in exactly the same manner as in Example 1 except that μm) was used. 98 pieces had a breakdown voltage of 1000 V or more, and the remaining two pieces had breakdown at 260 and 543 V, respectively.
実施例6 撹拌器、還流冷却器及び窒素導入管を備えた容器に、
2,2−ビス[4−(3−アミノフェノキシ)フェニル]
プロパン41.0g(0.1モル)とN,N−ジメチルアセトアミ
ド200mlを装填し、0℃付近まで冷却し、窒素雰囲気下
に於いてピロメリット酸二無水物21.8g(0.1モル)の粉
末を加え、0℃付近で2時間撹拌した。次に上記溶液を
室温に戻し、窒素雰囲気下で約20時間の撹拌を行った。
こうして得られたポリアミド酸の対数粘度は1.5dl/gで
あった。このポリアミド酸溶液に含有率が35容量%にな
るようにアルミナ粉末(住友化学(株)製、商品名AKP
−30)を添加し、アルミナ粉末が十分に分散するまで3
本ロールで混練した。得られたアルミナ粉末含有ポリア
ミド酸溶液にトリエチルアミン10.1g(対カルボキシル
当量50モル%)を徐々に加え、1時間室温にて撹拌した
後、撹拌しつつ水973gを徐々加えて希釈し、アルミナ粉
末含有ポリアミド酸懸濁液を調製した。Example 6 In a container equipped with a stirrer, a reflux condenser and a nitrogen inlet tube,
2,2-bis [4- (3-aminophenoxy) phenyl]
41.0 g (0.1 mol) of propane and 200 ml of N, N-dimethylacetamide were charged, cooled to around 0 ° C., and a powder of 21.8 g (0.1 mol) of pyromellitic dianhydride was added under a nitrogen atmosphere. The mixture was stirred at around ° C for 2 hours. Next, the solution was returned to room temperature and stirred under a nitrogen atmosphere for about 20 hours.
The logarithmic viscosity of the polyamic acid thus obtained was 1.5 dl / g. Alumina powder (manufactured by Sumitomo Chemical Co., Ltd., trade name: AKP
−30), and add 3 until the alumina powder is sufficiently dispersed.
It was kneaded with this roll. To the obtained alumina powder-containing polyamic acid solution was gradually added 10.1 g of triethylamine (relative to a carboxyl equivalent of 50 mol%), and the mixture was stirred at room temperature for 1 hour. A polyamic acid suspension was prepared.
実施例1と同様の積層体及び上記のポリアミド酸懸濁
液を用いて、実施例1と同様にして絶縁層を設けた。こ
の絶縁層も厚さ50μ程度であった。An insulating layer was provided in the same manner as in Example 1 using the same laminate and the above-mentioned polyamic acid suspension as in Example 1. This insulating layer also had a thickness of about 50 μm.
このようにして得られた積層体100個について絶縁耐
力を測定したところ、97個が絶縁破壊電圧1000V以上で
あり、残りは16V、193V、862Vで絶縁破壊が生じた。When the dielectric strength was measured for 100 of the laminates thus obtained, 97 of them had a dielectric breakdown voltage of 1000 V or more, and the remaining breakdown occurred at 16 V, 193 V, and 862 V.
比較例2 アルミナ粉末を添加してロール混練をする工程を省
き、トリエチルアミンを10.1gでなく20.2g添加した以外
は実施例6と全く同様にして電気泳動用ポリアミド酸水
溶液を調製した。このポリアミド酸水溶液を利用し、電
気泳動条件を100Vで20秒間とした以外は実施例6と全く
同様にして積層体に絶縁被膜を形成した(絶縁層の厚さ
は50μm程度であった)。Comparative Example 2 An aqueous polyamic acid solution for electrophoresis was prepared in exactly the same manner as in Example 6, except that the step of adding the alumina powder and kneading the rolls was omitted, and 20.2 g of triethylamine was added instead of 10.1 g. Using this polyamic acid aqueous solution, an insulating film was formed on the laminate in exactly the same manner as in Example 6 except that the electrophoresis conditions were set at 100 V for 20 seconds (the thickness of the insulating layer was about 50 μm).
このようにして得られた積層体100個について絶縁耐
力を測定したところ、絶縁破壊電圧が1000V以上のもの
は84個であり、残りは100V以下が11個、200〜300Vが2
個、500〜600Vが3個であった。When the dielectric strength was measured for 100 laminates obtained in this way, 84 dielectric breakdown voltages were 1000 V or more, 11 were 100 V or less, and 200 to 300 V were 2 or less.
There were three pieces, 500-600V.
