JP5040252B2 - Adhesive composition for semiconductor, semiconductor device using the same, and method for producing semiconductor device - Google Patents

Adhesive composition for semiconductor, semiconductor device using the same, and method for producing semiconductor device Download PDF

Info

Publication number
JP5040252B2
JP5040252B2 JP2006279623A JP2006279623A JP5040252B2 JP 5040252 B2 JP5040252 B2 JP 5040252B2 JP 2006279623 A JP2006279623 A JP 2006279623A JP 2006279623 A JP2006279623 A JP 2006279623A JP 5040252 B2 JP5040252 B2 JP 5040252B2
Authority
JP
Japan
Prior art keywords
semiconductor
group
adhesive composition
epoxy
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006279623A
Other languages
Japanese (ja)
Other versions
JP2008094993A (en
Inventor
敏央 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006279623A priority Critical patent/JP5040252B2/en
Publication of JP2008094993A publication Critical patent/JP2008094993A/en
Application granted granted Critical
Publication of JP5040252B2 publication Critical patent/JP5040252B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Wire Bonding (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、半導体ウェハ上に半導体用接着組成物を形成した後、半導体用接着組成物付きウェハをダイシングにより個片化したIC、LSI等半導体チップをフレキシブル基板、ガラスエポキシ基板、ガラス基板、セラミックス基板などの回路基板に直接電気的接合する際の半導体用接着組成物、これを用いた半導体装置および半導体装置の製造方法に関する。   The present invention relates to a semiconductor substrate such as an IC or LSI obtained by forming a semiconductor adhesive composition on a semiconductor wafer and then dicing the wafer with the semiconductor adhesive composition into a flexible substrate, a glass epoxy substrate, a glass substrate, and a ceramic. The present invention relates to an adhesive composition for a semiconductor when it is directly electrically bonded to a circuit board such as a substrate, a semiconductor device using the same, and a method for manufacturing the semiconductor device.

近年、半導体装置の小型化と高密度化に伴い、半導体チップを回路基板に実装する方法としてフリップチップ実装(ダイレクトチップアタッチ実装)が注目され急速に広まってきている。フリップチップ実装においては、接合部分の接続信頼性を確保するための方法として、半導体チップ上に形成されたバンプ電極と回路基板のパッド電極を接合した後に、半導体チップと回路基板との隙間に液状封止接着剤を注入し硬化させることが一般的な方法として採られている。しかし、半導体装置の軽薄短小化のために、半導体チップに形成されるバンプ電極の数の増大とバンプ電極の低背化が進んできたため、液状封止接着剤を半導体チップと回路基板との隙間に接合部分の接続信頼性を確保できる十分な量を注入するという従来の方法を用いることができないものが現れた。これに対し、回路基板あるいはバンプ電極付き半導体チップにアンダーフィル材とよばれる液状接着剤を、ディスペンサーやスクリーン印刷等の方法により塗布した後に半導体チップと回路基板を接合する方法が用いられるようになった。しかし、微小面積に均一に液状接着剤を塗布することは困難であるため、液状接着剤のはみ出しによる回路基板や半導体チップの汚染、実装面積の増大や未封止部分が存在するといった問題を有していた(特許文献1参照)。   In recent years, with the miniaturization and high density of semiconductor devices, flip chip mounting (direct chip attach mounting) has attracted attention and rapidly spread as a method for mounting a semiconductor chip on a circuit board. In flip chip mounting, as a method for ensuring the connection reliability of the joining portion, after bonding the bump electrode formed on the semiconductor chip and the pad electrode of the circuit board, liquid is formed in the gap between the semiconductor chip and the circuit board. It is a common method to inject and cure a sealing adhesive. However, since the number of bump electrodes formed on the semiconductor chip and the height of the bump electrodes have been reduced in order to make the semiconductor device lighter, thinner, and smaller, the liquid sealing adhesive has been removed from the gap between the semiconductor chip and the circuit board. In some cases, the conventional method of injecting a sufficient amount to ensure the connection reliability of the joint portion cannot be used. In contrast, a method of bonding a semiconductor chip and a circuit board after applying a liquid adhesive called an underfill material to a circuit board or a semiconductor chip with bump electrodes by a method such as a dispenser or screen printing has come to be used. It was. However, since it is difficult to uniformly apply a liquid adhesive to a minute area, there are problems such as contamination of a circuit board and a semiconductor chip due to protrusion of the liquid adhesive, an increase in mounting area, and the presence of unsealed portions. (See Patent Document 1).

この問題を解決するために、バンプ電極付き半導体ウェハに一定厚さの半導体用接着組成物をラミネートした後、ダイシングにより半導体ウェハを個別半導体チップとし、次に、半導体チップを回路基板にフリップチップ接続し、電気的接合と樹脂封止を同時に行う方法(特許文献2参照)およびそれに使用する接着フィルムが提案されている。この方法によれば、半導体用接着組成物と半導体チップの接着面積をほぼ同じにすることができ、液状封止接着剤を用いた場合に比べ、半導体チップに対する接着組成物のはみ出しが非常に少ない(特許文献3、4参照)。ところが、特許文献3、4で用いられている半導体用接着組成物は、フルオレン骨格を有するフェノキシ樹脂、エポキシ樹脂、マイクロカプセル化イミダゾール誘導体エポキシ化合物とシリカフィラーから構成されたもの、あるいは有機溶剤可溶性ポリイミド、エポキシ樹脂、フェノール樹脂、シリカフィラーから構成されたものである。これらはいずれも、シリカというあまり熱伝導率が大きくない(シリカの熱伝導率は1.3W/m・K)材料を用いているため半導体接着組成物としての熱伝導率があまり大きくない。   In order to solve this problem, after laminating a semiconductor adhesive composition of a certain thickness on a semiconductor wafer with bump electrodes, the semiconductor wafer is made into individual semiconductor chips by dicing, and then the semiconductor chip is flip-chip connected to the circuit board. And the method (refer patent document 2) which performs electrical joining and resin sealing simultaneously, and the adhesive film used for it are proposed. According to this method, the bonding area of the semiconductor adhesive composition and the semiconductor chip can be made substantially the same, and the protrusion of the adhesive composition to the semiconductor chip is very small compared to the case where a liquid sealing adhesive is used. (See Patent Documents 3 and 4). However, the adhesive composition for semiconductors used in Patent Documents 3 and 4 is composed of a phenoxy resin having a fluorene skeleton, an epoxy resin, a microencapsulated imidazole derivative epoxy compound and a silica filler, or an organic solvent-soluble polyimide. , An epoxy resin, a phenol resin, and a silica filler. All of these materials use silica, which is not so high in thermal conductivity (silica has a thermal conductivity of 1.3 W / m · K), and therefore, the thermal conductivity as a semiconductor adhesive composition is not so high.

さらに特許文献1に記載の液状封止接着剤を半導体ウェハのバンプ電極面側にコーティングした後にダイシングを行うと、切削粉が液状封止接着剤に付着しやすいという問題、液状封止接着剤の流動性が大きいためにおこる切削したウェハ端面への液状封止接着剤の付着や切削ブレードの目詰まりという問題、切削時の水の噴射圧力による膜表面の乱れの問題など複数の問題が生じやすい。このため、特許文献1に記載の液状封止接着剤を半導体ウェハのバンプ電極面側にコーティングした後にダイシングを行うという工程を工業的に利用することは困難である。また、特許文献3、4記載の半導体用接着組成物を半導体ウェハのバンプ電極付き面にラミネートした後にダイシングを行うと、切削粉が液状封止接着剤に付着しやすいという問題、ウェハからの液状封止接着剤の剥がれ、液状封止接着剤の欠け、割れが生じるという問題がある。液状封止接着剤の欠け、割れは切削時の速度を遅くすることによりある程度は改善されるが、近年のウェハの大口径化が進む状況を考慮すると、切削速度の低下はコストアップの要因となる。さらに特許文献3に記載された半導体用接着組成物は耐熱性を付与するためにフルオレン骨格を有するフェノキシ樹脂や、有機溶剤可溶性ポリイミドを使用しているが、バンプ電極付き半導体ウェハにコーティングするような接着組成物として十分な耐熱性、絶縁性を有していない。   Furthermore, when the dicing is performed after the liquid sealing adhesive described in Patent Document 1 is coated on the bump electrode surface side of the semiconductor wafer, the problem that the cutting powder tends to adhere to the liquid sealing adhesive, Due to high fluidity, multiple problems are likely to occur, such as the problem of liquid sealing adhesive adhering to the cut wafer end face and clogging of the cutting blade, and the problem of disturbance of the film surface due to the water jet pressure during cutting. . For this reason, it is difficult to industrially use the process of dicing after coating the liquid sealing adhesive described in Patent Document 1 on the bump electrode surface side of the semiconductor wafer. Further, when the semiconductor adhesive composition described in Patent Documents 3 and 4 is laminated on the surface of the semiconductor wafer with the bump electrodes, dicing is performed, the problem that the cutting powder easily adheres to the liquid sealing adhesive, and the liquid from the wafer. There is a problem that the sealing adhesive is peeled off, and the liquid sealing adhesive is chipped and cracked. Chipping and cracking of the liquid sealing adhesive can be improved to some extent by slowing down the cutting speed. However, considering the recent trend toward larger wafer diameters, the reduction in cutting speed is a cause of increased costs. Become. Further, the semiconductor adhesive composition described in Patent Document 3 uses a phenoxy resin having a fluorene skeleton or an organic solvent-soluble polyimide for imparting heat resistance, but it is coated on a semiconductor wafer with bump electrodes. It does not have sufficient heat resistance and insulation properties as an adhesive composition.

一方、特許文献5には有機溶剤可溶性ポリイミドに、ポリイミドと相溶性に優れるエポキシ樹脂を組み合わせる方法が開示されている。しかし、エポキシ樹脂に固形エポキシ樹脂を用いているため、非常にもろいという性質を有しており、バンプ電極付き半導体ウェハにラミネートした後、ダイシングを行うと、ウェハからの剥がれ、接着層自身の欠け、割れが生じる。   On the other hand, Patent Document 5 discloses a method in which an organic solvent-soluble polyimide is combined with an epoxy resin having excellent compatibility with polyimide. However, since a solid epoxy resin is used for the epoxy resin, it has a very fragile property, and if it is laminated on a semiconductor wafer with a bump electrode and then diced, it will peel off from the wafer and the adhesive layer itself will be chipped. Cracking occurs.

また、常温で固形である固形エポキシ樹脂と常温で液状であるエポキシ樹脂を混合して可撓性を持たせる技術が知られている(特許文献6参照)。しかしながら、このような樹脂からなる接着剤層をバンプ電極付き半導体ウェハに形成した後にダイシングを行うと、ウェハから半導体用接着組成物の剥がれ、半導体用接着組成物の欠け、割れが生じるという問題がある。   Further, a technique is known in which a solid epoxy resin that is solid at normal temperature and an epoxy resin that is liquid at normal temperature are mixed to provide flexibility (see Patent Document 6). However, when dicing is performed after forming an adhesive layer made of such resin on a semiconductor wafer with bump electrodes, there is a problem that the adhesive composition for semiconductor is peeled off from the wafer, and the adhesive composition for semiconductor is chipped or cracked. is there.

さらにはポリイミドと、3官能以上のエポキシ樹脂と液状エポキシ樹脂を含有する接着シートも開示されている(特許文献7参照)。しかしながら、特許文献7に記載されたポリイミドを含有する接着シートを用いてフリップチップ実装を行うと、このポリイミドの吸水性が高いために、実装時の加熱のために接着シート中に吸水により蓄えられた水分が急激に蒸発し、それにより接着シートが発泡し、半導体チップと回路基板間の接着力が十分に得られないという問題、接続信頼性が低いなどの問題が起きる。   Furthermore, an adhesive sheet containing polyimide, a tri- or higher functional epoxy resin, and a liquid epoxy resin is also disclosed (see Patent Document 7). However, when flip chip mounting is performed using an adhesive sheet containing polyimide described in Patent Document 7, the water absorption of this polyimide is high, so that it is stored in the adhesive sheet due to water absorption for heating during mounting. As a result, the adhesive sheet evaporates rapidly, causing the adhesive sheet to foam, resulting in problems such as insufficient adhesion between the semiconductor chip and the circuit board, and low connection reliability.

また、有機溶剤可溶性ポリイミドとしては、ポリマーの主鎖末端にフェノール性水酸基等の反応基を有するポリイミド(特許文献8参照)が知られている。   As an organic solvent-soluble polyimide, a polyimide having a reactive group such as a phenolic hydroxyl group at the main chain terminal of the polymer (see Patent Document 8) is known.

一方、熱硬化性樹脂に高誘電率粒子を混合することで高誘電率化する技術(特許文献9参照)や、熱硬化性樹脂と熱可塑性樹脂に高誘電率粒子を混合する技術(特許文献10参照)が知られている。しかしながらこれらの樹脂ではダイシング工程において割れ、欠け、剥がれが発生するという問題があった。
特開2004−211064号公報(特許請求の範囲) 特開2001−237268号公報(請求項1) 特開2004−315688号公報(特許請求の範囲) 特開2004−319823号公報(特許請求の範囲) 特開2003−192894号公報(請求項1) 特開2004−146495号公報(請求項11、39段落) 特開2004−292821号公報(特許請求の範囲、73段落) 国際公開第04/109403号パンフレット 特開2005−38821号公報(特許請求の範囲) 特開2003−105205号公報(特許請求の範囲)
On the other hand, a technique for increasing the dielectric constant by mixing high dielectric constant particles with a thermosetting resin (see Patent Document 9), or a technique for mixing high dielectric constant particles with a thermosetting resin and a thermoplastic resin (Patent Document) 10) is known. However, these resins have a problem that cracking, chipping and peeling occur in the dicing process.
JP 2004-211064 A (Claims) JP 2001-237268 A (Claim 1) JP 2004-315688 A (Claims) JP 2004-319823 A (Claims) JP 2003-192894 A (Claim 1) JP 2004-146495 A (claim 11, paragraph 39) Japanese Patent Laying-Open No. 2004-292281 (Claims, paragraph 73) International Publication No. 04/109403 Pamphlet Japanese Patent Laying-Open No. 2005-38821 (Claims) JP 2003-105205 A (Claims)

本発明は、上記課題を解決すべく、屈曲させても割れや剥がれの発生がなく、狭ピッチ、高ピン数のバンプ電極付きの半導体ウェハのバンプ電極側面にラミネートすることができ、ダイシング時に切削粉の汚染や欠損がなく高速切断可能で、比誘電率が大きい半導体用接着組成物を提供する。また、高精度に切断された半導体チップをバンプを介して回路基板の電極パッドに高精度に金属接合する、もしくは導電物質間の接触による安定した導通を得ることができ、かつ半導体チップと回路基板の間で収縮応力を発揮する接着剤として機能することにより、この金属接合、もしくは導電物質間の接触による安定した導通を補助し、接続の信頼性を高める機能を有し半導体用接着組成物を提供する。さらには半導体チップ上の電極と基板上の電極の層間絶縁膜をキャパシタの層間絶縁膜として兼ねることができる半導体用接着組成物を提供する。   In order to solve the above-mentioned problems, the present invention does not cause cracking or peeling even when bent, and can be laminated on the side of a bump electrode of a semiconductor wafer with a bump electrode having a narrow pitch and a high pin count. Provided is an adhesive composition for semiconductors which can be cut at high speed without contamination or defects of powder and has a large relative dielectric constant. In addition, a semiconductor chip cut with high precision can be metal-bonded with high precision to an electrode pad of a circuit board via bumps, or stable conduction by contact between conductive materials can be obtained, and the semiconductor chip and the circuit board can be obtained. An adhesive composition for a semiconductor having a function of assisting stable conduction by contact between the metal bonding or conductive material and improving connection reliability by functioning as an adhesive exhibiting shrinkage stress between provide. Furthermore, the present invention provides an adhesive composition for a semiconductor that can serve as an interlayer insulating film of a capacitor by using an interlayer insulating film between an electrode on a semiconductor chip and an electrode on a substrate.

すなわち本発明は、(a)有機溶剤可溶性ポリイミドと(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物、(c)硬化促進剤、(d)ペロブスカイト型結晶構造あるいは複合ペロブスカイト型結晶構造を有する高誘電率無機粒子とを含有し、(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物を100重量部に対し、(a)有機溶剤可溶性ポリイミドを15〜90重量部、(c)硬化促進剤を0.1〜10重量部含有し、(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物が25℃、1.013×10N/mにおいて液状である化合物と25℃、1.013×10N/mにおいて固形である化合物を含有し、液状であるエポキシ化合物の含有量が全エポキシ化合物に対し20重量%以上60重量%以下である半導体用接着組成物である。 That is, the present invention includes (a) an organic solvent-soluble polyimide and (b) an epoxy compound having two or more epoxy groups and an epoxy equivalent of 100 to 500 , (c) a curing accelerator, and (d) a perovskite crystal structure. Or (b) an epoxy compound containing a high-permittivity inorganic particle having a composite perovskite crystal structure, and having (b) two or more epoxy groups and an epoxy equivalent of 100 to 500 parts by weight (a) 15 to 90 parts by weight of an organic solvent-soluble polyimide, (c) 0.1 to 10 parts by weight of a curing accelerator, (b) an epoxy compound having two or more epoxy groups and an epoxy equivalent of 100 to 500 but 25 ° C., 1.013 compounds which are liquid at × 10 5 N / m 2 and 25 ° C., containing a compound which is solid at 1.013 × 10 5 N / m 2, in liquid form It is an adhesive composition for a semiconductor in which the content of a certain epoxy compound is 20% by weight or more and 60% by weight or less with respect to all epoxy compounds.

本発明の組成物によれば、バンプ電極付きの半導体ウェハのバンプ電極側面に空隙なくラミネートすることができ、ダイシング時に切削粉の汚染や接着層の欠損がなく高速で切断することができる。また、本発明の組成物および製造方法を用いると、高精度に切断された半導体チップをバンプを介して回路基板の電極パッドに高精度に金属接合、もしくは導電物質間の接触による安定した導通を得ることができ、また半導体チップと回路基板の間で収縮応力を発揮し、信頼性に優れた半導体装置を得ることができる。また、本発明の製造方法によれば、半導体チップと基板間でこれらの接続のために用いる接着剤のはみ出し量が小さく実装面積を極小化でき、半導体チップの薄型化と回路基板への実装工程を簡略化できる。またさらには、本発明の組成物は半導体チップ上の電極と基板上の電極間の層間絶縁膜に用いることができ、高静電容量のキャパシタを提供することができる。   According to the composition of the present invention, a semiconductor wafer with a bump electrode can be laminated on the side face of the bump electrode without a gap, and can be cut at high speed without contamination of the cutting powder or loss of the adhesive layer during dicing. In addition, by using the composition and manufacturing method of the present invention, a highly accurate semiconductor chip cut through a bump can be bonded to an electrode pad of a circuit board with high precision, or stable conduction by contact between conductive materials can be achieved. In addition, it is possible to obtain a semiconductor device that exhibits shrinkage stress between the semiconductor chip and the circuit board and has excellent reliability. Further, according to the manufacturing method of the present invention, the protruding amount of the adhesive used for the connection between the semiconductor chip and the substrate is small, the mounting area can be minimized, and the semiconductor chip can be thinned and mounted on the circuit board. Can be simplified. Furthermore, the composition of the present invention can be used for an interlayer insulating film between an electrode on a semiconductor chip and an electrode on a substrate, and can provide a capacitor with a high capacitance.

本発明の半導体用接着組成物は、(a)有機溶剤可溶性ポリイミドと(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物、(c)硬化促進剤、(d)ペロブスカイト型結晶構造あるいは複合ペロブスカイト型結晶構造を有する高誘電率無機粒子とを含有し、(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物を100重量部に対し、(a)有機溶剤可溶性ポリイミドを15〜90重量部、(c)硬化促進剤を0.1〜10重量部含有し、(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物が25℃、1.013×10N/mにおいて液状である化合物と25℃、1.013×10N/mにおいて固形である化合物を含有し、液状であるエポキシ化合物の含有量が全エポキシ化合物に対し20重量%以上60重量%以下であるものである。 The adhesive composition for a semiconductor of the present invention comprises (a) an organic solvent-soluble polyimide and (b) an epoxy compound having two or more epoxy groups and an epoxy equivalent of 100 to 500 , (c) a curing accelerator, (d ) Containing high-permittivity inorganic particles having a perovskite crystal structure or a composite perovskite crystal structure, and (b) 100 parts by weight of an epoxy compound having two or more epoxy groups and having an epoxy equivalent of 100 to 500 On the other hand, (a) 15 to 90 parts by weight of an organic solvent-soluble polyimide, (c) 0.1 to 10 parts by weight of a curing accelerator, (b) two or more epoxy groups, and an epoxy equivalent of 100 to 100 parts. epoxy compound is 25 ° C. is 500, 1.013 × 10 5 compound which is liquid at N / m 2 and 25 ° C., containing a compound that is solid at 1.013 × 10 5 N / m 2 The content of the liquid epoxy compound is 20% by weight or more and 60% by weight or less with respect to the total epoxy compound.