実施例7 アルミナ粉末の代わりに微粒状のフェノール樹脂(ユ
ニチカ株製、商品名ユニベックスCを分級し、粒径10μ
m以下にしたもの)を用いた以外は実施例1と全く同様
にして実験を行なった。100個の積層体のうち絶縁破壊
電圧が1000V以上のものは90個であった。Example 7 Instead of alumina powder, a fine-grained phenol resin (Unibex C, manufactured by Unitika Ltd.) was classified to give a particle size of 10 μm.
m), the experiment was carried out in exactly the same manner as in Example 1. Of the 100 laminates, 90 had a breakdown voltage of 1000 V or more.
実施例8 (Pbx,Ba1-x)(Zry,Ti1-y)O3 (ここにx=0.73,y=0.55)に微量の添加物を固溶さ
せた粉末を用意し、これを2つに分けた。Example 8 (Pb x, Ba 1- x) (Zr y, Ti 1-y) O 3 prepared powder (herein x = 0.73, y = 0.55) in a solid solution with a very small amount of additive, which Was divided into two.
一方の粉末は金型に入れ1ton/cm2でプレス成形してデ
ィスク状成形体を得た。この成形体を1320℃で3時間焼
結後表面を研磨して厚さ0.5mmのディスク状焼結体とし
た。このディスク状焼結体の上下両面に電極を形成し50
0Vの電圧を印加し(電界は10kV/cm)、電圧印加方向の
伸び率を測定したところ約0.11%であった。One of the powders was put into a mold and press-molded at 1 ton / cm 2 to obtain a disk-shaped compact. After sintering this molded body at 1320 ° C. for 3 hours, the surface was polished to obtain a disk-shaped sintered body having a thickness of 0.5 mm. Electrodes are formed on the upper and lower surfaces of this disc-shaped sintered body.
A voltage of 0 V was applied (electric field was 10 kV / cm), and the elongation in the voltage application direction was about 0.11%.
他方の粉末はドクターブレード法により厚さ約0.1mm
のグリーンシートとした後、打ち抜き機で7mm×50mmの
小片とした。この小片50枚に図−3(a)に示すよう
な、別の50枚には図−3(a)に示すような形状になる
ように白金ペーストをスクリーン印刷した。印刷された
グリーンシート小片を図−4に示すような順序で積層
し,ホットプレート上で120℃、150Kg/cm2で熱圧着した
後、脱脂炉に入れ500℃までゆっくり昇温して脱脂を行
った。次いで脱脂体を焼結炉に移し1320℃で3時間焼結
した。得られた焼結体の内部電極間の距離は0.08mmであ
り、4つの稜付近には図−5に示すように内部電極4層
毎に1層が到達しておらず、しかも各内部電極は常に3
つの稜には到達している構造になっている。この4つの
稜付近に銀ペーストを塗り仮の外部電極とし、各々にハ
ンダでリード線をつけた。The other powder is about 0.1mm thick by doctor blade method
, And then cut into small pieces of 7 mm x 50 mm by a punching machine. Platinum paste was screen-printed on the 50 small pieces so as to have a shape as shown in FIG. 3A, and on another 50 pieces as shown in FIG. The printed green sheets pieces laminated in the order shown in FIG -4, 120 ° C. on a hot plate, after thermocompression bonding 150 Kg / cm 2, the defatted slowly heated to 500 ° C. Put the degreasing furnace went. Next, the degreased body was transferred to a sintering furnace and sintered at 1320 ° C. for 3 hours. The distance between the internal electrodes of the obtained sintered body was 0.08 mm, and one layer did not reach every four internal electrodes near the four ridges as shown in FIG. Is always 3
It has a structure that reaches one ridge. Silver paste was applied near these four ridges to form temporary external electrodes, and lead wires were attached to each of them using solder.
次いで必要な部分以外に絶縁層が形成されないように
するためにこのものに図−5(a)に示した面A′B′
C′D′には全面に保護テープを貼り、更に面ABCDには
図−6に示すような形状に保護テープを貼り付けた後電
着槽に漬け、第1の仮の外部電極(図−5(a)に示し
た稜A′D′付近に形成された仮の外部電極)が正極
に、対向電極が負極になるようにリード線で直流電源と
接続し、電気泳動によりアルミナ粒子とポリアミド酸を
この仮の外部電極と導通している内部電極の露出端面と
その近傍に電着した(本例で用いたポリアミド酸は3,
3′−ジアミノベンゾフェノンと3,3′,4,4′−ベンゾフ
ェノンテトラカルボン酸2水物を反応させて得られたも
のであり、アルミナは住友化学(株)製商品名AKP−30
である)。その後電着槽から取り出して液を切り200℃
に加熱してポリアミド酸をイミド化して第1の絶縁層グ
ループを形成した。Next, in order to prevent an insulating layer from being formed except for a necessary portion, the surface A′B ′ shown in FIG.
A protective tape is applied to the entire surface of C'D ', and a protective tape is applied to the surface ABCD as shown in FIG. 6 and then immersed in an electrodeposition tank. A temporary external electrode formed near the ridge A'D 'shown in FIG. 5 (a)) is connected to a DC power supply through a lead wire such that the positive electrode and the counter electrode are negative, and the alumina particles and the polyamide are electrophoretically electrophoresed. An acid was electrodeposited on the exposed end face of the internal electrode which is in conduction with the temporary external electrode and in the vicinity thereof (the polyamic acid used in this example was 3,3).
It is obtained by reacting 3'-diaminobenzophenone with 3,3 ', 4,4'-benzophenonetetracarboxylic acid dihydrate. Alumina is AKP-30 manufactured by Sumitomo Chemical Co., Ltd.
Is). After that, remove from the electrodeposition tank and drain the liquid, 200 ° C
And the polyamic acid was imidized to form a first insulating layer group.
同様の操作によって第2、第3、第4の仮の外部電極
(図−5(a)に示した稜AD、BC、B′C′の付近に形
成された仮の外部電極)と直流電源の正極とをリード線
で結線し、第2、第3、第4の絶縁層グループを形成し
た。その際各グループの絶縁層が重ならないように保護
テープを貼り変えた。By the same operation, the second, third and fourth temporary external electrodes (temporary external electrodes formed near the ridges AD, BC and B'C 'shown in FIG. 5A) and the DC power supply And a second insulating layer group were formed by connecting the positive electrode with a lead wire. At that time, the protective tape was changed so that the insulating layers of each group did not overlap.
前記工程で絶縁層を形成されたものから図−7に示す
ように仮の外部電極と切り離し、更に4つの絶縁層グル
ープを具備する素子になるように複数個に切り離した。
最後に個々の素子に設けられた4つの絶縁層グループの
上から銀ペーストを塗り外部電極とし各々にリード線を
つけて素子を完成した(図−8)。As shown in FIG. 7, the insulating layer formed in the above step was separated from the temporary external electrode, and further separated into a plurality of elements so as to provide an element having four insulating layer groups.
Finally, silver paste was applied from above the four insulating layer groups provided on the individual elements to form external electrodes, and lead wires were attached to each of them to complete the element (FIG. 8).
このようにして得られた素子のリード線を素子の内部
電極が1層毎に極性が逆になるように2本ずつ組にして
電源につなぎ80Vの電圧(電界としては10kV/cm)を印加
して電圧印加方向の伸び率を測定したところ約0.10%で
あった。The lead wires of the device obtained in this way are connected in sets of two such that the internal electrodes of the device have the opposite polarity for each layer, and connected to a power supply, and a voltage of 80 V (10 kV / cm as an electric field) is applied. The elongation percentage in the voltage application direction was measured to be about 0.10%.
実施例9 実施例8と全く同様にして厚み0.1mmのグリーンシー
ト小片を得た。この小片100枚に図−9に示す形状にな
るように実施例8と同様の白金ペーストを用いてスクリ
ーン印刷した。全ての印刷されたグリーンシート小片と
1枚の印刷されていない小片とを図−10に示すような順
序で積層しホットプレート上で120℃、150Kg/cm2で熱圧
着した。Example 9 In the same manner as in Example 8, a small green sheet piece having a thickness of 0.1 mm was obtained. Screen printing was performed on the 100 small pieces using the same platinum paste as in Example 8 so as to have the shape shown in FIG. 9. All printed green sheet pieces and one unprinted piece were laminated in the order shown in FIG. 10 and thermocompressed on a hot plate at 120 ° C. and 150 kg / cm 2 .