本発明に用いられる(a)有機溶剤可溶性ポリイミドは有機溶剤に可溶であればよく、構造等は特に限定されない。可溶性とは、以下より選ばれる溶剤に23℃で20重量%以上溶解することを意味する。ケトン系溶剤のアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、エーテル系溶剤の1,4−ジオキサン、テトラヒドロフラン、ジグライム、グリコールエーテル系溶剤のメチルセロソルブ、エチルセロソルブ、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、ジエチレングリコールメチルエチルエーテル、その他ベンジルアルコール、N−メチルピロリドン、γ−ブチロラクトン、酢酸エチル、N,N−ジメチルホルムアミドである。   The (a) organic solvent-soluble polyimide used in the present invention is not particularly limited as long as it is soluble in an organic solvent. The term “soluble” means that 20% by weight or more dissolves in a solvent selected from the following at 23 ° C. Ketone solvents acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, ether solvents 1,4-dioxane, tetrahydrofuran, diglyme, glycol ether solvents methyl cellosolve, ethyl cellosolve, propylene glycol monomethyl ether, propylene glycol Monoethyl ether, propylene glycol monobutyl ether, diethylene glycol methyl ethyl ether, other benzyl alcohol, N-methylpyrrolidone, γ-butyrolactone, ethyl acetate, and N, N-dimethylformamide.

本発明の半導体用接着組成物は、イミド環を有する(a)有機溶剤可溶性ポリイミドを含有しているので、耐熱性および耐薬品性に優れている。特に、有機溶剤可溶性ポリイミドに側鎖および末端に、エポキシ基と反応可能な官能基を各々少なくとも一つ有するものを用いることで、熱処理時にエポキシ化合物の開環、芳香族ポリイミドへの付加反応が促進され、より一層密度の高い網目構造を有する組成物得ることができる。エポキシ基と反応可能な官能基としては、フェノール性水酸基、スルホン酸基、チオール基が挙げられる。このような芳香族ポリイミドの合成方法としては、例えば、まず、エポキシ基と反応可能な基を有する酸二無水物とジアミンを反応させてポリイミド前駆体を合成し、次に、末端封止剤としてエポキシ基と反応可能な基を有する一級モノアミンやカルボン酸誘導体を用いて、このポリイミド前駆体の末端修飾を行い、続いて、150℃以上の熱処理を行い、ポリイミド閉環を行う方法が挙げられる。または、先に酸二無水物と末端封止剤として一級モノアミンを反応させた後、ジアミンを添加して末端修飾されたポリイミド前駆体を合成し、さらに150℃以上の高温でポリイミド閉環を行って得ることができる。あるいは、先にジアミンと末端封止剤としてカルボン酸誘導体を反応させた後、酸二無水物を添加して末端修飾されたポリイミド前駆体を合成し、さらに150℃以上の高温でポリイミド閉環を行って得ることができる。   Since the adhesive composition for semiconductors of the present invention contains (a) an organic solvent-soluble polyimide having an imide ring, it is excellent in heat resistance and chemical resistance. In particular, by using an organic solvent-soluble polyimide that has at least one functional group capable of reacting with an epoxy group at the side chain and at the end, the epoxy compound ring-opening and addition reaction to the aromatic polyimide are accelerated during heat treatment. Thus, a composition having a network structure with higher density can be obtained. Examples of the functional group capable of reacting with the epoxy group include a phenolic hydroxyl group, a sulfonic acid group, and a thiol group. As a method for synthesizing such an aromatic polyimide, for example, first, an acid dianhydride having a group capable of reacting with an epoxy group and a diamine are reacted to synthesize a polyimide precursor, and then as an end-capping agent. Examples include a method in which terminal modification of this polyimide precursor is performed using a primary monoamine or carboxylic acid derivative having a group capable of reacting with an epoxy group, followed by heat treatment at 150 ° C. or more to perform polyimide ring closure. Alternatively, after reacting primary monoamine as the acid dianhydride and the end-capping agent first, a diamine is added to synthesize a terminal-modified polyimide precursor, and the polyimide ring is closed at a high temperature of 150 ° C. or higher. Obtainable. Alternatively, after reacting a carboxylic acid derivative as a diamine and an end-capping agent first, an acid dianhydride is added to synthesize a terminal-modified polyimide precursor, and the polyimide ring is closed at a high temperature of 150 ° C. or higher. Can be obtained.

本発明に用いられる(a)有機溶剤可溶性ポリイミドを、前述した溶剤に対し可溶性とするには、脂肪族構造、脂肪族環構造を含むポリイミドまたは芳香族ポリイミドの主鎖を1,1,1,3,3,3−ヘキサフルオロプロピレン基、イソプロピレン基、エーテル基、チオエーテル基およびSO基からなる群より選ばれる基を少なくとも一つ有するものとすることが好ましい。このような芳香族ポリイミドは、1,1,1,3,3,3−ヘキサフルオロプロピレン基、イソプロピレン基、エーテル基、チオエーテル基またはSO基を有するジアミン成分または酸二無水物成分を用いることにより得られる。これらの基を有するポリイミドを、ポリイミド全量に対し80重量%以上とすることが可溶性を大きくできる点で好ましい。また、芳香族ポリイミドの末端が、モノアミンおよび/またはカルボン酸誘導体からなる末端封止剤で末端封止されていることが好ましい。 In order to make the (a) organic solvent-soluble polyimide used in the present invention soluble in the aforementioned solvent, the main chain of the aliphatic structure, the polyimide containing the aliphatic ring structure or the aromatic polyimide is 1,1,1, It is preferable to have at least one group selected from the group consisting of 3,3,3-hexafluoropropylene group, isopropylene group, ether group, thioether group and SO 2 group. Such an aromatic polyimide uses a diamine component or acid dianhydride component having a 1,1,1,3,3,3-hexafluoropropylene group, an isopropylene group, an ether group, a thioether group, or a SO 2 group. Can be obtained. It is preferable that the polyimide having these groups is 80% by weight or more based on the total amount of the polyimide because the solubility can be increased. Moreover, it is preferable that the terminal of the aromatic polyimide is end-capped with an end-capping agent comprising a monoamine and / or a carboxylic acid derivative.

本発明では、(a)有機溶剤可溶性ポリイミドの中でも、一般式(2)〜(7)のいずれかで表される構造を有し、かつエポキシ基と反応可能な官能基を側鎖および末端に各々少なくとも一つ有するポリマーであり、一般式(1)で表される構造を一般式(2)〜(7)中のRとしてポリマー全量に対し2〜15重量%有するものが好ましく用いられる。なお、ここでの有機溶剤可溶性ポリイミドの合成により得られるポリマー(ポリイミド)の全量とは、1級アミン化合物と酸二無水物および末端封止剤からなる構成成分の重合により得られた重量のことであり、合成時に過剰に仕込んだ1級アミン化合物、酸二無水物および末端封止剤はポリイミドの重量に含まない。 In the present invention, among (a) organic solvent-soluble polyimides, functional groups having a structure represented by any one of the general formulas (2) to (7) and capable of reacting with an epoxy group are present at side chains and terminals. Polymers each having at least one, and those having 2 to 15% by weight of the structure represented by the general formula (1) as R 4 in the general formulas (2) to (7) with respect to the total amount of the polymer are preferably used. The total amount of the polymer (polyimide) obtained by the synthesis of the organic solvent-soluble polyimide here means the weight obtained by polymerization of the constituents composed of the primary amine compound, the acid dianhydride and the terminal blocking agent. The primary amine compound, acid dianhydride, and terminal blocker added excessively during the synthesis are not included in the weight of the polyimide.

Figure 0005040252
Figure 0005040252

式中、Rは2価の炭化水素基を示し、Rは1価の炭化水素基を示し、同じでも異なっていてもよい。nは1〜10の整数を示す。複数のRが同一の構造である必要はない。 In the formula, R 1 represents a divalent hydrocarbon group, and R 2 represents a monovalent hydrocarbon group, which may be the same or different. n shows the integer of 1-10. A plurality of R 2 need not have the same structure.

Figure 0005040252
Figure 0005040252

式中、Rは4〜14価の有機基であり、Rは2〜12価の有機基であって、R、Rの少なくとも一つは1,1,1,3,3,3−ヘキサフルオロプロピレン基、イソプロピレン基、エーテル基、チオエーテル基およびSO基からなる群より選ばれる基を少なくとも一つ含有する。RおよびRは、フェノール性水酸基、スルホン酸基およびチオール基からなる群より選ばれる基を少なくとも一つ有する有機基を示し、同じでも異なっていてもよい。Xは1価の有機基、Yは2価の有機基、Zは1価の有機基を示す。mは8〜200の範囲を示す。αおよびβはそれぞれ0〜10の整数を示し、α+βは1〜10の整数である。 In the formula, R 3 is a 4- to 14-valent organic group, R 4 is a 2- to 12-valent organic group, and at least one of R 3 and R 4 is 1,1,1,3,3, It contains at least one group selected from the group consisting of 3-hexafluoropropylene group, isopropylene group, ether group, thioether group and SO 2 group. R 5 and R 6 represent an organic group having at least one group selected from the group consisting of a phenolic hydroxyl group, a sulfonic acid group, and a thiol group, and may be the same or different. X represents a monovalent organic group, Y represents a divalent organic group, and Z represents a monovalent organic group. m shows the range of 8-200. α and β each represent an integer of 0 to 10, and α + β is an integer of 1 to 10.

本発明に用いられる(a)有機溶剤可溶性ポリイミドは、一般式(1)で表される構造を有することにより、上記の溶剤に対する溶解性が向上し、かつ硬化時の収縮を抑えることができる。   The (a) organic solvent-soluble polyimide used in the present invention has a structure represented by the general formula (1), so that the solubility in the above-mentioned solvent is improved, and shrinkage during curing can be suppressed.

一般式(1)中、Rは2価の炭化水素基を示し、好ましくは炭素数1〜5のアルキレン基、フェニレン基である。nは1〜10の整数を示し、好ましくは1〜2である。nを1以上とすることで硬化時の収縮を抑えることができ、10以下とすることでポリイミド骨格中のイミド基含有率を低減させず、絶縁性、耐熱性を向上することができる。Rは1価の炭化水素基を示し、好ましくは炭素数1〜5のアルキル基、フェニル基である。また、複数のRが同一の構造である必要はない。 In the general formula (1), R 1 represents a divalent hydrocarbon group, preferably an alkylene group having 1 to 5 carbon atoms or a phenylene group. n shows the integer of 1-10, Preferably it is 1-2. When n is 1 or more, shrinkage during curing can be suppressed, and when it is 10 or less, the imide group content in the polyimide skeleton is not reduced, and the insulation and heat resistance can be improved. R 2 represents a monovalent hydrocarbon group, preferably an alkyl group having 1 to 5 carbon atoms or a phenyl group. Further, the plurality of R 2 need not have the same structure.

一般式(1)で表される構造を含む化合物の含有量は芳香族ポリイミド中に2〜15重量%である。2重量%以上とすることで上記の効果を得ることができ、15重量%以下とすることで、ポリイミド骨格の剛直性を維持し、耐熱性、絶縁性を保つことができる。   Content of the compound containing the structure represented by General formula (1) is 2 to 15 weight% in aromatic polyimide. When the content is 2% by weight or more, the above effect can be obtained, and when the content is 15% by weight or less, the rigidity of the polyimide skeleton can be maintained, and heat resistance and insulation can be maintained.

一般式(1)で表される構造を含む化合物はビス(3−アミノプロピル)テトラメチルジシロキサン、ビス(p−アミノ−フェニル)オクタメチルペンタシロキサンなどのジアミン成分が挙げられる。   Examples of the compound including the structure represented by the general formula (1) include diamine components such as bis (3-aminopropyl) tetramethyldisiloxane and bis (p-amino-phenyl) octamethylpentasiloxane.

本発明に用いられる(a)エポキシ基と反応可能な官能基を側鎖および末端に各々少なくとも一つ有する有機溶剤可溶性ポリイミドは、上記一般式(2)〜(7)で表される構造を有することが好ましい。   The organic solvent-soluble polyimide having (a) at least one functional group capable of reacting with an epoxy group at the side chain and at the terminal used in the present invention has a structure represented by the above general formulas (2) to (7). It is preferable.

上記一般式(2)〜(7)において、Rは酸二無水物の構造成分を表しており、4〜14価の有機基であり、なかでも炭素原子数5〜40の有機基であることが好ましい。また、Rはジアミンの構造成分を表しており、2〜12価の有機基であり、なかでも炭素原子数5〜40の有機基であることが好ましい。R、Rの少なくとも一方は、1,1,1,3,3,3−ヘキサフルオロプロピレン基、イソプロピレン基、エーテル基、チオエーテル基、SO基からなる群より選ばれる基を少なくとも一つ含有するが、R、Rの両方が含有することが好ましい。RおよびRは、フェノール性水酸基、スルホン酸基およびチオール基からなる群より選ばれる基を少なくとも一つ有する有機基を示し、同じでも異なっていてもよい。Xは1価の有機基、Yは2価の有機基、Zは1価の有機基を示す。mは8〜200の範囲を示す。αおよびβはそれぞれ0〜10の整数を示し、α+βは1〜10の整数である。 In the above general formulas (2) to (7), R 3 represents a structural component of acid dianhydride, which is a tetravalent to tetravalent organic group, particularly an organic group having 5 to 40 carbon atoms. It is preferable. R 4 represents a structural component of diamine, which is a divalent to divalent organic group, preferably an organic group having 5 to 40 carbon atoms. At least one of R 3 and R 4 is at least one group selected from the group consisting of 1,1,1,3,3,3-hexafluoropropylene group, isopropylene group, ether group, thioether group, and SO 2 group. However, it is preferable that both R 3 and R 4 contain. R 5 and R 6 represent an organic group having at least one group selected from the group consisting of a phenolic hydroxyl group, a sulfonic acid group, and a thiol group, and may be the same or different. X represents a monovalent organic group, Y represents a divalent organic group, and Z represents a monovalent organic group. m shows the range of 8-200. α and β each represent an integer of 0 to 10, and α + β is an integer of 1 to 10.

は酸二無水物の置換基であり、フェノール性水酸基、スルホン酸基およびチオール基からなる群より選ばれる。前記置換基を少なくとも一つ有する酸二無水物としては、具体的には、下記に示した構造の芳香族酸二無水物を挙げることができる。 R 5 is an acid dianhydride substituent, and is selected from the group consisting of a phenolic hydroxyl group, a sulfonic acid group, and a thiol group. Specific examples of the acid dianhydride having at least one substituent include aromatic acid dianhydrides having the structures shown below.

Figure 0005040252
Figure 0005040252

11、R12は水素原子、水酸基、チオール基またはスルホン酸基を示す。ただし、R11およびR12が同時に水素原子となることはない。 R 11 and R 12 represent a hydrogen atom, a hydroxyl group, a thiol group, or a sulfonic acid group. However, R 11 and R 12 are not simultaneously hydrogen atoms.

は酸二無水物の構成成分を表しており、1,1,1,3,3,3−ヘキサフルオロプロピレン基、イソプロピレン基、エーテル基、チオエーテル基およびSO基からなる群より選ばれる。前記有機基を少なくとも一つ有する酸二無水物としては、具体的には、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物あるいはこれらの芳香族環にアルキル基やハロゲン原子で置換した化合物等が挙げられる。 R 3 represents a constituent of acid dianhydride and is selected from the group consisting of 1,1,1,3,3,3-hexafluoropropylene group, isopropylene group, ether group, thioether group and SO 2 group. It is. Specific examples of the acid dianhydride having at least one organic group include 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride and 2,2-bis (2,3-di (). Carboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, 2,2-bis (3,4-dicarboxy) Phenyl) hexafluoropropane dianhydride or a compound in which these aromatic rings are substituted with an alkyl group or a halogen atom.

1,1,1,3,3,3−ヘキサフルオロプロピレン基、イソプロピレン基、エーテル基、チオエーテル基およびSO基からなる群より選ばれる基を少なくとも一つ有し、かつ、フェノール性水酸基、スルホン酸基およびチオール基からなる群より選ばれる基を少なくとも一つ有する酸二無水物としては、具体的には、下記に示した構造の芳香族酸二無水物が挙げられる。 Having at least one group selected from the group consisting of 1,1,1,3,3,3-hexafluoropropylene group, isopropylene group, ether group, thioether group and SO 2 group, and a phenolic hydroxyl group; Specific examples of the acid dianhydride having at least one group selected from the group consisting of a sulfonic acid group and a thiol group include aromatic acid dianhydrides having the structure shown below.

Figure 0005040252
Figure 0005040252

10はC(CF、C(CH、SO、SまたはOを示す。R11およびR12は水素原子、水酸基、チオール基またはスルホン酸基を示す。ただし、R11およびR12が同時に水素原子となることはない。 R 10 represents C (CF 3 ) 2 , C (CH 3 ) 2 , SO 2 , S or O. R 11 and R 12 represent a hydrogen atom, a hydroxyl group, a thiol group, or a sulfonic acid group. However, R 11 and R 12 are not simultaneously hydrogen atoms.

が1,1,1,3,3,3−ヘキサフルオロプロピレン基、イソプロピレン基、エーテル基、チオエーテル基およびSO基以外の有機基であり、Rがフェノール性水酸基、スルホン酸基、チオール基以外の有機基である場合の酸二無水物としては、具体的には、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、2,3,5,6−ピリジンテトラカルボン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物などの芳香族テトラカルボン酸二無水物あるいはこれらの芳香族環にアルキル基やハロゲン原子で置換した化合物が挙げられる。本発明で用いる酸二無水物は単独で又は2種以上を組み合わせて使用される。 R 3 is an organic group other than 1,1,1,3,3,3-hexafluoropropylene group, isopropylene group, ether group, thioether group and SO 2 group, and R 5 is a phenolic hydroxyl group or sulfonic acid group As an acid dianhydride in the case of an organic group other than a thiol group, specifically, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2, 3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride 2,2 ′, 3,3′-benzophenonetetracarboxylic dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, 1,1-bis (2,3-di Carboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,3,6 , 7-naphthalenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride An anhydride or a compound in which these aromatic rings are substituted with an alkyl group or a halogen atom is exemplified. The acid dianhydride used in the present invention is used alone or in combination of two or more.

はジアミンの置換基であり、フェノール性水酸基、スルホン酸基およびチオール基からなる群より選ばれる。前記置換基を少なくとも一つ有するジアミンとしては、具体的には、3,3’−ジアミノ−4,4’−ジヒドロキシビフェニル、2,4−ジアミノ−フェノール、2,5−ジアミノフェノール、1,4−ジアミノ−2,5−ジヒドロキシベンゼン、ジアミノジヒドロキシピリミジン、ジアミノジヒドロキシピリジン、ヒドロキシジアミノピリミジン、9,9−ビス(3−アミノ−4−ヒドロキシフェニル)フルオレン、あるいはこれらの芳香族環にアルキル基やハロゲン原子で置換した化合物等や、下記に示した構造のジアミンなどが挙げられる。 R 6 is a diamine substituent, and is selected from the group consisting of phenolic hydroxyl groups, sulfonic acid groups, and thiol groups. Specific examples of the diamine having at least one substituent include 3,3′-diamino-4,4′-dihydroxybiphenyl, 2,4-diamino-phenol, 2,5-diaminophenol, 1,4 -Diamino-2,5-dihydroxybenzene, diaminodihydroxypyrimidine, diaminodihydroxypyridine, hydroxydiaminopyrimidine, 9,9-bis (3-amino-4-hydroxyphenyl) fluorene, or alkyl groups or halogens on these aromatic rings Examples thereof include compounds substituted with atoms, and diamines having the structures shown below.

Figure 0005040252
Figure 0005040252

11〜R14は水素原子、水酸基、チオール基またはスルホン酸基を示す。ただし、R11およびR12が同時に水素原子となることはない。 R 11 to R 14 represent a hydrogen atom, a hydroxyl group, a thiol group, or a sulfonic acid group. However, R 11 and R 12 are not simultaneously hydrogen atoms.