得られた積層体を、実施例8と全く同様にして脱脂を
行い、次いで焼結した。得られた焼結体の内部電極間の
距離は0.08mmであり、2つの側面には内部電極2層毎に
1層が到達していない構造になっていた。図−11に示す
ようにこの2つの側面に導電性ペーストを塗り仮の外部
電極とし、各々にリード線をつけた。次いでこのものに
仮の外部電極を設けていない2つの内部電極露出側面の
一方の面に保護テープを貼り付けた後実施例8と全く同
様にして電気泳動によりアルミナ粒子とポリアミド酸を
第1のリード線と導通している内部電極の露出端面とそ
の近傍に電着した(本例で用いたポリアミド酸及びアル
ミナは実施例8と全く同様のものである)。次いで実施
例8と全く同様にして電着槽から取り出して液切り後20
0℃に加熱してポリアミド酸をイミド化して第1の絶縁
層グループを形成した。同様の操作によって第2のリー
ド線を用いて第2の絶縁層グループを形成した。その際
第1の絶縁層が再度絶縁されないように保護テープを貼
り変えた。The obtained laminate was degreased exactly in the same manner as in Example 8, and then sintered. The distance between the internal electrodes of the obtained sintered body was 0.08 mm, and the structure was such that one internal layer did not reach every two internal electrodes on two side surfaces. As shown in FIG. 11, conductive paste was applied to these two side surfaces to form temporary external electrodes, and lead wires were attached to each. Next, a protective tape was stuck on one of the two exposed side surfaces of the internal electrode where no temporary external electrode was provided, and then the alumina particles and the polyamic acid were electrophoresed in exactly the same manner as in Example 8 to form the first electrode. Electrodeposition was performed on the exposed end face of the internal electrode that is in conduction with the lead wire and in the vicinity thereof (the polyamic acid and alumina used in this example are exactly the same as in Example 8). Then, it was taken out of the electrodeposition tank in exactly the same manner as in Example 8 and drained.
The polyamic acid was imidized by heating to 0 ° C. to form a first insulating layer group. By the same operation, a second insulating layer group was formed using the second lead wire. At that time, the protective tape was changed so that the first insulating layer was not insulated again.
前記工程で絶縁層を形成されたものから図−12に示す
ように仮の外部電極を切り離し、更に2つの絶縁層グル
ープを具備する素子になるように複数個に切り離す。最
後に個々の素子に設けられた2つの絶縁層グループの上
から銀ペーストを塗り外部電極とし各々にリード線をつ
けて素子を完成した(図−13)。As shown in FIG. 12, a temporary external electrode is separated from the one having the insulating layer formed in the above step, and further divided into a plurality of elements so as to form an element having two insulating layer groups. Finally, silver paste was applied from above the two insulating layer groups provided on the individual devices to form external electrodes, and lead wires were attached to each of them to complete the device (FIG. 13).
このようにして得られた素子の2本のリード線を電源
につなぎ80Vの電圧(電界としては10kV/cm)を印加して
電圧印加方向の伸び率を測定したところ約0.08%であっ
た。The two leads of the device thus obtained were connected to a power supply, and a voltage of 80 V (an electric field of 10 kV / cm) was applied. The elongation in the voltage application direction was measured to be about 0.08%.
上記の実施例及び比較例から明らかなように、絶縁性
フィラーを添加することにより絶縁体力の高い積層体を
効率よく製造することができ、製造コストの低減に大い
に役立つ。また、内部電極の露出端面を3層ずつ連続し
て絶縁する本発明の積層型電歪縦効果素子構造であれ
ば、電歪材料が極めて薄い素子であっても、外部電極と
導通すべき内部電極の露出端面を覆うことなく必要な部
分にのみ絶縁層が形成されているので、従来では困難で
あった低電圧で駆動しても大きな変位を示す素子を容易
に製造することが出来る。As is clear from the above Examples and Comparative Examples, by adding an insulating filler, a laminate having a high insulating power can be efficiently produced, which greatly contributes to a reduction in production cost. Further, with the laminated electrostrictive longitudinal effect element structure of the present invention in which the exposed end faces of the internal electrodes are continuously insulated three layers at a time, even if the electrostrictive material is an extremely thin element, the internal electrodes to be electrically connected to the external electrodes must Since the insulating layer is formed only on a necessary portion without covering the exposed end surface of the electrode, an element which shows a large displacement even when driven at a low voltage, which has been conventionally difficult, can be easily manufactured.