はジアミンの構成成分を表しており、1,1,1,3,3,3−ヘキサフルオロプロピレン基、イソプロピレン基、エーテル基、チオエーテル基およびSO基からなる群より選ばれる。前記有機基を少なくとも一つ有するジアミンとしては、具体的には、3,4’−ジアミノジフェニルスルヒド、4,4’−ジアミノジフェニルスルヒド、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、ビス(4−アミノフェノキシフェニル)スルホン、ビス(3−アミノフェノキシフェニル)スルホン、ビス(4−アミノフェノキシ)ビフェニル、ビス{4−(4−アミノフェノキシ)フェニル}エーテル、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、あるいはこれらの芳香族環にアルキル基やハロゲン原子で置換した化合物等が挙げられる。 R 4 represents a component of diamine and is selected from the group consisting of 1,1,1,3,3,3-hexafluoropropylene group, isopropylene group, ether group, thioether group and SO 2 group. Specific examples of the diamine having at least one organic group include 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl ether, 4,4'- Diaminodiphenyl ether, 3,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, bis (4-aminophenoxyphenyl) sulfone, bis (3-aminophenoxyphenyl) sulfone, bis (4-aminophenoxy) biphenyl, Bis {4- (4-aminophenoxy) phenyl} ether, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 2,2-bis [4- (4 -Aminophenoxy) phenyl] hexafluoropropane, 2,2-bis [4- (4-amino) Phenoxy) phenyl] propane, or compounds substituted with alkyl group or halogen atom in the aromatic ring.

1,1,1,3,3,3−ヘキサフルオロプロピレン基、イソプロピレン基、エーテル基、チオエーテル基およびSO基からなる群より選ばれる基を少なくとも一つ有し、かつ、フェノール性水酸基、スルホン酸基およびチオール基からなる群より選ばれる基を少なくとも一つ有するジアミンとしては、具体的には、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン、2,2−ビス(3−ヒドロキシ−4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−ヒドロキシ−4−アミノフェニル)プロパン、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルエーテル、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホン、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルヒドあるいはこれらの芳香族環にアルキル基やハロゲン原子で置換した化合物等や、下記に示した構造のジアミンなどが挙げられる。 Having at least one group selected from the group consisting of 1,1,1,3,3,3-hexafluoropropylene group, isopropylene group, ether group, thioether group and SO 2 group, and a phenolic hydroxyl group; Specific examples of the diamine having at least one group selected from the group consisting of a sulfonic acid group and a thiol group include 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2- Bis (3-hydroxy-4-aminophenyl) hexafluoropropane, 2,2-bis (3-amino-4-hydroxyphenyl) propane, 2,2-bis (3-hydroxy-4-aminophenyl) propane, 3 , 3′-diamino-4,4′-dihydroxydiphenyl ether, 3,3′-diamino-4,4′-dihydroxydiphenyls Hong, 3,3'-diamino-4,4'-dihydroxydiphenyl sulfone hydrate or compounds or substituted with an alkyl group or a halogen atom in these aromatic rings, and the like diamines having the structure shown below.

Figure 0005040252
Figure 0005040252

10はC(CF、C(CH、SO、SまたはOを示す。R11〜R12は水素原子、水酸基、チオール基またはスルホン酸基を示す。ただし、R11およびR12が同時に水素原子となることはない。 R 10 represents C (CF 3 ) 2 , C (CH 3 ) 2 , SO 2 , S or O. R 11 to R 12 represent a hydrogen atom, a hydroxyl group, a thiol group, or a sulfonic acid group. However, R 11 and R 12 are not simultaneously hydrogen atoms.

が1,1,1,3,3,3−ヘキサフルオロプロピレン基、イソプロピレン基、エーテル基、チオエーテル基およびSO基以外の有機基であり、Rがフェノール性水酸基、スルホン酸基、チオール基以外の有機基である場合のジアミンとしては、具体的には、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、ベンジジン、m−フェニレンジアミン、p−フェニレンジアミン、1,5−ナフタレンジアミン、2,6−ナフタレンジアミン、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジエチル−4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジエチル−4,4’−ジアミノビフェニル、2,2’,3,3’−テトラメチル−4,4’−ジアミノビフェニル、3,3’,4,4’−テトラメチル−4,4’−ジアミノビフェニル、2,2’−ジ(トリフルオロメチル)−4,4’−ジアミノビフェニル、あるいはこれらの芳香族環にアルキル基やハロゲン原子で置換した化合物、テレフタル酸ヒドラジド、イソフタル酸ヒドラジド、フタロ酸ヒドラジド、2,6−ナフタレンジカルボン酸ジヒドラジド、4,4’−ビスフェニルジカルボノヒドラジン、4,4’−シクロヘキサンジカルボノヒドラジン、あるいはこれらの芳香族環にアルキル基やハロゲン原子で置換したヒドラジド化合物等が挙げられる。本発明で用いるジアミンは単独で又は2種以上を組み合わせて使用される。 R 4 is an organic group other than 1,1,1,3,3,3-hexafluoropropylene group, isopropylene group, ether group, thioether group and SO 2 group, and R 6 is a phenolic hydroxyl group or sulfonic acid group Specific examples of the diamine in the case of an organic group other than a thiol group include 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, benzidine, m-phenylenediamine, p-phenylenediamine, 1, 5-naphthalenediamine, 2,6-naphthalenediamine, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2′-diethyl-4,4′-diaminobiphenyl, 3,3′-dimethyl-4 , 4′-diaminobiphenyl, 3,3′-diethyl-4,4′-diaminobiphenyl, 2,2 ′, 3,3′-tetramethyl-4,4′-diaminobiphenyl Phenyl, 3,3 ′, 4,4′-tetramethyl-4,4′-diaminobiphenyl, 2,2′-di (trifluoromethyl) -4,4′-diaminobiphenyl, or aromatic rings thereof Compounds substituted with alkyl groups or halogen atoms, terephthalic acid hydrazide, isophthalic acid hydrazide, phthaloic acid hydrazide, 2,6-naphthalenedicarboxylic acid dihydrazide, 4,4′-bisphenyldicarbonohydrazine, 4,4′-cyclohexanedicarbono Examples thereof include hydrazine and hydrazide compounds in which these aromatic rings are substituted with an alkyl group or a halogen atom. The diamine used in the present invention is used alone or in combination of two or more.

上記一般式(2)〜(7)におけるR、Rを選択することにより、熱処理時に芳香族ポリイミドとエポキシ化合物との反応率調整を行うことで半導体用接着組成物の架橋密度を調整できる。これにより必要とする耐熱性、耐薬品性を半導体用接着組成物に付与することが可能となる。R、Rの合計の20〜90%が水酸基、チオール基またはスルホン酸基であることが好ましい。これらの基をR、Rの20%以上とすることで、耐薬品性、耐熱性を向上することができ、90%以下とすることで、架橋密度を適度な範囲に抑制し、フィルムの伸度、靱性を保持することができる。 By selecting R 5 and R 6 in the above general formulas (2) to (7), the crosslinking density of the adhesive composition for semiconductor can be adjusted by adjusting the reaction rate between the aromatic polyimide and the epoxy compound during the heat treatment. . This makes it possible to impart the necessary heat resistance and chemical resistance to the adhesive composition for semiconductors. It is preferable that 20 to 90% of the total of R 5 and R 6 is a hydroxyl group, a thiol group, or a sulfonic acid group. By making these groups 20% or more of R 5 and R 6 , chemical resistance and heat resistance can be improved, and by making them 90% or less, the crosslinking density is suppressed to an appropriate range, and the film The elongation and toughness of can be maintained.

一般式(2)、一般式(3)の構造成分であるXは、エポキシ基と反応可能な官能基を少なくとも一つ有することが好ましい。このような官能基としては、例えばフェノール性水酸基、スルホン酸基、チオール基などが挙げられる。Xは、下記一般式(8)で示される構造であることが好ましく、これらは、末端封止剤である1級モノアミンに由来する成分である。また一般式(2)、一般式(3)を構成するXは、一般式(8)で表される末端封止基単独で、またはその他の末端封止基との2種以上の組み合わせのいずれであってもよい。   X which is a structural component of the general formula (2) or general formula (3) preferably has at least one functional group capable of reacting with an epoxy group. Examples of such functional groups include phenolic hydroxyl groups, sulfonic acid groups, and thiol groups. X is preferably a structure represented by the following general formula (8), and these are components derived from a primary monoamine which is a terminal blocking agent. Moreover, X which comprises General formula (2) and General formula (3) is any of the end-capping group represented by General formula (8) alone, or 2 or more types of combinations with other terminal-capping groups. It may be.

Figure 0005040252
Figure 0005040252

また、一般式(4)、一般式(5)の構造成分であるYは、エポキシ基と反応可能な官能基を少なくとも一つ有することが好ましい。Yは、一般式(9)または一般式(10)で示される構造であることが好ましく、これらは、末端封止剤であるカルボン酸誘導体のうち、酸無水物に由来する成分である。また一般式(4)、一般式(5)を構成するYは、一般式(9)、一般式(10)のいずれかで表される末端封止基単独、またはその他の末端封止基との2種以上の組み合わせのいずれであってもよい。   Moreover, it is preferable that Y which is a structural component of General formula (4) and General formula (5) has at least one functional group which can react with an epoxy group. Y is preferably a structure represented by the general formula (9) or the general formula (10), and these are components derived from an acid anhydride among the carboxylic acid derivatives which are end-capping agents. In addition, Y constituting the general formula (4) and the general formula (5) is an end-capping group represented by any one of the general formula (9) and the general formula (10), or other end-capping group. Any combination of two or more of these may be used.

Figure 0005040252
Figure 0005040252

一般式(6)、一般式(7)の構造成分であるZは、エポキシ基と反応可能な官能基を少なくとも一つ有することが好ましい。Zは一般式(11)または一般式(12)で示される構造であることが好ましく、これらは、末端封止剤であるカルボン酸誘導体のうち、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物から選ばれるものに由来する成分である。また一般式(6)、一般式(7)を構成するZは、一般式(11)、一般式(12)のいずれかで表される末端封止基単独で、またはその他の末端封止基との2種以上の組み合わせのいずれであってもよい。   Z, which is a structural component of general formula (6) and general formula (7), preferably has at least one functional group capable of reacting with an epoxy group. Z is preferably a structure represented by the general formula (11) or the general formula (12), and these include a monocarboxylic acid, a monoacid chloride compound, and a monoactive ester among carboxylic acid derivatives that are end-capping agents. A component derived from a compound selected from compounds. Z constituting the general formula (6) and the general formula (7) is a terminal blocking group represented by any one of the general formula (11) and the general formula (12), or other terminal blocking group. And any combination of two or more of them.

Figure 0005040252
Figure 0005040252

一般式(8)、一般式(11)、一般式(12)のR17は−CR2122−、−CHO−、−CHSO−より選ばれる2価の基を示し、R21およびR22は水素原子、水酸基、炭素数1〜10の炭化水素基より選ばれる1価の基を示す。一般式(11)、一般式(12)のR20は、炭素数1〜10の炭化水素基より選ばれる1価の基を示す。なかでも、炭素数1〜4の炭化水素基が好ましく、特に好ましくは、メチル基、t−ブチル基である。一般式(10)、一般式(12)のR18およびR19は、水素原子、水酸基、カルボキシル基、スルホン酸基、チオール基、炭素数1〜4の炭化水素基より選ばれる1価の基を示すが、少なくとも1つは水酸基、カルボキシル基、スルホン酸基またはチオール基である。また、一般式(8)、一般式(9)、一般式(11)のR15およびR16は、水素原子、水酸基、カルボキシル基、スルホン酸基、チオール基、炭素数1〜10の炭化水素基より選ばれる1価の基を示すが、少なくとも1つは水酸基、カルボキシル基、スルホン酸基またはチオール基である。一般式(8)、一般式(9)、一般式(11)のA、E、Gは、炭素原子または窒素原子であり、各々同じでも異なっていてもよい。oは0〜10の整数であり、好ましくは0〜4の整数である。lは0または1であり、好ましくは0である。pは0または1であり、好ましくは0である。qは1〜3の整数であり、好ましくは1または2である。r、s、tは0または1である。 R 17 in the general formula (8), general formula (11), and general formula (12) represents a divalent group selected from —CR 21 R 22 —, —CH 2 O—, —CH 2 SO 2 —, R 21 and R 22 represent a monovalent group selected from a hydrogen atom, a hydroxyl group, and a hydrocarbon group having 1 to 10 carbon atoms. R 20 in the general formula (11) and the general formula (12) represents a monovalent group selected from hydrocarbon groups having 1 to 10 carbon atoms. Of these, a hydrocarbon group having 1 to 4 carbon atoms is preferable, and a methyl group and a t-butyl group are particularly preferable. R 18 and R 19 in the general formula (10) and the general formula (12) are each a monovalent group selected from a hydrogen atom, a hydroxyl group, a carboxyl group, a sulfonic acid group, a thiol group, and a hydrocarbon group having 1 to 4 carbon atoms. Wherein at least one is a hydroxyl group, a carboxyl group, a sulfonic acid group or a thiol group. Also, R 15 and R 16 in formula (8), the general formula (9), the general formula (11) represents a hydrogen atom, a hydroxyl group, a carboxyl group, a sulfonic acid group, a thiol group, a hydrocarbon having 1 to 10 carbon atoms 1 represents a monovalent group selected from a group, at least one of which is a hydroxyl group, a carboxyl group, a sulfonic acid group or a thiol group. A, E, and G in General Formula (8), General Formula (9), and General Formula (11) are carbon atoms or nitrogen atoms, and may be the same or different. o is an integer of 0 to 10, preferably an integer of 0 to 4. l is 0 or 1, preferably 0. p is 0 or 1, preferably 0. q is an integer of 1 to 3, preferably 1 or 2. r, s, and t are 0 or 1.

一般式(8)で表される構造を有する1級モノアミンとは、具体的には、5−アミノ−8−ヒドロキシキノリン、4−アミノ−8−ヒドロキシキノリン、1−ヒドロキシ−8−アミノナフタレン、1−ヒドロキシ−7−アミノナフタレン、1−ヒドロキシ−6−アミノナフタレン、1−ヒドロキシ−5−アミノナフタレン、1−ヒドロキシ−4−アミノナフタレン、1−ヒドロキシ−3−アミノナフタレン、1−ヒドロキシ−2−アミノナフタレン、1−アミノ−7−ヒドロキシナフタレン、2−ヒドロキシ−7−アミノナフタレン、2−ヒドロキシ−6−アミノナフタレン、2−ヒドロキシ−5−アミノナフタレン、2−ヒドロキシ−4−アミノナフタレン、2−ヒドロキシ−3−アミノナフタレン、1−アミノ−2−ヒドロキシナフタレン、1−カルボキシ−8−アミノナフタレン、1−カルボキシ−7−アミノナフタレン、1−カルボキシ−6−アミノナフタレン、1−カルボキシ−5−アミノナフタレン、1−カルボキシ−4−アミノナフタレン、1−カルボキシ−3−アミノナフタレン、1−カルボキシ−2−アミノナフタレン、1−アミノ−7−カルボキシナフタレン、2−カルボキシ−7−アミノナフタレン、2−カルボキシ−6−アミノナフタレン、2−カルボキシ−5−アミノナフタレン、2−カルボキシ−4−アミノナフタレン、2−カルボキシ−3−アミノナフタレン、1−アミノ−2−カルボキシナフタレン、2−アミノニコチン酸、4−アミノニコチン酸、5−アミノニコチン酸、6−アミノニコチン酸、4−アミノサリチル酸、5−アミノサリチル酸、6−アミノサリチル酸、3−アミノ−o−トルイック酸、アメライド、2−アミノ安息香酸、3−アミノ安息香酸、4−アミノ安息香酸、2−アミノベンゼンスルホン酸、3−アミノベンゼンスルホン酸、4−アミノベンゼンスルホン酸、3−アミノ−4,6−ジヒドロキシピリミジン、2−アミノフェノール、3−アミノフェノール、4−アミノフェノール、5−アミノ−8−メルカプトキノリン、4−アミノ−8−メルカプトキノリン、1−メルカプト−8−アミノナフタレン、1−メルカプト−7−アミノナフタレン、1−メルカプト−6−アミノナフタレン、1−メルカプト−5−アミノナフタレン、1−メルカプト−4−アミノナフタレン、1−メルカプト−3−アミノナフタレン、1−メルカプト−2−アミノナフタレン、1−アミノ−7−メルカプトナフタレン、2−メルカプト−7−アミノナフタレン、2−メルカプト−6−アミノナフタレン、2−メルカプト−5−アミノナフタレン、2−メルカプト−4−アミノナフタレン、2−メルカプト−3−アミノナフタレン、1−アミノ−2−メルカプトナフタレン、3−アミノ−4,6−ジメルカプトピリミジン、2−アミノチオフェノール、3−アミノチオフェノール、4−アミノチオフェノール等が挙げられる。   Specific examples of the primary monoamine having the structure represented by the general formula (8) include 5-amino-8-hydroxyquinoline, 4-amino-8-hydroxyquinoline, 1-hydroxy-8-aminonaphthalene, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 1-hydroxy-3-aminonaphthalene, 1-hydroxy-2 -Aminonaphthalene, 1-amino-7-hydroxynaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 2-hydroxy-4-aminonaphthalene, 2, -Hydroxy-3-aminonaphthalene, 1-amino-2-hydroxynaphthalene 1-carboxy-8-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, 1-carboxy-4-aminonaphthalene, 1-carboxy- 3-aminonaphthalene, 1-carboxy-2-aminonaphthalene, 1-amino-7-carboxynaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-carboxy-5-aminonaphthalene, 2-carboxy-4-aminonaphthalene, 2-carboxy-3-aminonaphthalene, 1-amino-2-carboxynaphthalene, 2-aminonicotinic acid, 4-aminonicotinic acid, 5-aminonicotinic acid, 6-aminonicotinic acid 4-aminosalicylic acid, 5-aminosalicylic acid 6-aminosalicylic acid, 3-amino-o-toluic acid, amelide, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 2-aminobenzenesulfonic acid, 3-aminobenzenesulfonic acid, 4- Aminobenzenesulfonic acid, 3-amino-4,6-dihydroxypyrimidine, 2-aminophenol, 3-aminophenol, 4-aminophenol, 5-amino-8-mercaptoquinoline, 4-amino-8-mercaptoquinoline, 1 -Mercapto-8-aminonaphthalene, 1-mercapto-7-aminonaphthalene, 1-mercapto-6-aminonaphthalene, 1-mercapto-5-aminonaphthalene, 1-mercapto-4-aminonaphthalene, 1-mercapto-3- Aminonaphthalene, 1-mercapto-2-aminonaphthalene, 1- Amino-7-mercaptonaphthalene, 2-mercapto-7-aminonaphthalene, 2-mercapto-6-aminonaphthalene, 2-mercapto-5-aminonaphthalene, 2-mercapto-4-aminonaphthalene, 2-mercapto-3-amino Naphthalene, 1-amino-2-mercaptonaphthalene, 3-amino-4,6-dimercaptopyrimidine, 2-aminothiophenol, 3-aminothiophenol, 4-aminothiophenol and the like can be mentioned.

これらのうち、5−アミノ−8−ヒドロキシキノリン、1−ヒドロキシ−7−アミノナフタレン、1−ヒドロキシ−6−アミノナフタレン、1−ヒドロキシ−5−アミノナフタレン、1−ヒドロキシ−4−アミノナフタレン、2−ヒドロキシ−7−アミノナフタレン、2−ヒドロキシ−6−アミノナフタレン、2−ヒドロキシ−5−アミノナフタレン、1−カルボキシ−7−アミノナフタレン、1−カルボキシ−6−アミノナフタレン、1−カルボキシ−5−アミノナフタレン、2−カルボキシ−7−アミノナフタレン、2−カルボキシ−6−アミノナフタレン、2−カルボキシ−5−アミノナフタレン、2−アミノ安息香酸、3−アミノ安息香酸、4−アミノ安息香酸、4−アミノサリチル酸、5−アミノサリチル酸、6−アミノサリチル酸、2−アミノベンゼンスルホン酸、3−アミノベンゼンスルホン酸、4−アミノベンゼンスルホン酸、3−アミノ−4,6−ジヒドロキシピリミジン、2−アミノフェノール、3−アミノフェノール、4−アミノフェノール、2−アミノチオフェノール、3−アミノチオフェノール、4−アミノチオフェノール等が好ましい。   Of these, 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2 -Hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5 Aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-carboxy-5-aminonaphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 4- Aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid 2-aminobenzenesulfonic acid, 3-aminobenzenesulfonic acid, 4-aminobenzenesulfonic acid, 3-amino-4,6-dihydroxypyrimidine, 2-aminophenol, 3-aminophenol, 4-aminophenol, 2- Aminothiophenol, 3-aminothiophenol, 4-aminothiophenol and the like are preferable.

特に5−アミノ−8−ヒドロキシキノリン、1−ヒドロキシ−7−アミノナフタレン、1−ヒドロキシ−6−アミノナフタレン、1−ヒドロキシ−5−アミノナフタレン、1−ヒドロキシ−4−アミノナフタレン、2−ヒドロキシ−7−アミノナフタレン、2−ヒドロキシ−6−アミノナフタレン、2−ヒドロキシ−5−アミノナフタレン、3−アミノ−4,6−ジヒドロキシピリミジン、2−アミノフェノール、3−アミノフェノール、4−アミノフェノール、2−アミノチオフェノール、3−アミノチオフェノール、4−アミノチオフェノール等が好ましく、これらは単独で又は2種以上を組み合わせて使用される。   In particular 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-hydroxy- 7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 3-amino-4,6-dihydroxypyrimidine, 2-aminophenol, 3-aminophenol, 4-aminophenol, 2 -Aminothiophenol, 3-aminothiophenol, 4-aminothiophenol, etc. are preferable, and these are used individually or in combination of 2 or more types.

一般式(9)または一般式(10)で表される構造を有する酸無水物の具体例としては、無水フタル酸、無水マレイン酸、ナジック酸、シクロヘキサンジカルボン酸無水物などがあり、より好ましくは、3−ヒドロキシフタル酸無水物、4−ヒドロキシフタル酸無水物、トリメリット酸無水物の酸無水物等が挙げられる。   Specific examples of the acid anhydride having the structure represented by the general formula (9) or the general formula (10) include phthalic anhydride, maleic anhydride, nadic acid, cyclohexanedicarboxylic anhydride, and more preferably , 3-hydroxyphthalic anhydride, 4-hydroxyphthalic anhydride, trimellitic anhydride, and the like.

一般式(11)または一般式(12)で表される構造を有するカルボン酸誘導体、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物の具体例としては、2−カルボキシフェノール、3−カルボキシフェノール、4−カルボキシフェノール、2−カルボキシチオフェノール、3−カルボキシチオフェノール、4−カルボキシチオフェノール、1−ヒドロキシ−8−カルボキシナフタレン、1−ヒドロキシ−7−カルボキシナフタレン、1−ヒドロキシ−6−カルボキシナフタレン、1−ヒドロキシ−5−カルボキシナフタレン、1−ヒドロキシ−4−カルボキシナフタレン、1−ヒドロキシ−3−カルボキシナフタレン、1−ヒドロキシ−2−カルボキシナフタレン、1−メルカプト−8−カルボキシナフタレン、1−メルカプト−7−カルボキシナフタレン、1−メルカプト−6−カルボキシナフタレン、1−メルカプト−5−カルボキシナフタレン、1−メルカプト−4−カルボキシナフタレン、1−メルカプト−3−カルボキシナフタレン、1−メルカプト−2−カルボキシナフタレン、2−カルボキシベンゼンスルホン酸、3−カルボキシベンゼンスルホン酸、4−カルボキシベンゼンスルホン酸等のモノカルボン酸類及びこれらのカルボキシル基が酸クロリド化したモノ酸クロリド化合物及び、テレフタル酸、フタル酸、マレイン酸、シクロヘキサンジカルボン酸、3−ヒドロキシフタル酸、5−ノルボルネン−2,3−ジカルボン酸、1,2−ジカルボキシナフタレン、1,3−ジカルボキシナフタレン、1,4−ジカルボキシナフタレン、1,5−ジカルボキシナフタレン、1,6−ジカルボキシナフタレン、1,7−ジカルボキシナフタレン、1,8−ジカルボキシナフタレン、2,3−ジカルボキシナフタレン、2,6−ジカルボキシナフタレン、2,7−ジカルボキシナフタレン等のジカルボン酸類のモノカルボキシル基だけが酸クロリド化したモノ酸クロリド化合物、モノ酸クロリド化合物とN−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミド、p−ニトロフェノール、N−ヒドロキシコハクイミド、N−ヒドロキシフタルイミド、N−ヒドロキシベンゾトリアゾールなどとの反応により得られる活性エステル化合物等が挙げられる。   Specific examples of the carboxylic acid derivative, monocarboxylic acid, monoacid chloride compound and monoactive ester compound having the structure represented by the general formula (11) or the general formula (12) include 2-carboxyphenol and 3-carboxyphenol. 4-carboxyphenol, 2-carboxythiophenol, 3-carboxythiophenol, 4-carboxythiophenol, 1-hydroxy-8-carboxynaphthalene, 1-hydroxy-7-carboxynaphthalene, 1-hydroxy-6-carboxynaphthalene 1-hydroxy-5-carboxynaphthalene, 1-hydroxy-4-carboxynaphthalene, 1-hydroxy-3-carboxynaphthalene, 1-hydroxy-2-carboxynaphthalene, 1-mercapto-8-carboxynaphthalene, 1-merca To-7-carboxynaphthalene, 1-mercapto-6-carboxynaphthalene, 1-mercapto-5-carboxynaphthalene, 1-mercapto-4-carboxynaphthalene, 1-mercapto-3-carboxynaphthalene, 1-mercapto-2-carboxy Monocarboxylic acids such as naphthalene, 2-carboxybenzenesulfonic acid, 3-carboxybenzenesulfonic acid, 4-carboxybenzenesulfonic acid, monoacid chloride compounds in which these carboxyl groups are converted to acid chloride, terephthalic acid, phthalic acid, maleic Acid, cyclohexanedicarboxylic acid, 3-hydroxyphthalic acid, 5-norbornene-2,3-dicarboxylic acid, 1,2-dicarboxynaphthalene, 1,3-dicarboxynaphthalene, 1,4-dicarboxynaphthalene, 1,5 - Ruboxynaphthalene, 1,6-dicarboxynaphthalene, 1,7-dicarboxynaphthalene, 1,8-dicarboxynaphthalene, 2,3-dicarboxynaphthalene, 2,6-dicarboxynaphthalene, 2,7-dicarboxy Monoacid chloride compounds in which only the monocarboxyl group of dicarboxylic acids such as naphthalene is acid chloride, monoacid chloride compounds and N-hydroxy-5-norbornene-2,3-dicarboximide, p-nitrophenol, N-hydroxysuccinate Examples include active ester compounds obtained by reaction with imide, N-hydroxyphthalimide, N-hydroxybenzotriazole and the like.

これらのうち、ポリマーへの導入の容易さなどから、無水フタル酸、無水マレイン酸、ナジック酸、シクロヘキサンジカルボン酸無水物、3−ヒドロキシフタル酸無水物等の酸無水物や、3−カルボキシフェノール、4−カルボキシフェノール、3−カルボキシチオフェノール、4−カルボキシチオフェノール、1−ヒドロキシ−7−カルボキシナフタレン、1−ヒドロキシ−6−カルボキシナフタレン、1−ヒドロキシ−5−カルボキシナフタレン、1−メルカプト−7−カルボキシナフタレン、1−メルカプト−6−カルボキシナフタレン、1−メルカプト−5−カルボキシナフタレン、3−カルボキシベンゼンスルホン酸、4−カルボキシベンゼンスルホン酸等のモノカルボン酸類が好ましく利用される。これらは単独で又は2種以上を組み合わせて使用される。   Among these, from the ease of introduction into the polymer, acid anhydrides such as phthalic anhydride, maleic anhydride, nadic acid, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, 3-carboxyphenol, 4-carboxyphenol, 3-carboxythiophenol, 4-carboxythiophenol, 1-hydroxy-7-carboxynaphthalene, 1-hydroxy-6-carboxynaphthalene, 1-hydroxy-5-carboxynaphthalene, 1-mercapto-7- Monocarboxylic acids such as carboxynaphthalene, 1-mercapto-6-carboxynaphthalene, 1-mercapto-5-carboxynaphthalene, 3-carboxybenzenesulfonic acid and 4-carboxybenzenesulfonic acid are preferably used. These are used alone or in combination of two or more.

一般式(8)で表される成分(一般式(3)のX成分)の導入割合は、その元成分である末端封止剤の1級モノアミン成分で換算すると、全ジアミン成分に対して、0.1〜60モル%の範囲が好ましく、特に好ましくは5〜50モル%である。一般式(9)や一般式(10)で表される成分(一般式(2)、一般式(5)のY成分)や、一般式(11)や一般式(12)で表される成分(一般式(4)、一般式(6)、一般式(7)のZ成分)の導入割合は、その元成分である末端封止剤の酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物成分で換算すると、全ジアミン成分に対して、0.1〜60モル%の範囲が好ましく、特に好ましくは5〜55モル%である。   When the introduction ratio of the component represented by the general formula (8) (the X component of the general formula (3)) is converted into the primary monoamine component of the terminal blocking agent which is the original component, The range of 0.1-60 mol% is preferable, Most preferably, it is 5-50 mol%. Components represented by general formula (9) and general formula (10) (Y component of general formula (2) and general formula (5)), and components represented by general formula (11) and general formula (12) The introduction ratio of (general formula (4), general formula (6), general formula (7) Z component) is the base component acid anhydride, monocarboxylic acid, monoacid chloride compound, When converted in terms of the mono-active ester compound component, the range of 0.1 to 60 mol% is preferable with respect to the total diamine component, and particularly preferably 5 to 55 mol%.

一般式(2)〜(7)のmはポリマーの繰り返し数を示しており、8〜200の範囲を示す。好ましくは10〜150である。重量平均分子量で言うと、ゲルろ過クロマトグラフィーによるポリスチレン換算で4000〜80000であることが好ましく、特に好ましくは、8000〜60000である。mを8以上とすることで、組成粘度を大きくして厚膜塗布を可能とし、mを200以下とすることで、溶剤への溶解性を向上することができる。   In the general formulas (2) to (7), m represents the number of polymer repetitions, and ranges from 8 to 200. Preferably it is 10-150. When it says with a weight average molecular weight, it is preferable that it is 4000-80000 in polystyrene conversion by gel filtration chromatography, Most preferably, it is 8000-60000. By setting m to 8 or more, the composition viscosity can be increased to enable thick film coating, and by setting m to 200 or less, solubility in a solvent can be improved.

本発明の(a)有機溶剤可溶性ポリイミドは一般式(2)〜(7)で表される構造からなるものであっても良いし、他の構造も有する共重合体あるいは混合体であっても良い。その際、一般式(2)〜(7)で表される構造を50モル%以上含有していることが好ましい。共重合あるいは混合に用いられる構造の種類および量は、加熱処理によって得られる耐熱性樹脂皮膜の耐熱性を損なわない範囲で選択することが好ましい。   The (a) organic solvent-soluble polyimide of the present invention may have a structure represented by the general formulas (2) to (7), or may be a copolymer or a mixture having another structure. good. In that case, it is preferable to contain 50 mol% or more of the structures represented by the general formulas (2) to (7). The type and amount of the structure used for copolymerization or mixing are preferably selected within a range that does not impair the heat resistance of the heat resistant resin film obtained by heat treatment.

本発明に用いられる(a)有機溶剤可溶性ポリイミドは、ジアミンの一部をモノアミンである末端封止剤に置き換えて、または、酸二無水物の一部をモノカルボン酸、酸無水物、モノ酸クロリド化合物、モノ活性エステル化合物である末端封止剤に置き換えて、公知の方法を利用して合成される。例えば、低温中でテトラカルボン酸二無水物とジアミン化合物(一部をモノアミンである末端封止剤に置換)を反応させる方法、低温中でテトラカルボン酸二無水物(一部を酸無水物またはモノ酸クロリド化合物あるいはモノ活性エステル化合物である末端封止剤に置換)とジアミン化合物を反応させる方法、テトラカルボン酸二無水物とアルコールとの反応によりジエステルを得、その後ジアミン(一部をモノアミンである末端封止剤に置換)と縮合剤の存在下で反応させる方法、テトラカルボン酸二無水物とアルコールとの反応によりジエステルを得、その後残りのジカルボン酸を酸クロリド化し、ジアミン(一部をモノアミンである末端封止剤に置換)と反応させる方法などを利用して、ポリイミド前駆体を得、続いてこれを公知のイミド化反応させる方法を利用して有機溶剤可溶性ポリイミドを合成することができる。   The (a) organic solvent-soluble polyimide used in the present invention is obtained by replacing a part of the diamine with an end-capping agent that is a monoamine, or a part of the acid dianhydride is a monocarboxylic acid, an acid anhydride, or a monoacid. It is synthesized using a known method in place of the end capping agent which is a chloride compound or a monoactive ester compound. For example, a method of reacting a tetracarboxylic dianhydride and a diamine compound (partially substituted with a terminal blocking agent that is a monoamine) at a low temperature, a tetracarboxylic dianhydride (a part of an acid anhydride or A method of reacting a diamine compound with a monoacid chloride compound or a mono-active ester compound, and a diamine compound, a diester is obtained by reaction of tetracarboxylic dianhydride and alcohol, and then a diamine (partially with a monoamine) A method of reacting with a certain end-capping agent and the presence of a condensing agent, a diester is obtained by reaction of tetracarboxylic dianhydride and alcohol, and then the remaining dicarboxylic acid is acid chlorided to obtain a diamine (partially A polyimide precursor is obtained using a method such as a method of reacting with a monoamine end-capping agent), and this is then known in the art. It can be synthesized organic solvent-soluble polyimide by utilizing the method of de reaction.

また、ポリマー中に導入された一般式(1)の構造および本発明で使用される末端封止剤は、以下の方法で容易に検出、定量できる。例えば、一般式(1)の構造および末端封止剤が導入されたポリマーを、酸性溶液あるいは塩基性溶液に溶解し、ポリマーの構成単位であるジアミン成分と酸無水物成分に分解し、これをガスクロマトグラフィー(GC)や、NMR測定することにより、一般式(1)の構造および使用されている末端封止剤を容易に検出、定量することができる。これとは別に、末端封止剤が導入されたポリイミドを直接、熱分解ガスクロクロマトグラフ(PGC)や赤外スペクトル及び13CNMRスペクトル測定することによっても、一般式(1)の構造および使用されている末端封止剤を容易に検出、定量することが可能である。 The structure of the general formula (1) introduced into the polymer and the end capping agent used in the present invention can be easily detected and quantified by the following method. For example, a polymer in which the structure of the general formula (1) and the end-capping agent are introduced is dissolved in an acidic solution or a basic solution, and decomposed into a diamine component and an acid anhydride component which are constituent units of the polymer. The structure of the general formula (1) and the end-capping agent used can be easily detected and quantified by gas chromatography (GC) or NMR measurement. Separately from this, the structure of the general formula (1) is also used by directly measuring the pyrolysis gas chromatograph (PGC), infrared spectrum and 13 CNMR spectrum of the polyimide into which the end-capping agent is introduced. It is possible to easily detect and quantify the end-capping agent.

(a)有機溶剤可溶性ポリイミドの含有量は、(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物100重量部に対し、15〜90重量部であり、好ましくは30〜65重量部である。(a)有機溶剤可溶性ポリイミドの含有量が15重量部未満であると、ダイシング時に半導体用接着組成物が半導体ウェハから剥離したり、割れや欠けが発生しやすくなる。このようなダイシング時の欠陥は切削速度が速いほど顕著になる。また(a)有機溶剤可溶性ポリイミドの含有量が90重量部を越えた場合は、シート化した半導体用接着組成物(接着シート)をバンプ電極付き半導体ウェハにラミネートする際に、半導体用接着組成物がバンプ電極間に十分に入り込まず、気泡が残存し、フリップチップ実装後の半導体チップと回路基板間の接着力が低下する。また、前記以外にも半導体用接着組成物が吸水しやすくなるために、ダイシング後の半導体用接着組成物層付き半導体チップを回路基板にフリップチップ実装を行うと、フリップチップ実装時の加熱により半導体用接着組成物中の水分が急激に蒸発し半導体用接着組成物層が発泡する。この接着力の低下や発泡は半導体チップと回路基板の接続信頼性の低下につながる。 (A) The content of the organic solvent-soluble polyimide is 15 to 90 parts by weight with respect to 100 parts by weight of the epoxy compound (b) having two or more epoxy groups and an epoxy equivalent of 100 to 500 , preferably 30 to 65 parts by weight. (A) When the content of the organic solvent-soluble polyimide is less than 15 parts by weight, the semiconductor adhesive composition is easily peeled off from the semiconductor wafer during dicing, or cracks and chips are likely to occur. Such a defect during dicing becomes more prominent as the cutting speed increases. In addition, when the content of (a) the organic solvent-soluble polyimide exceeds 90 parts by weight, the semiconductor adhesive composition is laminated when laminating the semiconductor adhesive composition (adhesive sheet) on the semiconductor wafer with bump electrodes. Does not sufficiently enter between the bump electrodes, bubbles remain, and the adhesive force between the semiconductor chip after flip chip mounting and the circuit board is reduced. In addition to the above, since the semiconductor adhesive composition can easily absorb water, when the semiconductor chip with the semiconductor adhesive composition layer after dicing is flip-chip mounted on the circuit board, the semiconductor is heated by the flip chip mounting. Moisture in the adhesive composition for a liquid evaporates rapidly, and the adhesive composition layer for a semiconductor foams. This decrease in adhesive force and foaming lead to a decrease in connection reliability between the semiconductor chip and the circuit board.

本発明の半導体用接着組成物は、さらに(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物を含有する。(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物はポリイミド側鎖および末端のフェノール性水酸基、スルホン酸基、チオール基と反応し、密度の高い網目構造を構成するため、得られる半導体用接着組成物は各種薬品に耐性を発現する。各種溶剤、特にN−メチルピロリドンに対して完全不溶とすることができる。また、エポキシ化合物は、一般に収縮を伴わない開環反応によって硬化するため、(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物を含む本発明の半導体用接着組成物は、硬化時の収縮を低減することが可能となる。このために(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物は、エポキシ基を2個以上有するものであり、エポキシ当量は100〜500である。エポキシ当量を100以上とすることで、耐熱性樹脂皮膜の靱性を向上することができ、500以下とすることで熱硬化後に密度の高い網目構造とすることができるため、半導体用接着組成物を高絶縁性にすることができる。 The adhesive composition for a semiconductor of the present invention further contains (b) an epoxy compound having two or more epoxy groups and an epoxy equivalent of 100 to 500 . (B) An epoxy compound having two or more epoxy groups and having an epoxy equivalent of 100 to 500 reacts with the polyimide side chain and terminal phenolic hydroxyl group, sulfonic acid group, and thiol group to form a dense network structure. Therefore, the obtained adhesive composition for semiconductor exhibits resistance to various chemicals. It can be made completely insoluble in various solvents, particularly N-methylpyrrolidone. In addition, since the epoxy compound is generally cured by a ring-opening reaction without shrinkage, (b) the adhesive composition for a semiconductor of the present invention containing an epoxy compound having two or more epoxy groups and having an epoxy equivalent of 100 to 500 The product can reduce shrinkage during curing. Has this purpose, (b) an epoxy group two or more, epoxy compounds epoxy equivalent weight of 100 to 500 are those having two or more epoxy groups and an epoxy equivalent Ru 100-500 der. By setting the epoxy equivalent to 100 or more, the toughness of the heat-resistant resin film can be improved, and by setting it to 500 or less, a high-density network structure can be obtained after thermosetting. High insulation can be achieved.