図−1(a)〜(c)は本発明の一実施例の斜視図並び
にX−Y、X′−Y′での縦断面図である。 図−2(a)、(b)は従来法による積層型電歪縦効果
素子の斜視図並びにX−Yでの縦断面図である。 図−3から図−7までは実施例8の製造方法を説明する
ために工程順に示した斜視図、平面図及び縦断面図であ
る。 図−8は実施例8で得られた1個の積層型電歪縦効果素
子の斜視図並びにX−Y、X′−Y′での縦断面図であ
る。 図−9ないし図−12は実施例9の製造方法を説明するた
めに工程順に示した斜視図、平面図及び縦断面図であ
る。 図−13は実施例9で得られた1個の積層型電歪縦効果素
子の斜視図である。 各図において1は電歪材料、2は白金内部電極、3は絶
縁層、4は外部電極、5はリード線、6は半田、7はグ
リーンシート、8は白金ペースト、9は保護テープ、10
は仮の外部電極、11は電気泳動用のリード線、12は1個
1個の積層型電歪縦効果素子に切り出すための切断線で
ある。FIGS. 1 (a) to 1 (c) are a perspective view and a vertical sectional view along XY and X'-Y 'of an embodiment of the present invention. 2 (a) and 2 (b) are a perspective view and a vertical cross-sectional view along XY of a conventional laminated electrostrictive vertical effect element. FIG. 3 to FIG. 7 are a perspective view, a plan view, and a longitudinal sectional view shown in the order of steps for explaining the manufacturing method of the eighth embodiment. FIG. 8 is a perspective view of one laminated electrostrictive longitudinal effect element obtained in Example 8 and a longitudinal sectional view taken along XY and X'-Y '. FIG. 9 to FIG. 12 are a perspective view, a plan view, and a longitudinal sectional view shown in the order of steps for explaining the manufacturing method of the ninth embodiment. FIG. 13 is a perspective view of one laminated electrostrictive longitudinal effect element obtained in Example 9. In each figure, 1 is an electrostrictive material, 2 is a platinum internal electrode, 3 is an insulating layer, 4 is an external electrode, 5 is a lead wire, 6 is a solder, 7 is a green sheet, 8 is a platinum paste, 9 is a protective tape, 10
Is a temporary external electrode, 11 is a lead wire for electrophoresis, and 12 is a cutting line for cutting out each of the laminated electrostrictive longitudinal effect elements.
Claims (10)
に積層されており、該内部電極が該電歪材料の薄膜又は
薄板の全面にわたって形成されている積層型電歪効果素
子において、該素子の側端面に露出している該内部電極
の露出端面及びその近傍の電歪材料のみを絶縁する絶縁
層が、一般式(I) (式中、Xはフェニル基;ビフェニル基;及びフェニル
基及びビフェニル基の少なくとも1種がO,CO,S,CH2,C
(CH3)2及びC(CF3)2の少なくとも1種によって結合され
たポリフェニル基からなる群から選ばれた四価の基であ
り、Yはフェニル基;ビフェニル基;フェニル基及びビ
フェニル基の少なくとも1種がO,CO,S,SO2,CH2,C(C
H3)2及びC(CF3)2の少なくとも1種によって結合された
ポリフェニル基;アルキレン基;及びキシリレン基から
なる群から選ばれた二価の基である) で表わされる繰り返し単位を有するポリイミド樹脂と絶
縁性フィラーとからなることを特徴とする積層型電歪効
果素子。1. A laminated electrostrictive element in which a film or a thin plate of an electrostrictive material and an internal electrode are alternately laminated, and the internal electrode is formed over the entire surface of the thin film or the thin plate of the electrostrictive material. The insulating layer that insulates only the exposed end face of the internal electrode exposed on the side end face of the element and the electrostrictive material in the vicinity thereof has a general formula (I) (Wherein X is a phenyl group; a biphenyl group; and at least one of the phenyl group and the biphenyl group is O, CO, S, CH 2 , C
A tetravalent group selected from the group consisting of a polyphenyl group linked by at least one of (CH 3 ) 2 and C (CF 3 ) 2 , wherein Y is a phenyl group; a biphenyl group; a phenyl group and a biphenyl group At least one of O, CO, S, SO 2 , CH 2 , C (C
H 3 ) 2 and a divalent group selected from the group consisting of a polyphenyl group, an alkylene group, and a xylylene group, which are linked by at least one of C (CF 3 ) 2. A laminated electrostrictive element comprising a polyimide resin and an insulating filler.