また、(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物は液状と固形状の2種類を有し、エポキシ化合物全量に対し、液状エポキシ化合物の含有比率が20重量%以上60重量%以下であることが必要である。好ましくは30重量%以上50重量%以下である。この範囲で液状エポキシ化合物を使用することで半導体用接着組成物に適度な可塑性、可撓性を付与することができ、半導体用接着組成物をシート化した場合にフレキシブルなシート(接着シート)を得ることができる。さらにダイシング時の半導体用接着組成物の割れや欠けが抑制される。液状のエポキシ化合物が20重量%未満であると、プラスチックフィルム上に半導体用接着組成物を形成しロール状にすると割れやプラスチックフィルムから剥がれるという問題、ダイシング時に接着シートに割れや欠けが発生する問題、半導体ウェハから半導体用接着組成物が剥がれるという問題などが生じる。エポキシ化合物全量に対し、液状エポキシ化合物の含有量が60重量%を越えるとダイシング時の切削粉が付着しやすくなり、後のフリップチップ実装後の半導体チップと回路基板との接着性や電気導通信頼性が低下する。ここで液状エポキシ化合物とは25℃、1.013×10N/mで150Pa・s以下の粘度を示すものであり、25℃で150Pa・sを越える粘度を示すものは固形エポキシ化合物を示す。このようなエポキシ化合物であれば特に限定されず、液状エポキシ化合物としては、例えばエピコート828、エピコート1002、エピコート1750、エピコート152、エピコート630、(以上商品名、ジャパンエポキシレジン(株)製)、エピクロンHP−4032(以上商品名、大日本インキ化学工業(株)製)などが挙げられる。これらを2種以上組み合わせてもよい。また、固形エポキシ化合物としては、エピコート1002、エピコート1001、YX4000H、エピコート4004P、エピコート5050、エピコート154、エピコート157S70、エピコート180S70、YX4000H(以上商品名、ジャパンエポキシレジン(株)製)、テピックS、テピックG、テピックP(以上商品名、日産化学工業(株)製)、エポトートYH−434L(商品名、東都化成(株)製)、EPPN502H、NC3000(以上商品名、日本化薬(株)製)、エピクロンN695、エピクロンHP−7200(以上商品名、大日本インキ化学工業(株)製)などが挙げられる。これらのうち2種類以上を組み合わせて用いてもよい。 In addition, (b) the epoxy compound having two or more epoxy groups and having an epoxy equivalent of 100 to 500 has two types of liquid and solid, and the content ratio of the liquid epoxy compound is 20 with respect to the total amount of the epoxy compound. It is necessary to be not less than 60% by weight. Preferably they are 30 weight% or more and 50 weight% or less. By using a liquid epoxy compound within this range, it is possible to impart moderate plasticity and flexibility to the adhesive composition for semiconductors. When a semiconductor adhesive composition is formed into a sheet, a flexible sheet (adhesive sheet) can be obtained. Obtainable. Further, cracking and chipping of the semiconductor adhesive composition during dicing are suppressed. If the liquid epoxy compound is less than 20% by weight, the adhesive composition for a semiconductor is formed on a plastic film and rolled to form a crack or peel from the plastic film, and the adhesive sheet is cracked or chipped during dicing. There arises a problem that the semiconductor adhesive composition is peeled off from the semiconductor wafer. If the content of the liquid epoxy compound exceeds 60% by weight with respect to the total amount of the epoxy compound, the cutting powder during dicing tends to adhere, and the adhesion and electrical conduction reliability between the semiconductor chip and the circuit board after the subsequent flip chip mounting. Sex is reduced. Here, the liquid epoxy compound indicates a viscosity of 150 Pa · s or less at 25 ° C. and 1.013 × 10 5 N / m 2 , and the one having a viscosity exceeding 150 Pa · s at 25 ° C. is a solid epoxy compound. Show. If it is such an epoxy compound, it will not specifically limit, As a liquid epoxy compound, for example, Epicoat 828, Epicoat 1002, Epicoat 1750, Epicoat 152, Epicoat 630 (above a brand name, Japan Epoxy Resin Co., Ltd. product), Epicron And HP-4032 (trade name, manufactured by Dainippon Ink and Chemicals, Inc.). Two or more of these may be combined. Further, as the solid epoxy compound, Epicoat 1002, Epicoat 1001, YX4000H, Epicoat 4004P, Epicoat 5050, Epicoat 154, Epicoat 157S70, Epicoat 180S70, YX4000H (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), Tepic S, Tepic G, Tepic P (trade name, manufactured by Nissan Chemical Industries, Ltd.), Epototo YH-434L (trade name, manufactured by Tohto Kasei Co., Ltd.), EPPN502H, NC3000 (all trade names, manufactured by Nippon Kayaku Co., Ltd.) , Epicron N695, Epicron HP-7200 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.) and the like. Two or more of these may be used in combination.

本発明の半導体用接着組成物には、さらに(c)硬化促進剤を用いる。エポキシ化合物と硬化促進剤を組み合わせることで、固形エポキシ化合物および液状のエポキシ化合物の硬化を促進し、短時間で硬化させることができる。硬化促進剤としては、各種イミダゾール、イミダゾールシラン、イミダゾリン、酸無水物などが挙げられる。各種イミダゾールとしては、イミダゾール、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニル−4−メチルイミダゾール、2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイトなどが挙げられる。イミダゾールシランとしては、IS−1000、IS−1000D、IM−1000、SP−1000、IA−100A、IA−100P、IA−100F(以上商品名、日鉱マテリアルズ(株)製)などが挙げられる。酸無水物としては、ヘキサハイドロフタル酸無水物、メチルテトラハイドロフタル酸無水物、アデカハードナーEH−3326、アデカハードナーEH−703、アデカハードナーEH−705A(以上商品名、旭電化工業(株)製)、エピクロンB−570、エピクロンB−650(以上商品名、大日本インキ化学(株)製)などが挙げられる。(c)硬化促進剤の含有量は、(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物の合計100重量部に対し、0.1〜10重量部の範囲である必要がある。(c)硬化促進剤の含有量を0.1重量部以上とすることでエポキシ化合物の硬化を効果的に促進し、10重量部以下とすることで硬化物の絶縁性、耐熱性を向上させることができる。また、(c)硬化促進剤は、水に不溶のものが好ましく用いられる。ここで、水に不溶とは、25℃、1.013×10N/m下の純水への溶解量が5重量%以下のものをいう。水溶性の硬化促進剤はダイシング時に用いる切削水に溶解し、半導体用接着組成物シートの膜面が粗くな
ったり、硬化性や接着性の低下を引き起こすことがある。
In the adhesive composition for semiconductor of the present invention, (c) a curing accelerator is further used. By combining the epoxy compound and the curing accelerator, curing of the solid epoxy compound and the liquid epoxy compound can be accelerated and cured in a short time. Examples of the curing accelerator include various imidazoles, imidazole silanes, imidazolines and acid anhydrides. As various imidazoles, imidazole, 2-methylimidazole, 2-undecylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium tri Examples include meritate. Examples of imidazole silane include IS-1000, IS-1000D, IM-1000, SP-1000, IA-100A, IA-100P, and IA-100F (trade names, manufactured by Nikko Materials Co., Ltd.). Examples of acid anhydrides include hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, Adeka Hardener EH-3326, Adeka Hardner EH-703, Adeka Hardner EH-705A (above, trade name, manufactured by Asahi Denka Kogyo Co., Ltd.) ), Epicron B-570, Epicron B-650 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.), and the like. (C) Content of hardening accelerator is the range of 0.1-10 weight part with respect to a total of 100 weight part of the epoxy compound which has (b) 2 or more epoxy groups and epoxy equivalent is 100-500. Need to be. (C) Curing of the epoxy compound is effectively accelerated by setting the content of the curing accelerator to 0.1 parts by weight or more, and the insulation and heat resistance of the cured product are improved by setting the content to 10 parts by weight or less. be able to. Further, (c) a curing accelerator is preferably used insoluble in water. Here, the term “insoluble in water” means that the amount dissolved in pure water at 25 ° C. and 1.013 × 10 5 N / m 2 is 5% by weight or less. The water-soluble curing accelerator dissolves in cutting water used at the time of dicing, and the film surface of the adhesive composition sheet for a semiconductor may become rough or may cause a decrease in curability or adhesiveness.

本発明の半導体用接着組成物には、熱可塑性樹脂として、例えば、フェノキシ樹脂、ポリエステル、ポリウレタン、ポリアミド、ポリプロピレン、アクリロニトリル−ブタジエン共重合体(NBR)、スチレン−ブタジエン共重合体、(SBR)、アクリロニトリル−ブタジエン−メタクリル酸共重合体、アクリロニトリル−ブタジエン−アクリル酸共重合体などを、硬化後の膜に対する低応力化剤として添加することができる。また、公知のエポキシ化合物用硬化剤やフィラーを添加することができる。   In the adhesive composition for a semiconductor of the present invention, as a thermoplastic resin, for example, phenoxy resin, polyester, polyurethane, polyamide, polypropylene, acrylonitrile-butadiene copolymer (NBR), styrene-butadiene copolymer, (SBR), Acrylonitrile-butadiene-methacrylic acid copolymer, acrylonitrile-butadiene-acrylic acid copolymer and the like can be added as a stress reducing agent for the cured film. Moreover, a well-known hardening | curing agent for epoxy compounds and a filler can be added.

本発明の(d)高誘電率無機粒子は、ペロブスカイト型結晶構造、あるいは複合ペロブスカイト型結晶構造を有する。これらのものとしては、例えばチタン酸バリウム系、チタン酸ジルコン酸バリウム系、チタン酸ストロンチウム系、チタン酸カルシウム系、チタン酸ビスマス系、チタン酸マグネシウム系、チタン酸バリウムネオジム系、チタン酸バリウム錫系、マグネシウムニオブ酸バリウム系、マグネシウムタンタル酸バリウム系、チタン酸鉛系、ジルコン酸鉛系、チタン酸ジルコン酸鉛系、ニオブ酸鉛系、マグネシウムニオブ酸鉛系、ニッケルニオブ酸鉛系、タングステン酸鉛系、タングステン酸カルシウム系、マグネシウムタングステン酸鉛系、二酸化チタン系、などを挙げることができる。チタン酸バリウム系とは、チタン酸バリウム結晶内の一部の元素を他の元素で置換したり、結晶構造内に他の元素を侵入させたりした、チタン酸バリウムを母材とする固溶体を含めた総称である。その他のチタン酸ジルコン酸バリウム系、チタン酸ストロンチウム系、チタン酸カルシウム系、チタン酸ビスマス系、チタン酸マグネシウム系、チタン酸バリウムネオジム系、チタン酸バリウム錫系、マグネシウムニオブ酸バリウム系、マグネシウムタンタル酸バリウム系、チタン酸鉛系、ジルコン酸鉛系、チタン酸ジルコン酸鉛系、ニオブ酸鉛系、マグネシウムニオブ酸鉛系、ニッケルニオブ酸鉛系、タングステン酸鉛系、タングステン酸カルシウム系、マグネシウムタングステン酸鉛系もいずれも同様で、それぞれを母材とする固溶体を含めた総称である。   The high dielectric constant inorganic particles (d) of the present invention have a perovskite crystal structure or a composite perovskite crystal structure. These include, for example, barium titanate, barium zirconate titanate, strontium titanate, calcium titanate, bismuth titanate, magnesium titanate, barium neodymium titanate, barium tin titanate , Barium magnesium niobate, barium magnesium tantalate, lead titanate, lead zirconate, lead zirconate titanate, lead niobate, lead magnesium niobate, lead nickel niobate, lead tungstate , Calcium tungstate, lead magnesium tungstate, titanium dioxide, and the like. The barium titanate system includes solid solutions based on barium titanate, in which some elements in the barium titanate crystal are replaced with other elements or other elements are infiltrated into the crystal structure. It is a generic name. Other barium zirconate titanate, strontium titanate, calcium titanate, bismuth titanate, magnesium titanate, barium neodymium titanate, barium tin titanate, barium magnesium niobate, magnesium tantalate Barium, lead titanate, lead zirconate, lead zirconate titanate, lead niobate, lead magnesium niobate, lead nickel niobate, lead tungstate, calcium tungstate, magnesium tungstic acid The same is true for lead-based materials, and is a generic term that includes solid solutions that use each as a base material.

なお、ペロブスカイト型結晶構造、あるいは複合ペロブスカイト型結晶構造を有する高誘電率無機粒子は、これらのうち1種を単独で用いたり、2種以上を混合して用いたりすることができるが、少なくとも2種の異なる平均粒子径を有する高誘電率無機粒子が同一化学組成である方が誘電特性の点から、好ましい。特に、高い比誘電率を有する半導体用接着組成物を得る場合には、商業的利便性との両立の点から、主としてチタン酸バリウムからなる化合物を用いることが好ましい。但し、誘電特性や温度安定性を向上させる目的で、シフター、デプレッサー剤などを少量添加して用いてよい。   The high dielectric constant inorganic particles having a perovskite crystal structure or a composite perovskite crystal structure can be used alone or in combination of two or more, but at least 2 From the viewpoint of dielectric properties, it is preferable that the high dielectric constant inorganic particles having different average particle diameters have the same chemical composition. In particular, when obtaining an adhesive composition for a semiconductor having a high dielectric constant, it is preferable to use a compound mainly composed of barium titanate from the viewpoint of compatibility with commercial convenience. However, for the purpose of improving dielectric properties and temperature stability, a small amount of a shifter, a depressor, etc. may be added.

高誘電率無機粒子の作製方法は、固相反応法、水熱合成法、超臨界水熱合成法、ゾルゲル法、しゅう酸塩法などの方法が挙げられる。最大の平均粒子径を有する高誘電率無機粒子の作製方法としては、高い比誘電率と品質安定性の点から、固相反応法、あるいはしゅう酸塩法を用いることが好ましい。また、最小の平均粒子径を有する高誘電率無機粒子の作製方法は、小粒径化が容易であるという理由から、水熱合成法、超臨界水熱合成法、ゾルゲル法、アルコキシド法のいずれかを用いることが好ましい。   Examples of the method for producing the high dielectric constant inorganic particles include a solid phase reaction method, a hydrothermal synthesis method, a supercritical hydrothermal synthesis method, a sol-gel method, and an oxalate method. As a method for producing the high dielectric constant inorganic particles having the maximum average particle diameter, it is preferable to use a solid phase reaction method or an oxalate method from the viewpoint of high relative dielectric constant and quality stability. In addition, the method for producing the high dielectric constant inorganic particles having the minimum average particle size is easy to reduce the particle size, so any of hydrothermal synthesis method, supercritical hydrothermal synthesis method, sol-gel method, and alkoxide method can be used. It is preferable to use these.

高誘電率無機粒子の形状は、球状、略球状、楕円球状、針状、板状、鱗片状、棒状などが挙げられるが、特に、球形あるいは略球形であることが好ましい。球状あるいは略球状の高誘電率無機粒子は、最も比表面積が少ないために充填時に高誘電率無機粒子凝集や樹脂流動性低下などを生じにくいからである。これらのうち1種を単独で用いたり、2種以上を混合して用いることができる。   Examples of the shape of the high dielectric constant inorganic particles include a spherical shape, a substantially spherical shape, an elliptical spherical shape, a needle shape, a plate shape, a scale shape, and a rod shape, and a spherical shape or a substantially spherical shape is particularly preferable. This is because spherical or substantially spherical high dielectric constant inorganic particles have the smallest specific surface area, and therefore do not easily cause aggregation of high dielectric constant inorganic particles or a decrease in resin fluidity during filling. One of these can be used alone, or two or more can be mixed and used.

(d)高誘電率無機粒子は、(a)有機溶剤可溶性ポリイミドと(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物を含む樹脂成分に均一に分散させ、かつ空隙を発生させずに充填することが好ましい。(d)高誘電率無機粒子が空隙無く均一に分散されていると、半導体用接着組成物の誘電率を大きくしやすい。 (D) The high dielectric constant inorganic particles are uniformly dispersed in a resin component containing (a) an organic solvent-soluble polyimide and (b) an epoxy compound having two or more epoxy groups and having an epoxy equivalent of 100 to 500 , And it is preferable to fill without generating voids. (D) When the high dielectric constant inorganic particles are uniformly dispersed without voids, it is easy to increase the dielectric constant of the semiconductor adhesive composition.

(d)高誘電率無機粒子の含有量は、硬化後の半導体用接着組成物全量に対し、70〜96重量%が好ましく、より好ましくは、80重量%以上90重量%以下である。(d)高誘電率無機粒子の含有量が70重量%以上であると、(d)高誘電率無機粒子を含有することにより半導体用組接着成物の比誘電率が大きくなるという効果が顕著になる。(d)高誘電率無機粒子の含有量が96重量%以下であると半導体用接着組成物が脆くなりにくい。(d)高誘電率無機粒子の含有量が80重量%以上であると、半導体用接着組成物の熱膨張係数が十分小さくなり、半導体チップとの熱膨張率差が小さくなり、温度変化に対する信頼性が向上する。(d)高誘電率無機粒子の含有量が90重量%以下であると、半導体用接着組成物の接着力が十分大きくなり、信頼性の高い接続が達成されやすくなる。   (D) 70 to 96 weight% is preferable with respect to the adhesive composition for semiconductors after hardening, and, as for content of a high dielectric constant inorganic particle, More preferably, it is 80 to 90 weight%. (D) When the content of the high dielectric constant inorganic particles is 70% by weight or more, the effect of increasing the relative dielectric constant of the assembled adhesive composition for a semiconductor due to the inclusion of (d) the high dielectric constant inorganic particles is remarkable. become. (D) When the content of the high dielectric constant inorganic particles is 96% by weight or less, the adhesive composition for a semiconductor is unlikely to become brittle. (D) When the content of the high dielectric constant inorganic particles is 80% by weight or more, the thermal expansion coefficient of the adhesive composition for semiconductors becomes sufficiently small, the difference in thermal expansion coefficient from the semiconductor chip becomes small, and the reliability against temperature change Improves. (D) When the content of the high dielectric constant inorganic particles is 90% by weight or less, the adhesive strength of the adhesive composition for a semiconductor becomes sufficiently large, and a highly reliable connection is easily achieved.

(d)高誘電率無機粒子は、平均粒子径0.01〜5μmであることが好ましく、より好ましくは0.1〜3μmである。(d)高誘電率無機粒子の平均粒子径が0.01μm以上であると、空隙を発生させず、(d)高誘電率無機粒子を樹脂中に分散させやすくなる。(d)高誘電率無機粒子の平均粒子径が0.1μm以上であると、結晶性が十分となるため、(d)高誘電率無機粒子が本来有する高誘電率を発揮しやすくなる。20〜30μmのバンプを有する半導体チップの接続を行う場合には半導体用接着組成物の膜厚も同様に20〜30μmとなり、この様な場合に(d)高誘電率無機粒子の平均粒子径が5μm以下であると、半導体用接着組成物の面方向の熱伝導率分布が均一になりやすい。(d)高誘電率無機粒子の平均粒子径が3μm以下であると、半導体用接着組成物中での(d)高誘電率無機粒子の沈降が起きにくくなり、膜厚方向の高誘電率無機粒子の分布が均一となり膜厚方向の誘電率が大きくなる。膜厚方向に誘電率の小さい層が存在すると膜厚方向の誘電率はその層の影響を大きく受け、膜厚方向の誘電率が小さくなる。   (D) The high dielectric constant inorganic particles preferably have an average particle diameter of 0.01 to 5 μm, more preferably 0.1 to 3 μm. (D) When the average particle diameter of the high dielectric constant inorganic particles is 0.01 μm or more, voids are not generated, and (d) the high dielectric constant inorganic particles are easily dispersed in the resin. (D) When the average particle diameter of the high dielectric constant inorganic particles is 0.1 μm or more, the crystallinity is sufficient, and (d) the high dielectric constant inherent to the high dielectric constant inorganic particles is easily exhibited. When connecting semiconductor chips having bumps of 20 to 30 μm, the film thickness of the adhesive composition for semiconductors is similarly 20 to 30 μm. In such a case, (d) the average particle diameter of the high dielectric constant inorganic particles is When the thickness is 5 μm or less, the thermal conductivity distribution in the surface direction of the adhesive composition for semiconductor tends to be uniform. (D) When the average particle diameter of the high dielectric constant inorganic particles is 3 μm or less, the (d) high dielectric constant inorganic particles in the adhesive composition for a semiconductor are less likely to settle, and the high dielectric constant inorganic in the film thickness direction The distribution of particles becomes uniform and the dielectric constant in the film thickness direction increases. When a layer having a small dielectric constant exists in the film thickness direction, the dielectric constant in the film thickness direction is greatly affected by the layer, and the dielectric constant in the film thickness direction becomes small.

なお、本発明の(d)高誘電率無機粒子の平均粒子径の測定は、半導体用接着組成物の硬化薄膜の超薄切片に対するXMA測定、および透過型電子顕微鏡(TEM)観察により行うことができる。この超薄切片には、半導体用接着組成物の硬化薄膜を、膜厚方向に断面を切り出したものを用いる。(d)高誘電率無機粒子と(a)有機溶剤可溶性ポリイミドや(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物、では電子線に対する透過率が異なるので、TEM観察像中で(d)高誘電率無機粒子と(a)有機溶剤可溶性ポリイミドや(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物はコントラストの違いにより識別できる。複数種の(d)高誘電率無機粒子が使用されている場合の各高誘電率無機粒子の同定は、XMA測定に基づく元素分析および電子線回折像観察による結晶構造解析により行うことができる。TEM観察像の画像解析から、(d)高誘電率無機粒子と(a)有機溶剤可溶性ポリイミドや(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物の面積の分布を求め、(d)高誘電率無機粒子像の断面を円形と近似して面積から粒子径を算出できる。この粒子径の評価は倍率5000倍と40000倍のTEM画像について行えばよい。算出された粒子径の分布を倍率が5000倍のTEM画像において0.1μm刻みのヒストグラム、倍率が40000倍のTEM画像において0.01μm刻みのヒストグラムで表す。得られたヒストグラムの各カラムに対し、その中心値と度数の積を求める。次にそれらの積の和を度数の総和で除したものを平均粒子径とする。なお、粒子径分布の評価は、TEMのかわりに走査型電子顕微鏡(SEM)を用いて、上記と同様の解析を行うことによってもできる。 In addition, the measurement of the average particle diameter of (d) high dielectric constant inorganic particles of the present invention is performed by XMA measurement on an ultrathin slice of a cured thin film of the adhesive composition for semiconductor, and observation with a transmission electron microscope (TEM). it can. For this ultra-thin slice, a cured thin film of the adhesive composition for semiconductors cut out in the film thickness direction is used. Since (d) high dielectric constant inorganic particles and (a) an organic solvent-soluble polyimide or (b) an epoxy compound having two or more epoxy groups and having an epoxy equivalent of 100 to 500, the transmittance for electron beams is different. In the TEM image, (d) high dielectric constant inorganic particles, (a) organic solvent-soluble polyimide, and (b) epoxy compounds having two or more epoxy groups and having an epoxy equivalent of 100 to 500 are identified by the difference in contrast. it can. When a plurality of types of (d) high dielectric constant inorganic particles are used, identification of each high dielectric constant inorganic particle can be performed by elemental analysis based on XMA measurement and crystal structure analysis by electron diffraction image observation. From the image analysis of the TEM observation image, the area of the epoxy compound having (d) high dielectric constant inorganic particles, (a) two or more organic solvent-soluble polyimides and (b) epoxy groups, and having an epoxy equivalent of 100 to 500 The distribution can be obtained, and (d) the particle diameter can be calculated from the area by approximating the cross section of the high dielectric constant inorganic particle image to be circular. The particle size may be evaluated for TEM images with a magnification of 5000 times and 40000 times. The calculated particle size distribution is represented by a histogram in increments of 0.1 μm in a TEM image with a magnification of 5000 times and a histogram in increments of 0.01 μm in a TEM image with a magnification of 40000 times. The product of the center value and the frequency is obtained for each column of the obtained histogram. Next, the average particle diameter is obtained by dividing the sum of these products by the sum of the frequencies. The particle size distribution can also be evaluated by performing the same analysis as described above using a scanning electron microscope (SEM) instead of TEM.

一般に(d)高誘電率無機粒子の粒成長や焼結などの一次粒子の形状変化が起きる温度は、(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物の硬化温度より遙かに高い場合が殆どであるので、そのような場合は、(d)高誘電率無機粒子を(a)有機溶剤可溶性ポリイミドや(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物に分散させる前の原料段階で(d)高誘電率無機粒子の粒子径を評価してもよい。この場合、(d)高誘電率無機粒子を直接、前記と同様のTEMやSEMを用いて観察し、それにより得られた観察像の画像解析により求めることができる。
In general, (d) the temperature at which primary particle shape change such as grain growth or sintering of high dielectric constant inorganic particles occurs is (b) an epoxy compound having two or more epoxy groups and an epoxy equivalent of 100 to 500 . In most cases, the temperature is much higher than the curing temperature. In such a case, (d) high dielectric constant inorganic particles (a) organic solvent-soluble polyimide or (b) two or more epoxy groups, epoxy You may evaluate the particle diameter of (d) high dielectric constant inorganic particle in the raw material stage before making it disperse | distribute to the epoxy compound whose equivalent is 100-500 . In this case, (d) high dielectric constant inorganic particles can be directly observed using a TEM or SEM similar to the above, and can be obtained by image analysis of an observation image obtained thereby.

また、上記以外にも、(d)高誘電率無機粒子の液体中でのブラウン運動による散乱光の揺らぎを測定する動的光散乱法、(d)高誘電率無機粒子を電気泳動させたときの散乱光のドップラー効果を測定する電気泳動光散乱法、照射した超音波の減衰状態求める超音波減衰分光法などによって平均粒子径を測定することができる。レーザー回折式、レーザー散乱式の粒度分布測定装置としては、(株)堀場製作所製LA−920、(株)島津製作所製SALD−1100、日機装(株)製MICROTRAC−UPA150やシスメックス(株)製ゼータサイザーナノZS等がある。   In addition to the above, (d) a dynamic light scattering method for measuring fluctuation of scattered light due to Brownian motion in liquid of high dielectric constant inorganic particles, and (d) when high dielectric constant inorganic particles are electrophoresed. The average particle diameter can be measured by an electrophoretic light scattering method for measuring the Doppler effect of the scattered light, an ultrasonic attenuation spectroscopy method for determining the attenuation state of irradiated ultrasonic waves, or the like. Laser diffraction type and laser scattering type particle size distribution measuring devices include LA-920 manufactured by Horiba Ltd., SALD-1100 manufactured by Shimadzu Corp., MICROTRAC-UPA150 manufactured by Nikkiso Co., Ltd., and Zeta manufactured by Sysmex Corp. There are sizer nano ZS and the like.

(d)高誘電率無機粒子の樹脂への分散方法は特に限定されないが、例えば高誘電率無機粒子を樹脂と溶剤を有する溶液へ分散することによって得られる。例えば、液状樹脂、もしくは樹脂溶液に高誘電率無機粒子を加えて混合分散する方法や、予め高誘電率無機粒子を適当な溶剤中に分散した分散液を作製し、その分散液と液状樹脂、もしくは樹脂溶液を混合するレットダウン法などによって作製される。また、液状樹脂、もしくは樹脂溶液または溶剤中へ高誘電率無機粒子を分散させる方法は特に限定されず、例えば、超音波分散、ボールミル、ロールミル、クレアミックス、ホモジナイザー、メディア分散機などの方法を用いることができるが、特に、分散性の点でボールミル、ホモジナイザーを用いることが好ましい。   (D) The method for dispersing the high dielectric constant inorganic particles in the resin is not particularly limited. For example, it can be obtained by dispersing the high dielectric constant inorganic particles in a solution containing a resin and a solvent. For example, a liquid resin or a method in which high dielectric constant inorganic particles are added to a resin solution and mixed and dispersed, or a dispersion in which high dielectric constant inorganic particles are dispersed in an appropriate solvent in advance is prepared. Or it is produced by the letdown method etc. which mix a resin solution. Further, the method for dispersing the high dielectric constant inorganic particles in the liquid resin, the resin solution or the solvent is not particularly limited, and for example, a method such as ultrasonic dispersion, ball mill, roll mill, clear mix, homogenizer, media disperser or the like is used. However, it is particularly preferable to use a ball mill or a homogenizer in terms of dispersibility.

高誘電率無機粒子分散の際、分散性を向上させるために、例えば、高誘電率無機粒子の表面処理、分散剤の添加、界面活性剤の添加、溶剤の添加などを行っても良い。高誘電率無機粒子の表面処理としては、シラン系、チタン系、アルミニウム系などの各種カップリング剤、脂肪酸、リン酸エステルなどによる処理のほか、ロジン処理、酸性処理、塩基性処理などが挙げられる。また、分散剤の添加の例としては、リン酸、カルボン酸、脂肪酸、およびそれらのエステル類などの酸基を有する分散剤などが挙げられ、特に、高誘電率無機粒子表面の水酸基と反応し、粒子表面を覆うことができることから、リン酸化合物が好ましく用いられる。   When dispersing the high dielectric constant inorganic particles, for example, surface treatment of the high dielectric constant inorganic particles, addition of a dispersant, addition of a surfactant, addition of a solvent, and the like may be performed. Examples of the surface treatment of the high dielectric constant inorganic particles include treatment with various coupling agents such as silane, titanium, and aluminum, fatty acid, phosphate ester, rosin treatment, acid treatment, basic treatment, and the like. . Examples of the addition of the dispersant include dispersants having an acid group such as phosphoric acid, carboxylic acid, fatty acid, and esters thereof. In particular, they react with hydroxyl groups on the surface of the high dielectric constant inorganic particles. Since the particle surface can be covered, a phosphoric acid compound is preferably used.

本発明で用いるリン酸化合物は、特に限定されず、リン酸エステル骨格を有する化合物、リン酸トリメチル、リン酸トリエチル、リン酸トリブチルなどのリン酸アルキルやリン酸アクリレート、リン酸メタクリレートを用いることができる。中でもリン酸エステル骨格を有する化合物が好ましく用いられる。リン酸エステル骨格を有する化合物が含まれる分散剤としては、ビックケミー・ジャパン(株)製:商品名“BYK−W9010”、同じく“Dysprebyk−111”などがある。   The phosphate compound used in the present invention is not particularly limited, and a compound having a phosphate ester skeleton, an alkyl phosphate such as trimethyl phosphate, triethyl phosphate, or tributyl phosphate, phosphate acrylate, or phosphate methacrylate may be used. it can. Of these, compounds having a phosphate ester skeleton are preferably used. Examples of the dispersant containing a compound having a phosphate ester skeleton include a product name “BYK-W9010” and “Dysprebyk-111” manufactured by Big Chemie Japan Co., Ltd.

そのほか、本発明の半導体用接着組成物にはノニオン性、カチオン性、アニオン性の界面活性剤、多価カルボン酸などの湿潤剤、両親和性物質、高立体障害の置換基を有する樹脂などを添加してもよい。また、分散時または分散後の系の極性は、溶剤の添加で制御することができる。また、必要に応じて、安定化剤、沈降防止剤、可塑剤、酸化防止剤などを含有させてもよい。   In addition, the adhesive composition for semiconductors of the present invention includes nonionic, cationic and anionic surfactants, wetting agents such as polyvalent carboxylic acids, amphoteric substances, and resins having highly sterically hindered substituents. It may be added. Moreover, the polarity of the system at the time of dispersion or after dispersion can be controlled by addition of a solvent. Moreover, you may contain a stabilizer, an anti-settling agent, a plasticizer, antioxidant, etc. as needed.

本発明の半導体用接着組成物は、バンプ電極付き半導体ウェハにコーティングしてもよい。本発明の半導体用接着組成物をシート状に加工するには、均一に混合した半導体用接着組成物をプラスチックフィルム等で挟みプレス圧延、あるいはロール圧延して作製することができる。また、半導体用接着組成物を溶媒中で混合してワニス状としたものをプラスチックフィルム上に塗布、脱溶媒させてシート状に加工することもできる。本発明ではプラスチックフィルムとそのプラスチックフィルム上に形成された半導体用接着組成物を半導体用接着シート材料という。   The semiconductor adhesive composition of the present invention may be coated on a semiconductor wafer with bump electrodes. In order to process the semiconductor adhesive composition of the present invention into a sheet, the uniformly mixed semiconductor adhesive composition is sandwiched between plastic films or the like, and can be produced by press rolling or roll rolling. Moreover, what was mixed with the adhesive composition for semiconductors in the solvent, and was made into the varnish form can be apply | coated on a plastic film, a solvent can be removed, and it can also process into a sheet form. In the present invention, a plastic film and a semiconductor adhesive composition formed on the plastic film are referred to as a semiconductor adhesive sheet material.

ここで用いる溶媒としては前記成分を溶解するものを適宜選択すればよく、たとえばケトン系溶剤のアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、エーテル系溶剤の1,4−ジオキサン、テトラヒドロフラン、ジグライム、グリコールエーテル系溶剤のメチルセロソルブ、エチルセロソルブ、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、ジエチレングリコールメチルエチルエーテル、その他ベンジルアルコール、プロパノール、N−メチルピロリドン、γ−ブチロラクトン、酢酸エチル、N,N−ジメチルホルムアミド等が挙げられる。特に大気圧下沸点が120℃以下であるものを用いると、低温、短時間で脱溶媒化できるためシート化加工が容易となる。   What is necessary is just to select suitably what melt | dissolves the said component as a solvent used here, for example, acetone solvent, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, ether solvent 1,4-dioxane, tetrahydrofuran, Diglyme, glycol ether solvent methyl cellosolve, ethyl cellosolve, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, diethylene glycol methyl ethyl ether, other benzyl alcohol, propanol, N-methylpyrrolidone, γ-butyrolactone, acetic acid Examples include ethyl, N, N-dimethylformamide and the like. In particular, when a material having a boiling point under atmospheric pressure of 120 ° C. or less can be removed at a low temperature in a short time, sheeting is facilitated.

塗工機としては、ロールコーター、コンマロールコーター、グラビアコーター、スクリーンコーター、スリットダイコーターなどを用いることができるが、スリットダイコーターがコーティング時の溶媒の揮発が少なく塗布性が安定するため好ましく使用される。   As the coating machine, a roll coater, a comma roll coater, a gravure coater, a screen coater, a slit die coater, etc. can be used, but the slit die coater is preferably used because the volatility of the solvent during coating is small and the coating property is stable. Is done.

シート化した半導体用接着組成物の厚さは、シート化した半導体用接着組成物をバンプ電極付き半導体ウェハに貼り合わせる場合には、バンプ電極の平均高さ以上であることが好ましく、より好ましくはバンプ電極の平均高さ以上かつバンプ電極の平均高さと回路基板上のパッド電極平均高さを足し合わせた厚さの1.5倍以下であり、さらにより好ましくは、バンプ電極の平均高さ以上かつバンプ電極の平均高さと回路基板上のパッド電極平均高さを足し合わせた厚さ以下である。なお、バンプ電極の高さは、バンプ電極が形成されていないウェハ面を基準(0μm)として計測する。また、回路基板上のパッド電極高さは、パッド電極が形成されている回路基板(ポリイミド、ガラスエポキシ、ガラス、セラミックスなど)の絶縁面を基準(0μm)として、全ての電極パッドの高さを計測し、その平均値とする。シート化した半導体用接着組成物の厚さがバンプ電極の平均高さ未満であるとフリップチップボンディング後の半導体チップ、半導体用接着組成物と回路基板との間に空隙ができ、接着力が低下する。また、シート化した半導体用接着組成物の厚さがバンプ電極の平均高さと回路基板上のパッド電極平均高さを足し合わせた厚さの1.5倍を越えると不経済であるだけでなく、半導体チップ下の半導体用接着組成物のはみ出し量が多くなり実装面積が大きくなってしまう問題や、はみ出した半導体用接着組成物が半導体チップ上部にまで回り込みフリップチップボンディング装置の加熱ホーンを汚染しホーンと半導体チップが接着してしまうなどの問題が起きやすい。また、加熱ホーンを汚染した場合は、ホーンの平坦性が損なわれ、フリップチップボンディング時の半導体チップの加熱状態が不均一となり、ボンディング不良が発生し易くなるという問題が発生することがある。   The thickness of the sheeted semiconductor adhesive composition is preferably equal to or higher than the average height of the bump electrode when the sheeted semiconductor adhesive composition is bonded to a semiconductor wafer with a bump electrode, more preferably The average height of the bump electrode or more and 1.5 times or less the sum of the average height of the bump electrode and the average height of the pad electrode on the circuit board, and even more preferably, the average height of the bump electrode or more And it is below the thickness which added the average height of the bump electrode and the pad electrode average height on the circuit board. The height of the bump electrode is measured using the wafer surface on which the bump electrode is not formed as a reference (0 μm). In addition, the height of the pad electrode on the circuit board is the height of all the electrode pads with the insulating surface of the circuit board (polyimide, glass epoxy, glass, ceramics, etc.) on which the pad electrode is formed as a reference (0 μm). Measure and take the average value. If the thickness of the sheeted adhesive composition for semiconductor is less than the average height of the bump electrode, a gap is formed between the semiconductor chip after flip chip bonding, the adhesive composition for semiconductor and the circuit board, and the adhesive strength is reduced. To do. In addition, it is not only uneconomical if the thickness of the sheeted adhesive composition for semiconductor exceeds 1.5 times the total thickness of the bump electrode average height and the pad electrode average height on the circuit board. The amount of protrusion of the semiconductor adhesive composition under the semiconductor chip increases and the mounting area increases, and the protruding semiconductor adhesive composition wraps around the top of the semiconductor chip and contaminates the heating horn of the flip chip bonding apparatus. Problems such as adhesion between the horn and the semiconductor chip are likely to occur. In addition, when the heating horn is contaminated, the flatness of the horn is impaired, and the heating state of the semiconductor chip during flip chip bonding becomes uneven, which may cause a problem that bonding failure is likely to occur.

前記方法により作製した半導体用接着シート材においては、プラスチックフィルムと半導体用接着組成物の接着力は2N/m以上49N/m以下にすることが好ましい。2N/m以上とすることで、プラスチックフィルムと半導体用接着組成物間での意図しない剥離が起きない取り扱いに優れた半導体用接着シート材料を得ることができる。プラスチックフィルムと半導体用接着組成物の接着力を49N/m以下とすることで、プラスチックフィルムを剥離した際にプラスチックフィルム表面に半導体用接着組成物が残存しにくくなる。   In the adhesive sheet material for semiconductor produced by the above method, the adhesive force between the plastic film and the adhesive composition for semiconductor is preferably 2 N / m or more and 49 N / m or less. By setting it as 2 N / m or more, the adhesive sheet material for semiconductors excellent in the handling in which the unintentional peeling between a plastic film and the adhesive composition for semiconductors does not occur can be obtained. By setting the adhesive force between the plastic film and the semiconductor adhesive composition to be 49 N / m or less, the semiconductor adhesive composition hardly remains on the surface of the plastic film when the plastic film is peeled off.

また、必要に応じ、半導体用接着組成物の上にさらに別のプラスチックフィルムをラミネートして、プラスチックフィルムで上下を挟まれた半導体用接着シート材料を得ることができる。このとき各面の各々の接着力の大きさは特に限定されず、各面が2N/m以上49N/m以下の接着力であることが好ましい。また一方のプラスチックフィルムを(e)プラスチックフィルムとし、他方のプラスチックフィルムを(f)プラスチックフィルムとすると、(f)プラスチックフィルムと半導体用接着組成物間の接着力と(e)プラスチックフィルムと半導体用接着組成物間の接着力の差が5N/m以上であることが好ましい。ここで、(f)プラスチックフィルムと半導体用接着組成物間の接着力は、(e)プラスチックフィルムと半導体用接着組成物間の接着力より大きい。また前記接着力の差は47N/m以下が好ましい。接着力の差を5N/m以上とすることで、プラスチックフィルムを剥離する際に、半導体用接着組成物の剥がれや浮きを発生させないようにすることができ、接着力の差を47N/m以下とすることで、フィルムを剥離した際にプラスチックフィルム表面に半導体用接着組成物が残存しにくくなる。   Moreover, if necessary, another plastic film may be laminated on the semiconductor adhesive composition to obtain a semiconductor adhesive sheet material sandwiched between the plastic films. At this time, the magnitude of the adhesive force of each surface is not particularly limited, and each surface preferably has an adhesive force of 2 N / m or more and 49 N / m or less. Further, when one plastic film is (e) a plastic film and the other plastic film is (f) a plastic film, (f) the adhesive force between the plastic film and the adhesive composition for a semiconductor, and (e) the plastic film and the semiconductor The difference in adhesive strength between the adhesive compositions is preferably 5 N / m or more. Here, (f) the adhesive force between the plastic film and the semiconductor adhesive composition is greater than (e) the adhesive force between the plastic film and the semiconductor adhesive composition. The difference in the adhesive strength is preferably 47 N / m or less. By setting the difference in adhesive strength to 5 N / m or more, it is possible to prevent peeling or lifting of the adhesive composition for semiconductors when peeling the plastic film, and the difference in adhesive strength is 47 N / m or less. By doing so, it becomes difficult for the adhesive composition for a semiconductor to remain on the surface of the plastic film when the film is peeled off.

(e)プラスチックフィルムと半導体用接着組成物の接着力は以下のように測定することができる。まず半導体用接着シート材料を幅25mm、長さ300mmに切り取り、これを厚さ2mmのステンレス板に両面粘着テープを用いて固定する。この際、両面粘着テープの粘着面に(e)プラスチックフィルム面を粘着させるようにする。次に、(e)プラスチックフィルムを半導体用接着組成物から角度90度の方向に200mm/分の速度で引き剥がし、(e)プラスチックフィルムと半導体用接着層の間の接着力(N/m)を測定する。   (E) The adhesive force between the plastic film and the adhesive composition for a semiconductor can be measured as follows. First, the adhesive sheet material for semiconductor is cut into a width of 25 mm and a length of 300 mm, and this is fixed to a stainless steel plate having a thickness of 2 mm using a double-sided adhesive tape. At this time, (e) the plastic film surface is adhered to the adhesive surface of the double-sided adhesive tape. Next, (e) the plastic film is peeled from the semiconductor adhesive composition in the direction of 90 degrees at a speed of 200 mm / min, and (e) the adhesive force between the plastic film and the semiconductor adhesive layer (N / m) Measure.

(f)プラスチックフィルムと半導体用接着組成物の接着力は以下のように測定することができる。まず、半導体用接着シート材料を幅25mm、長さ300mmに切り取り、(e)プラスチックフィルムを除去した後、両面粘着テープを貼り付けた厚さ2mmのステンレス板上に、両面粘着テープを用いて固定する。この際、両面粘着テープの粘着面に半導体接着組成物面を粘着させるようにする。(f)プラスチックフィルムを半導体用接着組成物から角度90度の方向に200mm/分の速度で剥がし(f)プラスチックフィルムと半導体用接着組成物の間の接着力(N/m)を測定する。   (F) The adhesive force between the plastic film and the adhesive composition for a semiconductor can be measured as follows. First, the semiconductor adhesive sheet material was cut to a width of 25 mm and a length of 300 mm, (e) after removing the plastic film, and fixed on a 2 mm thick stainless steel plate with a double-sided adhesive tape attached using a double-sided adhesive tape. To do. At this time, the semiconductor adhesive composition surface is adhered to the adhesive surface of the double-sided adhesive tape. (F) The plastic film is peeled off from the semiconductor adhesive composition in the direction of 90 degrees at a speed of 200 mm / min. (F) The adhesive force (N / m) between the plastic film and the semiconductor adhesive composition is measured.