に積層されており、該内部電極が該電歪材料の薄膜又は
薄板の全面にわたって形成されている積層型電歪効果素
子の側端面に該内部電極の端面が露出している該電歪効
果素子を、一般式(II) (式中、Xはフェニル基;ビフェニル基;及びフェニル
基及びビフェニル基の少なくとも1種がO,CO,S,CH2,C
(CH3)2及びC(CF3)2の少なくとも1種によって結合され
たポリフェニル基からなる群から選ばれた四価の基であ
り、Yはフェニル基;ビフェニル基;フェニル基及びビ
フェニル基の少なくとも1種がO,CO,S,SO2,CH2,C(C
H3)2及びC(CF3)2の少なくとも1種によって結合された
ポリフェニル基;アルキレン基;及びキシリレン基から
なる群から選ばれた二価の基である) で表わされる繰り返し単位を有するポリアミド酸樹脂と
該樹脂中に分散した絶縁性フィラーとからなる組成物中
の該ポリアミド酸樹脂のカルボキシル基を塩基で中和
し、水で希釈して得た被膜形成用電気泳動浴中に浸漬
し、該電歪効果素子の内部電極を陽極として電気泳動を
実施して該電歪効果素子の側端面上の該内部電極の露出
部及びその近傍の電歪材料のみに該ポリアミド酸及び該
絶縁性フィラーを析出させて被膜層を形成し、その後加
熱処理して該被膜層のポリアミド酸樹脂をイミド化させ
て、一般式(I) (式中、X及びYは前記の通りである) で表わされる繰り返し単位を有するポリイミド樹脂と絶
縁性フィラーとからなる絶縁層を形成させることを特徴
とする請求項1記載の積層型電歪効果素子の製造方法。2. A laminated electrostrictive effect element in which a film or thin plate of an electrostrictive material and internal electrodes are alternately laminated, and the internal electrode is formed over the entire surface of the thin film or the thin plate of the electrostrictive material. The electrostrictive effect element having the end face of the internal electrode exposed at the side end face is represented by general formula (II) (Wherein X is a phenyl group; a biphenyl group; and at least one of the phenyl group and the biphenyl group is O, CO, S, CH 2 , C
A tetravalent group selected from the group consisting of a polyphenyl group linked by at least one of (CH 3 ) 2 and C (CF 3 ) 2 , wherein Y is a phenyl group; a biphenyl group; a phenyl group and a biphenyl group At least one of O, CO, S, SO 2 , CH 2 , C (C
H 3 ) 2 and a divalent group selected from the group consisting of a polyphenyl group, an alkylene group, and a xylylene group, which are linked by at least one of C (CF 3 ) 2. A carboxyl group of the polyamic acid resin in a composition comprising a polyamic acid resin and an insulating filler dispersed in the resin is neutralized with a base, and immersed in a film-forming electrophoresis bath obtained by diluting with water. Electrophoresis is performed using the internal electrode of the electrostrictive effect element as an anode, and only the exposed portion of the internal electrode on the side end surface of the electrostrictive effect element and the electrostrictive material in the vicinity thereof are exposed to the polyamic acid and the insulating material. The conductive filler is precipitated to form a coating layer, which is then subjected to a heat treatment to imidize the polyamic acid resin of the coating layer. The laminated electrostrictive effect according to claim 1, wherein an insulating layer comprising a polyimide resin having a repeating unit represented by the following formula (where X and Y are as defined above) and an insulating filler is formed. Device manufacturing method.
に積層されており、該内部電極が該電歪材料の薄膜又は
薄板の全面にわたって形成されている積層型電歪効果素
子において、該素子の側端面に露出している該内部電極
の露出端面及びその近傍の電歪材料のみを絶縁する絶縁
層がm個(mは4以上の偶数である)のグループからな
り、第1グループの絶縁層は第(m×n+1)番目(n
は0又は正の整数である)以外の内部電極を絶縁してお
り、第2グループの絶縁層は第(m×n+2)番目以外
の内部電極を絶縁しており、第3グループの絶縁層は第
(m×n+3)番目以外の内部電極を絶縁しており、以
下同様に第mグループの絶縁層は第(m×n+m)番目
以外の内部電極を絶縁しており、更に該積層されている
m個の層毎の内部電極に導通する外部電極が各々のグル
ープの絶縁層の上から設けられていることを特徴とする
積層型電歪効果素子。3. A laminated electrostrictive effect element in which thin films or thin plates of an electrostrictive material and internal electrodes are alternately laminated, and the internal electrodes are formed over the entire surface of the thin film or the thin plate of the electrostrictive material. A first group includes m (m is an even number of 4 or more) insulating layers for insulating only the exposed end face of the internal electrode exposed on the side end face of the element and the electrostrictive material in the vicinity thereof. Of the (m × n + 1) th (n
Is an integer other than 0 or a positive integer), the second group of insulating layers insulates other than the (m × n + 2) th internal electrode, and the third group of insulating layers The (m × n + 3) -th internal electrodes are insulated. Similarly, the m-th group of insulating layers insulate the (m × n + m) -th internal electrodes, and are further laminated. An external electrode, which is electrically connected to the internal electrodes of every m layers, is provided from above the insulating layers of each group.