ここで使用されるプラスチックフィルムとして、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリエステルフィルム、ポリ塩化ビニルフィルム、ポリカーボネートフィルム、ポリイミドフィルム等が挙げられる。また、ポリテトラフルオロエチレンフィルム等のフッ素樹脂フィルム、ポリフェニレンサルファイドフィルム、ポリプロピレンフィルム、ポリエチレンフィルム等が挙げられる。プラスチックフィルムは離型処理が施されていてもよく、たとえばシリコーン系、長鎖アルキル系、フッ素系、脂肪族アミド系等で離型処理してもよい。プラスチックフィルムと半導体用接着組成物との接着力は、プラスチックフィルムの種類や厚さの選択、液状エポキシ樹脂の量や室温でゴム状態であるタック成分の添加等の半導体用接着組成物の組成、溶媒の種類、半導体用接着シート材料の加熱エージングなどにより制御することができる。   Examples of the plastic film used here include a polyethylene terephthalate film, a polyethylene naphthalate film, a polyester film, a polyvinyl chloride film, a polycarbonate film, and a polyimide film. Moreover, fluororesin films, such as a polytetrafluoroethylene film, a polyphenylene sulfide film, a polypropylene film, a polyethylene film, etc. are mentioned. The plastic film may be subjected to a release treatment. For example, the release may be performed using a silicone-based, long-chain alkyl-based, fluorine-based, aliphatic amide-based, or the like. The adhesive force between the plastic film and the adhesive composition for semiconductors is determined by selecting the type and thickness of the plastic film, the composition of the adhesive composition for semiconductors such as the amount of liquid epoxy resin and the addition of a tack component that is in a rubbery state at room temperature, It can be controlled by the type of solvent, heat aging of the adhesive sheet material for semiconductors, and the like.

また、(f)プラスチックフィルムの表面に粘着剤層が形成されていてもよい。(f)プラスチックフィルムの表面の粘着剤層が形成されている場合は、この粘着材層面が、半導体用接着組成物と粘着するように(f)プラスチックフィルムと半導体用接着組成物を積層する。この場合、(f)プラスチックフィルムを半導体用接着組成物から剥離する際に、粘着剤が半導体用接着組成物上に残ることがないように、(f)プラスチックフィルムと粘着剤層間の粘着力は、粘着材層と半導体用接着組成物の間の接着力より大きくしておくことが重要である。粘着剤の材料としてはアクリル系、ビニル系、ウレタン系、シリコーン系、ポリエステル系、スチレン−ブタジエン系、イソプレン系、天然ゴム等を用いることができる。粘着・剥離の方式が、感圧粘着型、熱硬化剥離型、光硬化剥離型である粘着剤を用いることができる。粘着剤層の厚みは粘着剤の種類や使用法によって最適なものが決定され、通常1〜50μmの範囲のものをもちいることができる。このような粘着剤層を具備したプラスチックフィルムとしては、市販されているバックグラインドテープ、ダイシングテープなどの粘着テープを用いることも可能である。その他、あらかじめ粘着剤層が形成された(f)プラスチックフィルムを用いるのでなく、粘着剤層コーティング等により半導体用接着組成物層上に形成した後に(f)プラスチックフィルムをラミネートなどの方法で粘着剤層が積層された半導体用接着組成物層に形成してもよい。   Further, (f) an adhesive layer may be formed on the surface of the plastic film. (F) When the pressure-sensitive adhesive layer on the surface of the plastic film is formed, (f) the plastic film and the semiconductor adhesive composition are laminated so that the pressure-sensitive adhesive layer surface sticks to the semiconductor adhesive composition. In this case, when (f) the plastic film is peeled from the adhesive composition for semiconductor, the adhesive force between the plastic film and the adhesive layer is (f) so that the adhesive does not remain on the adhesive composition for semiconductor. It is important that the adhesive strength between the pressure-sensitive adhesive layer and the adhesive composition for a semiconductor is larger. As the material for the pressure-sensitive adhesive, acrylic, vinyl, urethane, silicone, polyester, styrene-butadiene, isoprene, natural rubber and the like can be used. An adhesive whose pressure-sensitive adhesive type, pressure-sensitive adhesive type, thermosetting release type, or photo-curing release type can be used. The thickness of the pressure-sensitive adhesive layer is determined optimally depending on the type and usage of the pressure-sensitive adhesive, and can usually be in the range of 1 to 50 μm. As the plastic film provided with such an adhesive layer, commercially available adhesive tapes such as a back grind tape and a dicing tape can also be used. In addition, instead of using the plastic film (f) in which the pressure-sensitive adhesive layer is formed in advance, the pressure-sensitive adhesive is formed on the adhesive composition layer for a semiconductor by pressure-sensitive adhesive layer coating or the like, and (f) the plastic film is laminated by a method such as lamination You may form in the adhesive composition layer for semiconductors by which the layer was laminated | stacked.

本発明の半導体装置は、前記半導体用接着組成物の両面にプラスチックフィルムを有している場合、(e)プラスチックフィルムを除去した後、剥き出しになった半導体用接着組成物面をバンプ電極付き半導体ウェハに40〜100℃で加熱ラミネートまたは真空加熱ラミネートし仮接着を行う。この温度範囲において半導体用接着組成物の動的粘度は10〜100000Pa・sであるのが好ましく、より好ましくは1000〜10000Pa・sである。半導体用接着組成物の動的粘度が10Pa・s未満であると取り扱いが困難となり、100000Pa・sを越えるとバンプ電極が半導体用接着組成物中に埋まらないことや、高圧力でのラミネートが必要となり、ウェハが破損するなどの問題が起きやすい。また、高圧力でラミネートを行うと、ラミネート後に反りが発生しやすいために好ましくない。   When the semiconductor device of the present invention has a plastic film on both surfaces of the semiconductor adhesive composition, (e) after removing the plastic film, the exposed semiconductor adhesive composition surface is exposed to a semiconductor with a bump electrode. The wafer is temporarily laminated by heating lamination or vacuum heating lamination at 40 to 100 ° C. In this temperature range, the dynamic viscosity of the adhesive composition for a semiconductor is preferably 10 to 100,000 Pa · s, more preferably 1000 to 10,000 Pa · s. If the dynamic viscosity of the adhesive composition for semiconductor is less than 10 Pa · s, handling becomes difficult, and if it exceeds 100,000 Pa · s, the bump electrode is not embedded in the adhesive composition for semiconductor, and lamination at high pressure is required. Thus, problems such as breakage of the wafer are likely to occur. Further, it is not preferable to perform lamination at a high pressure because warpage is likely to occur after lamination.

次に、必要に応じて下記のようにしてバックグラインド加工を行っても良い。即ち、前記工程により得られた(f)プラスチックフィルムと半導体用接着組成物付半導体ウェハの(f)プラスチックフィルム面をバックグラインド加工機固定面に設置し、半導体が形成されていないウェハ面(裏面)の研削・研磨加工を行ってもよい。このような加工を行うことで薄型の半導体用接着組成物付半導体ウェハ得ることができる。この加工工程によれば、バックグラインド工程と半導体チップ実装の接着剤塗布を別々に行う通常の方法に比べ工程が簡略化できる。   Next, back grinding may be performed as described below as necessary. That is, (f) the plastic film obtained by the above process and the (f) plastic film surface of the semiconductor wafer with the adhesive composition for semiconductor are placed on the fixed surface of the back grinding machine, and the wafer surface on which the semiconductor is not formed (back surface) ) Grinding / polishing may be performed. By performing such processing, a thin semiconductor wafer with an adhesive composition for a semiconductor can be obtained. According to this processing process, the process can be simplified as compared with the normal method in which the back grinding process and the semiconductor chip mounting adhesive application are performed separately.

次に、前記工程により得られた(f)プラスチックフィルムと半導体用接着組成物付半導体ウェハとテープフレームをダイシングテープに貼り付ける。この際、(f)プラスチックフィルムと半導体用接着組成物付半導体ウェハは、バンプ電極と反対側の面をダイシングテープの粘着面に粘着させるようにする。その後、ダイシングを行う。   Next, (f) the plastic film, the semiconductor wafer with the adhesive composition for semiconductor, and the tape frame obtained by the above process are attached to a dicing tape. At this time, (f) the plastic film and the semiconductor wafer with the adhesive composition for semiconductor are made to adhere the surface opposite to the bump electrode to the adhesive surface of the dicing tape. Thereafter, dicing is performed.

ダイシング工程では、まずカットテーブル上に、前記方法により作製した(f)プラスチックフィルムと半導体用接着組成物が付いたバンプ電極付き半導体ウェハをダイシングテープで貼り付けたテープフレームをセットし、次に(f)プラスチックフィルムを剥離する。装置上でバンプ電極または半導体ウェハ上のアライメントマークを認識させ、カットサイズ、切削速度、深さ、ブレード回転数、切削水量など各ダイシング条件を所定の値に設定しダイシングを行う。ここで、半導体ウェハ上のアライメントマークは複数の角形状含むものであることが好ましく、このような形状のアライメントマークを用いるとアライメントエラーを少なくできる。ダイシング後のウェハの乾燥は25〜100℃、10秒〜4時間で処理することが望ましい。ダイシングによる半導体用接着剤組成物の割れ、欠けおよび半導体ウェハからの剥がれは、切削端部を基準位置0μmとして最大長さが25μm以内であることが好ましい。半導体用接着剤組成物の割れ、欠け、または半導体ウェハからの剥がれが、25μmを越えた場合、ダイシング時およびダイシング後の半導体用接着組成物に水が吸着、付着しやすくなる。吸着した水は、後に行われるフリップチップ実装時に接着剤組成物層に空隙、ボイドが生じる原因となり、接着力の低下および電気的信頼性の低下を引き起こす。この半導体用接着組成物の割れ、欠けおよび半導体ウェハからの剥がれはクロスカット部分(半導体チップの角に当たる部分)で発生しやすい。   In the dicing process, first, a tape frame in which a semiconductor wafer with a bump electrode to which a plastic film and an adhesive composition for semiconductor are attached was attached with a dicing tape on a cut table was set, and then ( f) The plastic film is peeled off. The alignment mark on the bump electrode or the semiconductor wafer is recognized on the apparatus, and dicing is performed by setting each dicing condition such as a cut size, a cutting speed, a depth, a blade rotation speed, and a cutting water amount to predetermined values. Here, it is preferable that the alignment mark on the semiconductor wafer includes a plurality of square shapes, and using such an alignment mark can reduce alignment errors. The wafer after dicing is desirably dried at 25 to 100 ° C. for 10 seconds to 4 hours. The crack, chipping and peeling from the semiconductor wafer due to dicing of the semiconductor adhesive composition are preferably within a maximum length of 25 μm with the cut end as the reference position of 0 μm. When cracking, chipping, or peeling from the semiconductor wafer of the semiconductor adhesive composition exceeds 25 μm, water tends to be adsorbed and adhered to the semiconductor adhesive composition during and after dicing. The adsorbed water causes voids and voids in the adhesive composition layer during flip chip mounting to be performed later, causing a decrease in adhesive force and a decrease in electrical reliability. The cracking, chipping, and peeling from the semiconductor wafer of the adhesive composition for a semiconductor are likely to occur at a crosscut portion (portion that hits a corner of a semiconductor chip).

次にダイシングにより得られた半導体用接着組成物付き半導体チップは、通常のフリップチップボンダーを用いて回路基板に実装される。実装条件は半導体チップと回路基板の電気的接続が良好に得られる範囲であれば特に限定されるものではなく、バンプや回路基板の電極の材質に応じて適宜に決定される。また、半導体用接着組成物の硬化が不十分な場合は、実装後に半導体チップ実装回路基板を加熱し、半導体用接着組成物の硬化をさらに進めてもよい。   Next, the semiconductor chip with the adhesive composition for semiconductor obtained by dicing is mounted on a circuit board using a normal flip chip bonder. The mounting conditions are not particularly limited as long as the electrical connection between the semiconductor chip and the circuit board can be satisfactorily obtained, and is appropriately determined according to the material of the bump and the electrode of the circuit board. Moreover, when hardening of the adhesive composition for semiconductors is inadequate, a semiconductor chip mounting circuit board may be heated after mounting and hardening of the adhesive composition for semiconductors may be advanced further.

本発明の半導体用接着組成物を用いた半導体装置および/または多層基板のさらに別の製造方法として以下のようなものがある。個別に形成した1対の電極付きの半導体装置および/または多層基板を双方の電極を電気的に接続させるように接合させるための接着剤層として半導体用接着組成物を用いることができる。半導体装置および/または多層基板は1枚のウェハ上や1枚の基板上に複数形成されており、半導体用接着組成物を用いた接合後にダイシングなどにより個片化することで、効率的な生産ができる。接合後に個片化された多層基板はパッケージやモジュール用の基板として好ましく用いることができる。半導体チップや受動部品などは、接合前に状態の半導体装置および/または多層基板に搭載もしくは形成されていてもよいし、接合後に個片化された後に搭載もしくは形成されていてもよい。電気的接合に用いる電極の材質は特に限定されず、Au、Au/Sn、銅、ハンダなどをもちいることができる。電極の形状は、接合に適したものであればとくに限定されず、バンプ、ボール、平面パッドなどを好ましく用いることができる。   As another manufacturing method of a semiconductor device and / or a multilayer substrate using the adhesive composition for a semiconductor of the present invention, there are the following methods. The adhesive composition for a semiconductor can be used as an adhesive layer for joining an individually formed semiconductor device with a pair of electrodes and / or a multilayer substrate so that both electrodes are electrically connected. A plurality of semiconductor devices and / or multi-layer substrates are formed on a single wafer or a single substrate. After bonding using a semiconductor adhesive composition, the semiconductor device and / or multi-layer substrate are separated into individual pieces by dicing or the like for efficient production. Can do. A multilayer substrate separated into pieces after bonding can be preferably used as a substrate for a package or module. A semiconductor chip, a passive component, or the like may be mounted or formed on a semiconductor device and / or a multilayer substrate in a state before bonding, or may be mounted or formed after being separated into pieces after bonding. The material of the electrode used for electrical joining is not particularly limited, and Au, Au / Sn, copper, solder, or the like can be used. The shape of the electrode is not particularly limited as long as it is suitable for bonding, and a bump, a ball, a flat pad, or the like can be preferably used.

以下実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。なお、実施例中の半導体用接着組成物の評価は以下の方法により行った。   Hereinafter, the present invention will be described with reference to examples and the like, but the present invention is not limited to these examples. In addition, evaluation of the adhesive composition for semiconductor in an Example was performed with the following method.

合成例1 有機溶剤可溶性ポリイミドAの合成
乾燥窒素気流下、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(以下、BAHFとする)24.54g(0.067モル)、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン(以下、SiDAとする)4.97g(0.02モル)、末端封止剤として、3−アミノフェノール(以下、3−Aphとする)2.18g(0.02モル)をNMP80gに溶解させた。ここにビス(3,4−ジカルボキシフェニル)エーテル二無水物(以下、ODPAとする)31.02g(0.1モル)をNMP20gとともに加えて、20℃で1時間反応させ、次いで50℃で4時間撹拌した。その後、キシレンを15g添加し、水をキシレンとともに共沸させながら、180℃で5時間攪拌した。攪拌終了後、溶液を水3Lに投入して白色沈殿したポリマーを得た。この沈殿をろ過して回収し、水で3回洗浄した後、真空乾燥機を用いて80℃、20時間乾燥した。得られたポリマー固体の赤外吸収スペクトルを測定したところ、1780cm−1付近、1377cm−1付近にポリイミドに起因するイミド構造の吸収ピークが検出された。このようにしてエポキシ基と反応可能な官能基を有し、一般式(1)で表される構造が7.4重量%含まれる有機溶剤可溶性ポリイミドAを得た。得られたポリマー4gにテトラヒドロフラン6gを加え、23℃で撹拌したところ溶解した。
Synthesis Example 1 Synthesis of Organic Solvent-Soluble Polyimide A 24.54 g (0.067 mol) of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (hereinafter referred to as BAHF) under a dry nitrogen stream 1.97 g (0.02 mol) of 1,3-bis (3-aminopropyl) tetramethyldisiloxane (hereinafter referred to as SiDA), 3-aminophenol (hereinafter referred to as 3-Aph) as a terminal blocking agent 2.18 g (0.02 mol) was dissolved in 80 g of NMP. Here, 31.02 g (0.1 mol) of bis (3,4-dicarboxyphenyl) ether dianhydride (hereinafter referred to as ODPA) was added together with 20 g of NMP and reacted at 20 ° C. for 1 hour, and then at 50 ° C. Stir for 4 hours. Thereafter, 15 g of xylene was added, and the mixture was stirred at 180 ° C. for 5 hours while water was azeotroped with xylene. After the stirring was completed, the solution was poured into 3 L of water to obtain a white precipitated polymer. The precipitate was collected by filtration, washed with water three times, and then dried at 80 ° C. for 20 hours using a vacuum dryer. When the resulting measuring the infrared absorption spectrum of the polymer solids, 1780 cm around -1, absorption peaks of an imide structure caused by a polyimide was detected near 1377 cm -1. Thus, an organic solvent-soluble polyimide A having a functional group capable of reacting with an epoxy group and containing 7.4% by weight of the structure represented by the general formula (1) was obtained. 6 g of tetrahydrofuran was added to 4 g of the obtained polymer, and the mixture was stirred at 23 ° C. and dissolved.

合成例2 有機溶剤可溶性ポリイミドBの合成
乾燥窒素気流下、BAHF18.31g(0.05モル)、SiDA7.46g(0.03モル)、末端封止剤として、3−Aph4.37g(0.04モル)をNMP150gに溶解させた。ここに2,2−ビス(4−ジカルボキシフェノキシ)フェニル)プロパン二無水物(以下、BSAAとする)52g(0.1モル)をNMP30gとともに加えて、20℃で1時間反応させ、次いで50℃で4時間撹拌した。その後、180℃で5時間攪拌した。攪拌終了後、溶液を水3Lに投入して白色沈殿したポリマーを得た。この沈殿をろ過して回収し、水で3回洗浄した後、真空乾燥機を用いて80℃、20時間乾燥した。得られたポリマー固体の赤外吸収スペクトルを測定したところ、1780cm−1付近、1377cm−1付近にポリイミドに起因するイミド構造の吸収ピークが検出された。このようにしてエポキシ基と反応可能な官能基を有し、一般式(1)で表される構造が8.3重量%含まれる有機溶剤可溶性ポリイミドBを得た。得られたポリマー4gにテトラヒドロフラン6gを加え、23℃で撹拌したところ溶解した。
Synthesis example 2 Synthesis | combination of organic-solvent soluble polyimide B Under dry nitrogen stream, BAHF18.31g (0.05mol), SiDA 7.46g (0.03mol), 3-Aph 4.37g (0.04) as terminal blocker Mol) was dissolved in 150 g of NMP. To this, 52 g (0.1 mol) of 2,2-bis (4-dicarboxyphenoxy) phenyl) propane dianhydride (hereinafter referred to as BSAA) was added together with 30 g of NMP and reacted at 20 ° C. for 1 hour. Stir at 4 ° C. for 4 hours. Then, it stirred at 180 degreeC for 5 hours. After the stirring was completed, the solution was poured into 3 L of water to obtain a white precipitated polymer. The precipitate was collected by filtration, washed with water three times, and then dried at 80 ° C. for 20 hours using a vacuum dryer. When the resulting measuring the infrared absorption spectrum of the polymer solids, 1780 cm around -1, absorption peaks of an imide structure caused by a polyimide was detected near 1377 cm -1. Thus, an organic solvent-soluble polyimide B having a functional group capable of reacting with an epoxy group and containing 8.3% by weight of the structure represented by the general formula (1) was obtained. 6 g of tetrahydrofuran was added to 4 g of the obtained polymer, and the mixture was stirred at 23 ° C. and dissolved.