て、該素子の側端面に露出している該内部電極の露出端
面及びその近傍の電歪材料のみを絶縁する絶縁層が4個
のグループからなり、第1グループの絶縁層は第(4n+
1)番目(nは0又は正の整数である)以外の内部電極
を絶縁しており、第2グループの絶縁層は第(4n+2)
番目以外の内部電極を絶縁しており、第3グループの絶
縁層は第(4n+3)番目以外の内部電極を絶縁してお
り、第4グループの絶縁層は第(4n+4)番目以外の内
部電極を絶縁しており、更に該積層されている4個の層
毎の内部電極に導通する外部電極が各々のグループの絶
縁層の上から設けられていることを特徴とする積層型電
歪効果素子。4. The laminated electrostrictive effect element according to claim 3, wherein four insulating layers insulate only the exposed end face of the internal electrode exposed on the side end face of the element and the electrostrictive material near the exposed end face. The first group of insulating layers is the (4n +
The first (in which n is 0 or a positive integer) other than the (1) -th internal electrode is insulated, and the insulating layer of the second group is (4n + 2)
The third group of insulating layers insulates other than the (4n + 3) th internal electrodes, and the third group of insulating layers insulates the other (4n + 4) th internal electrodes. A laminated electrostrictive effect element, wherein external electrodes which are insulated and which are electrically connected to internal electrodes of each of the four laminated layers are provided on the insulating layers of each group.
する請求項3又は4記載の積層型電歪効果素子。5. The laminated electrostrictive element according to claim 3, wherein the insulating layer contains an organic material.
ド樹脂であることを特徴とする請求項5記載の積層型電
歪縦効果素子。6. The laminated electrostrictive longitudinal effect element according to claim 5, wherein the organic material is the polyimide resin according to claim 1.
樹脂及び絶縁性フィラーを含むことを特徴とする請求項
5記載の積層型電歪効果素子。7. The laminated electrostrictive effect element according to claim 5, wherein said insulating layer contains the polyimide resin according to claim 1 and an insulating filler.
果素子であることを特徴とする請求項1、3、4、5、
6又は7記載の積層型電歪効果素子。8. The multi-layer electrostrictive effect element according to claim 1, wherein the multi-layer electrostrictive effect element is a multi-layer electrostrictive longitudinal effect element.
8. The laminated electrostrictive effect element according to 6 or 7.
に積層されている積層焼結体にm個(mは4以上の偶数
である)の仮の外部電極を形成し、この際に、第1の仮
の外部電極は第(m×n+1)番目(nは0又は正の整
数である)以外の内部電極に導通し、第2の仮の外部電
極は第(m×n+2)番目以外の内部電極に導通し、第
3の仮の外部電極は第(m×n+3)番目以外の内部電
極に導通し、以下同様に第mの仮の外部電極は第(m×
n+m)番目以外の内部電極に導通するように外部電極
を形成し、そして各々の仮の外部電極にリード線を設け
る第1工程、 上記第1工程で得られたリード線付き積層焼結体の内部
電極の露出端面及びその近傍の電歪材料上に電気泳動法
によってm個のグループの絶縁層を形成し、この際に、
第1グループの絶縁層は第(m×n+1)番目(nは0
又は正の整数である)以外の内部電極を絶縁し、第2グ
ループの絶縁層は第(m×n+2)番目以外の内部電極
を絶縁し、第3グループの絶縁層は第(m×n+3)番
目以外の内部電極を絶縁し、以下同様に第mグループの
絶縁層は第(m×n+m)番目以外の内部電極を絶縁す
るように絶縁層を形成する第2工程、 上記第2工程で得られたm個のグループの絶縁層の各々
の上から、該積層されているm個の層毎の内部電極に導
通する外部電極を形成し、更に該外部電極にリード線を
取り付ける工程、 上記第1工程で取り付けたm個の仮の外部電極とリード
線を切り離す工程 を有することを特徴とする積層型電歪効果素子の製造方
法。9. A m (where m is an even number equal to or greater than 4) temporary external electrode is formed on a laminated sintered body in which thin films or thin plates of an electrostrictive material and internal electrodes are alternately laminated. In addition, the first temporary external electrode is electrically connected to the (m × n + 1) th (n is 0 or a positive integer) other internal electrode, and the second temporary external electrode is (m × n + 2). The third temporary external electrode is conductive to the (m × n + 3) -th internal electrode except for the (m × n + 3) th internal electrode, and so on.
a first step of forming external electrodes so as to conduct to internal electrodes other than the (n + m) -th internal electrode, and providing a lead wire to each temporary external electrode; Forming m groups of insulating layers by electrophoresis on the exposed end face of the internal electrode and the electrostrictive material in the vicinity thereof,
The first group of insulating layers is the (m × n + 1) -th (n is 0
Or a positive integer), the second group of insulating layers insulates other than (m × n + 2) -th internal electrodes, and the third group of insulating layers (m × n + 3) A second step of forming an insulating layer so as to insulate the internal electrodes other than the (m × n + m) th internal electrode, and in the same manner, obtain an insulating layer of the m-th group. Forming, from above each of the m groups of insulating layers, external electrodes that are electrically connected to the internal electrodes of each of the stacked m layers, and further attaching a lead wire to the external electrodes; A method for manufacturing a laminated electrostrictive effect element, comprising a step of separating a lead wire from m temporary external electrodes attached in one step.
工程を請求項2記載の製造方法で実施することを特徴と
する請求項9記載の積層型電歪効果素子の製造方法。10. The method according to claim 9, wherein the second
The method according to claim 9, wherein the step is performed by the method according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2309520A JP2919946B2 (en) | 1989-11-15 | 1990-11-15 | Laminated electrostrictive element and method of manufacturing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29490089 | 1989-11-15 | ||
JP1-294900 | 1989-11-15 | ||
JP2309520A JP2919946B2 (en) | 1989-11-15 | 1990-11-15 | Laminated electrostrictive element and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03218688A JPH03218688A (en) | 1991-09-26 |
JP2919946B2 true JP2919946B2 (en) | 1999-07-19 |
Family
ID=26560032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2309520A Expired - Lifetime JP2919946B2 (en) | 1989-11-15 | 1990-11-15 | Laminated electrostrictive element and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2919946B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2836332B2 (en) * | 1991-12-20 | 1998-12-14 | 日本電気株式会社 | Manufacturing method of laminated piezoelectric actuator element |
EP2752899B1 (en) | 2011-08-30 | 2016-06-29 | Kyocera Corporation | Laminated piezoelectric element and piezoelectric actuator, injection device, and fuel injection system provided with same |
-
1990
- 1990-11-15 JP JP2309520A patent/JP2919946B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03218688A (en) | 1991-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5173162A (en) | Multi-layered electrostrictive effect element | |
KR101723254B1 (en) | Glass/resin laminate, and electronic device using same | |
CN107325285B (en) | Polyimide, polyimide-based adhesive, adhesive material, adhesive layer, adhesive sheet, laminate, wiring board, and method for producing same | |
KR100654870B1 (en) | Aqueous Dispersion for Forming Conductive Layer, Conductive Layer, Electronic Component, Circuit Board and Method for Manufacturing the Same, and Multilayer Wiring Board and Method for Manufacturing the Same | |
US20040099999A1 (en) | Co-fired capacitor and method for forming ceramic capacitors for use in printed wiring boards | |
US20060133011A1 (en) | Capacitive devices, organic dielectric laminates, and printed wiring boards incorporating such devices, and methods of making thereof | |
US20210087319A1 (en) | Polyimide film, block copolymer of polyamide acid, and method for manufacturing the block copolymer of polyamide acid | |
KR20060067878A (en) | Thermally conductive polyimide film composites having high mechanical elongation useful as a heat conducting portion of an electronic device | |
WO2005086247A1 (en) | Multilayer piezoelectric element and its manufacturing method | |
KR101174606B1 (en) | Circuit connection structure, method for manufacturing same, and semiconductor substrate for circuit connection structure | |
SG182739A1 (en) | Polyimide resin composition, adhesive agent and laminate each comprising same, and device | |
WO2005113645A1 (en) | Polyimide resin, multilayer film, multilayer film with metal layer, and semiconductor device | |
JP2002536825A (en) | Passive electrical articles, circuit articles thereof, and circuit articles including passive electrical articles | |
WO2012157701A1 (en) | Method for manufacturing conductive coating film and conductive coating film | |
CN106947079B (en) | Modified polyimide, adhesive composition, copper foil with resin, copper-clad laminate, printed wiring board, and multilayer substrate | |
JP2919946B2 (en) | Laminated electrostrictive element and method of manufacturing the same | |
JP5040252B2 (en) | Adhesive composition for semiconductor, semiconductor device using the same, and method for producing semiconductor device | |
TWI229929B (en) | Underfill material for COF mounting and electronic components | |
JP2007281361A (en) | Polyimide printed circuit board and polyimide printed wiring board | |
EP0407099B1 (en) | Multi-layered ceramic elements and method for producing same | |
JP2895141B2 (en) | Manufacturing method of multilayer ceramic capacitor | |
JP4737938B2 (en) | Method for manufacturing ring-shaped insulating plate for coil | |
JP2865709B2 (en) | Electrostrictive effect element and method of manufacturing the same | |
KR102306950B1 (en) | Polyimide film, method of manufacturing the same, and flexible printed circuit board | |
JPH05125345A (en) | Adhesive composition |