合成例3 有機溶剤可溶性ポリイミドCの合成
乾燥窒素気流下、BAHF14.65g(0.04モル)、SiDA9.96g(0.04モル)をNMP130gに溶解させた。ここに2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(以下、6FDAとする)44.42g(0.1モル)をNMP20gとともに加えて、20℃で1時間撹拌し、次いで50℃で2時間撹拌した。ここに末端封止剤として3−Aph3.27g(0.04モル)を加え、50℃で2時間攪拌後、180℃で5時間攪拌した。攪拌終了後、溶液を水3Lに投入して白色沈殿したポリマーを得た。この沈殿をろ過して回収し、水で3回洗浄した後、真空乾燥機を用いて80℃、20時間乾燥した。得られたポリマー固体の赤外吸収スペクトルを測定したところ、1780cm−1付近、1377cm−1付近にポリイミドに起因するイミド構造の吸収ピークが検出された。このようにしてエポキシ基と反応可能な官能基を有し、一般式(1)で表される構造が12.4重量%含まれる有機溶剤可溶性ポリイミドCを得た。得られたポリマー4gにテトラヒドロフラン6gを加え、23℃で撹拌したところ溶解した。
Synthesis Example 3 Synthesis of Organic Solvent-Soluble Polyimide C Under a dry nitrogen stream, 14.65 g (0.04 mol) of BAHF and 9.96 g (0.04 mol) of SiDA were dissolved in 130 g of NMP. 44.42 g (0.1 mol) of 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (hereinafter referred to as 6FDA) was added thereto together with 20 g of NMP, followed by stirring at 20 ° C. for 1 hour. And then stirred at 50 ° C. for 2 hours. 3-Aph 3.27g (0.04mol) was added here as terminal blocker, and after stirring at 50 degreeC for 2 hours, it stirred at 180 degreeC for 5 hours. After the stirring was completed, the solution was poured into 3 L of water to obtain a white precipitated polymer. The precipitate was collected by filtration, washed with water three times, and then dried at 80 ° C. for 20 hours using a vacuum dryer. When the resulting measuring the infrared absorption spectrum of the polymer solids, 1780 cm around -1, absorption peaks of an imide structure caused by a polyimide was detected near 1377 cm -1. Thus, an organic solvent-soluble polyimide C having a functional group capable of reacting with an epoxy group and containing 12.4% by weight of the structure represented by the general formula (1) was obtained. 6 g of tetrahydrofuran was added to 4 g of the obtained polymer, and the mixture was stirred at 23 ° C. and dissolved.

合成例4 有機溶剤可溶性ポリイミドDの合成
乾燥窒素気流下、BAHF29.3g(0.08モル)、SiDA4.97g(0.02モル)をNMP130gに溶解させた。ここにODPA28.54g(0.092モル)をNMP20gとともに加えて、20℃で1時間撹拌し、次いで50℃で2時間撹拌した。ここに末端封止剤として4−ヒドロキシフタル酸無水物3.28g(0.02モル)を加え、50℃で2時間攪拌した。その後、キシレンを15g添加し、水をキシレンとともに共沸させながら、180℃で5時間攪拌した。攪拌終了後、溶液を水3Lに投入して白色沈殿したポリマーを得た。この沈殿をろ過して回収し、水で3回洗浄した後、真空乾燥機を用いて80℃、20時間乾燥した。得られたポリマー固体の赤外吸収スペクトルを測定したところ、1780cm−1付近、1377cm−1付近にポリイミドに起因するイミド構造の吸収ピークが検出された。このようにしてエポキシ基と反応可能な官能基を有し、一般式(1)で表される構造が14重量%含まれる有機溶剤可溶性ポリイミドDを得た。得られたポリマー4gにテトラヒドロフラン6gを加え、23℃で撹拌したところ溶解した。
Synthesis Example 4 Synthesis of Organic Solvent-Soluble Polyimide D Under a dry nitrogen stream, 29.3 g (0.08 mol) of BAHF and 4.97 g (0.02 mol) of SiDA were dissolved in 130 g of NMP. 28.54 g (0.092 mol) of ODPA was added thereto together with 20 g of NMP, and the mixture was stirred at 20 ° C. for 1 hour, and then stirred at 50 ° C. for 2 hours. 4-hydroxyphthalic anhydride 3.28g (0.02mol) was added here as terminal blocker, and it stirred at 50 degreeC for 2 hours. Thereafter, 15 g of xylene was added, and the mixture was stirred at 180 ° C. for 5 hours while water was azeotroped with xylene. After the stirring was completed, the solution was poured into 3 L of water to obtain a white precipitated polymer. The precipitate was collected by filtration, washed with water three times, and then dried at 80 ° C. for 20 hours using a vacuum dryer. When the resulting measuring the infrared absorption spectrum of the polymer solids, 1780 cm around -1, absorption peaks of an imide structure caused by a polyimide was detected near 1377 cm -1. Thus, an organic solvent-soluble polyimide D having a functional group capable of reacting with an epoxy group and containing 14% by weight of the structure represented by the general formula (1) was obtained. 6 g of tetrahydrofuran was added to 4 g of the obtained polymer, and the mixture was stirred at 23 ° C. and dissolved.

合成例5 有機溶剤可溶性ポリイミドEの合成
乾燥窒素気流下、BAHF29.3g(0.08モル)、SiDA4.97g(0.02モル)をNMP130gに溶解させた。ここにODPA28.54g(0.092モル)をNMP20gとともに加えて、20℃で1時間撹拌し、次いで50℃で2時間撹拌した。ここに末端封止剤として4−ニトロフェニルサリチル酸5.18g(0.02モル)を加え、50℃で2時間攪拌した。その後、キシレンを15g添加し、水をキシレンとともに共沸させながら、180℃で5時間攪拌した。攪拌終了後、溶液を水3Lに投入して白色沈殿したポリマーを得た。この沈殿をろ過して回収し、水で3回洗浄した後、真空乾燥機を用いて80℃、20時間乾燥した。得られたポリマー固体の赤外吸収スペクトルを測定したところ、1780cm−1付近、1377cm−1付近にポリイミドに起因するイミド構造の吸収ピークが検出された。このようにしてエポキシ基と反応可能な官能基を有し、一般式(1)で表される構造が14.2重量%含まれる有機溶剤可溶性ポリイミドEを得た。得られたポリマー4gにテトラヒドロフラン6gを加え、23℃で撹拌したところ溶解した。
Synthesis Example 5 Synthesis of Organic Solvent-Soluble Polyimide E Under a dry nitrogen stream, 29.3 g (0.08 mol) of BAHF and 4.97 g (0.02 mol) of SiDA were dissolved in 130 g of NMP. 28.54 g (0.092 mol) of ODPA was added thereto together with 20 g of NMP, and the mixture was stirred at 20 ° C. for 1 hour, and then stirred at 50 ° C. for 2 hours. 4-nitrophenyl salicylic acid 5.18g (0.02mol) was added here as terminal blocker, and it stirred at 50 degreeC for 2 hours. Thereafter, 15 g of xylene was added, and the mixture was stirred at 180 ° C. for 5 hours while water was azeotroped with xylene. After the stirring was completed, the solution was poured into 3 L of water to obtain a white precipitated polymer. The precipitate was collected by filtration, washed with water three times, and then dried at 80 ° C. for 20 hours using a vacuum dryer. When the resulting measuring the infrared absorption spectrum of the polymer solids, 1780 cm around -1, absorption peaks of an imide structure caused by a polyimide was detected near 1377 cm -1. Thus, an organic solvent-soluble polyimide E having a functional group capable of reacting with an epoxy group and containing 14.2% by weight of the structure represented by the general formula (1) was obtained. 6 g of tetrahydrofuran was added to 4 g of the obtained polymer, and the mixture was stirred at 23 ° C. and dissolved.

合成例6 有機溶剤可溶性ポリイミドFの合成
BAHF18.3g(0.05モル)をアセトン100ml、プロピレンオキシド17.4g(0.3モル)に溶解させ、−15℃に冷却した。ここに4−ニトロベンゾイルクロリド20.4g(0.11モル)をアセトン100mlに溶解させた溶液を滴下した。滴下終了後、−15℃で4時間撹拌し、その後室温に戻した。析出した白色固体をろ別し、50℃で真空乾燥した。
Synthesis Example 6 Synthesis of Organic Solvent-soluble Polyimide F 18.3 g (0.05 mol) of BAHF was dissolved in 100 ml of acetone and 17.4 g (0.3 mol) of propylene oxide, and cooled to −15 ° C. A solution prepared by dissolving 20.4 g (0.11 mol) of 4-nitrobenzoyl chloride in 100 ml of acetone was added dropwise thereto. After completion of dropping, the mixture was stirred at −15 ° C. for 4 hours and then returned to room temperature. The precipitated white solid was filtered off and vacuum dried at 50 ° C.

固体30gを300mlのステンレスオートクレーブに入れ、メチルセルソルブ250mlに分散させ、5%パラジウム−炭素を2g加えた。ここに水素を風船で導入して、還元反応を室温で行った。約2時間後、風船がこれ以上しぼまないことを確認して反応を終了させた。反応終了後、ろ過して触媒であるパラジウム化合物を除き、ロータリーエバポレーターで濃縮し、ヒドロキシル基含有ジアミン化合物(II)を得た。得られた固体をそのまま反応に使用した。   30 g of the solid was placed in a 300 ml stainless steel autoclave, dispersed in 250 ml of methyl cellosolve, and 2 g of 5% palladium-carbon was added. Hydrogen was introduced here with a balloon and the reduction reaction was carried out at room temperature. After about 2 hours, the reaction was terminated by confirming that the balloons did not squeeze any more. After completion of the reaction, the palladium compound as a catalyst was removed by filtration and concentrated by a rotary evaporator to obtain a hydroxyl group-containing diamine compound (II). The obtained solid was used for the reaction as it was.

Figure 0005040252
Figure 0005040252

乾燥窒素気流下、BAHF24.54g(0.067モル)、ヒドロキシル基含ジアミン化合物(II)6.04g(0.01モル)、SiDA2.49g(0.01モル)をNMP250gに溶解させた。ここに2,2−ビス(3,4−ジカルボキシフェニル)エチレン二無水物(以下、TMEG−100とする)41.03g(0.1モル)、末端封止剤として4−アミノチオフェノール(東京化成工業(株)製)4.45g(0.03モル)を加えて、60℃で6時間撹拌した。その後、キシレンを15g添加し、キシレンとともに反応水を共沸させながら、150℃で5時間攪拌した。攪拌終了後、溶液を水2Lに投入して白色沈殿したポリマーを得た。この沈殿をろ過して回収し、水で3回洗浄した後、真空乾燥機を用いて80℃、20時間乾燥した。得られたポリマー固体の赤外吸収スペクトルを測定したところ、1780cm−1付近、1377cm−1付近にポリイミドに起因するイミド構造の吸収ピークが検出された。このようにしてエポキシ基と反応可能な官能基を有し、一般式(1)で表される構造が2.9重量%含まれる有機溶剤可溶性ポリイミドFを得た。得られたポリマー4gにテトラヒドロフラン6gを加え、23℃で撹拌したところ溶解した。 Under a dry nitrogen stream, 24.54 g (0.067 mol) of BAHF, 6.04 g (0.01 mol) of a hydroxyl group-containing diamine compound (II), and 2.49 g (0.01 mol) of SiDA were dissolved in 250 g of NMP. Here, 41.03 g (0.1 mol) of 2,2-bis (3,4-dicarboxyphenyl) ethylene dianhydride (hereinafter referred to as TMEG-100), 4-aminothiophenol (terminal blocker) 4.45 g (0.03 mol) (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at 60 ° C. for 6 hours. Thereafter, 15 g of xylene was added, and the mixture was stirred at 150 ° C. for 5 hours while azeotropically reacting with xylene. After the stirring was completed, the solution was poured into 2 L of water to obtain a white precipitated polymer. The precipitate was collected by filtration, washed with water three times, and then dried at 80 ° C. for 20 hours using a vacuum dryer. When the resulting measuring the infrared absorption spectrum of the polymer solids, 1780 cm around -1, absorption peaks of an imide structure caused by a polyimide was detected near 1377 cm -1. Thus, an organic solvent-soluble polyimide F having a functional group capable of reacting with an epoxy group and containing 2.9% by weight of the structure represented by the general formula (1) was obtained. 6 g of tetrahydrofuran was added to 4 g of the obtained polymer, and the mixture was stirred at 23 ° C. and dissolved.

合成例7 有機溶剤可溶性ポリイミドGの合成
乾燥窒素気流下、BAHF18.3g(0.05モル)とアリルグリシジルエーテル34.2g(0.3モル)をガンマブチロラクトン(GBL)100gに溶解させ、−15℃に冷却した。ここにGBL50gに溶解させた無水トリメリット酸クロリド22.1g(0.11モル)を反応液の温度が0℃を越えないように滴下した。滴下終了後、0℃で4時間撹拌した。この溶液をロータリーエバポレーターで濃縮して、トルエン1lに投入してヒドロキシル基含有酸無水物(I)を得た。
Synthesis Example 7 Synthesis of Organic Solvent Soluble Polyimide G Under dry nitrogen flow, 18.3 g (0.05 mol) of BAHF and 34.2 g (0.3 mol) of allyl glycidyl ether were dissolved in 100 g of gamma butyrolactone (GBL), and −15 Cooled to ° C. To this, 22.1 g (0.11 mol) of trimellitic anhydride chloride dissolved in 50 g of GBL was added dropwise so that the temperature of the reaction solution did not exceed 0 ° C. After completion of dropping, the mixture was stirred at 0 ° C. for 4 hours. This solution was concentrated with a rotary evaporator and charged into 1 liter of toluene to obtain a hydroxyl group-containing acid anhydride (I).

Figure 0005040252
Figure 0005040252

乾燥窒素気流下、BAHF30.03g(0.082モル)、SiDA3.73g(0.015モル)、末端封止剤として、4−アミノチオフェノール(東京化成工業(株)製)4.45g(0.03モル)をNMP100gに溶解させた。ここにヒドロキシル基含有酸無水物(I)71.45g(0.1モル)をNMP30gとともに加えて、20℃で1時間反応させ、次いで50℃で4時間反応させた。その後、180℃で5時間攪拌した。攪拌終了後、溶液を水3lに投入して白色沈殿したポリマーを得た。この沈殿をろ過して回収し、水で3回洗浄した後、真空乾燥機を用いて200℃、5時間乾燥した。得られたポリマー固体の赤外吸収スペクトルを測定したところ、1780cm−1付近、1377cm−1付近にポリイミドに起因するイミド構造の吸収ピークが検出された。このようにしてエポキシ基と反応可能な官能基を有し、一般式(1)で表される構造が3重量%含まれる有機溶剤可溶性ポリイミドGを得た。得られたポリマー4gにテトラヒドロフラン6gを加え、23℃で撹拌したところ溶解した。 Under a dry nitrogen stream, BAHF 30.03 g (0.082 mol), SiDA 3.73 g (0.015 mol), and 4-aminothiophenol (manufactured by Tokyo Chemical Industry Co., Ltd.) 4.45 g (0 0.03 mol) was dissolved in 100 g of NMP. To this, 71.45 g (0.1 mol) of hydroxyl group-containing acid anhydride (I) was added together with 30 g of NMP and reacted at 20 ° C. for 1 hour, and then reacted at 50 ° C. for 4 hours. Then, it stirred at 180 degreeC for 5 hours. After the completion of stirring, the solution was poured into 3 l of water to obtain a white precipitated polymer. The precipitate was collected by filtration, washed three times with water, and then dried at 200 ° C. for 5 hours using a vacuum dryer. When the resulting measuring the infrared absorption spectrum of the polymer solids, 1780 cm around -1, absorption peaks of an imide structure caused by a polyimide was detected near 1377 cm -1. Thus, an organic solvent-soluble polyimide G having a functional group capable of reacting with an epoxy group and containing 3% by weight of the structure represented by the general formula (1) was obtained. 6 g of tetrahydrofuran was added to 4 g of the obtained polymer, and the mixture was stirred at 23 ° C. and dissolved.

合成例8 有機溶剤可溶性ポリイミドHの合成
乾燥窒素気流下、BAHF25.64g(0.07モル)、SiDA4.97g(0.02モル)、末端封止剤として、3−Aph2.18g(0.02モル)をNMP150gに溶解させた。ここにODPA15.51g(0.05モル)、ビフェニルテトラカルボン酸二無水物(BPDA)14.71g(0.05モル)をNMP30gとともに加えて、20℃で1時間反応させ、次いで50℃で4時間反応させた。その後、180℃で5時間攪拌した。攪拌終了後、溶液を水3Lに投入して白色沈殿したポリマーを得た。この沈殿をろ過して回収し、水で3回洗浄した後、真空乾燥機を用いて80℃、20時間乾燥した。得られたポリマー固体の赤外吸収スペクトルを測定したところ、1780cm−1付近、1377cm−1付近にポリイミドに起因するイミド構造の吸収ピークが検出された。このようにしてエポキシ基と反応可能な官能基を有し、一般式(1)で表される構造が7.3重量%含まれる有機溶剤可溶性ポリイミドHを得た。得られたポリマー4gにテトラヒドロフラン6gを加え、23℃で撹拌したところ溶解した。
Synthesis Example 8 Synthesis of Organic Solvent-Soluble Polyimide H Under a dry nitrogen stream, BAHF 25.64 g (0.07 mol), SiDA 4.97 g (0.02 mol), and 3-Aph 2.18 g (0.02) as an end-capping agent Mol) was dissolved in 150 g of NMP. To this, 15.51 g (0.05 mol) of ODPA and 14.71 g (0.05 mol) of biphenyltetracarboxylic dianhydride (BPDA) were added together with 30 g of NMP and reacted at 20 ° C. for 1 hour. Reacted for hours. Then, it stirred at 180 degreeC for 5 hours. After the stirring was completed, the solution was poured into 3 L of water to obtain a white precipitated polymer. The precipitate was collected by filtration, washed with water three times, and then dried at 80 ° C. for 20 hours using a vacuum dryer. When the resulting measuring the infrared absorption spectrum of the polymer solids, 1780 cm around -1, absorption peaks of an imide structure caused by a polyimide was detected near 1377 cm -1. In this way, an organic solvent-soluble polyimide H having a functional group capable of reacting with an epoxy group and containing 7.3% by weight of the structure represented by the general formula (1) was obtained. 6 g of tetrahydrofuran was added to 4 g of the obtained polymer, and the mixture was stirred at 23 ° C. and dissolved.

合成例9 有機溶剤可溶性ポリイミドIの合成
乾燥窒素気流下、BAHF14.65g(0.04モル)、SiDA12.42g(0.05モル)、末端封止剤として、3−Aph2.18g(0.02モル)をNMP80gに溶解させた。ここにODPA31.02g(0.1モル)をNMP20gとともに加えて、20℃で1時間反応させ、次いで50℃で4時間撹拌した。その後、キシレンを15g添加し、水をキシレンとともに共沸させながら、180℃で5時間攪拌した。攪拌終了後、溶液を水3Lに投入して白色沈殿したポリマーを得た。この沈殿をろ過して回収し、水で3回洗浄した後、真空乾燥機を用いて80℃、20時間乾燥した。得られたポリマー固体の赤外吸収スペクトルを測定したところ、1780cm−1付近、1377cm−1付近にポリイミドに起因するイミド構造の吸収ピークが検出された。このようにしてエポキシ基と反応可能な官能基を有し、一般式(1)で表される構造が19.1重量%含まれる有機溶剤可溶性ポリイミドIを得た。得られたポリマー4gにテトラヒドロフラン6gを加え、23℃で撹拌したところ溶解した。
Synthesis Example 9 Synthesis of Organic Solvent-Soluble Polyimide I Under a dry nitrogen stream, BAHF 14.65 g (0.04 mol), SiDA 12.42 g (0.05 mol), and 3-Aph 2.18 g (0.02) as a terminal blocking agent Mol) was dissolved in 80 g of NMP. To this, 31.02 g (0.1 mol) of ODPA was added together with 20 g of NMP, reacted at 20 ° C. for 1 hour, and then stirred at 50 ° C. for 4 hours. Thereafter, 15 g of xylene was added, and the mixture was stirred at 180 ° C. for 5 hours while water was azeotroped with xylene. After the stirring was completed, the solution was poured into 3 L of water to obtain a white precipitated polymer. The precipitate was collected by filtration, washed with water three times, and then dried at 80 ° C. for 20 hours using a vacuum dryer. When the resulting measuring the infrared absorption spectrum of the polymer solids, 1780 cm around -1, absorption peaks of an imide structure caused by a polyimide was detected near 1377 cm -1. In this way, an organic solvent-soluble polyimide I having a functional group capable of reacting with an epoxy group and containing 19.1% by weight of the structure represented by the general formula (1) was obtained. 6 g of tetrahydrofuran was added to 4 g of the obtained polymer, and the mixture was stirred at 23 ° C. and dissolved.

合成例10 有機溶剤可溶性ポリイミドJの合成
乾燥窒素気流下、BAHF28.2g(0.077モル)、SiDA0.75g(0.003モル)、末端封止剤として、3−Aph4.37g(0.04モル)をNMP80gに溶解させた。ここにODPA31.02g(0.1モル)をNMP20gとともに加えて、20℃で1時間反応させ、次いで50℃で4時間撹拌した。その後、キシレンを15g添加し、水をキシレンとともに共沸させながら、180℃で5時間攪拌した。攪拌終了後、溶液を水3Lに投入して白色沈殿したポリマーを得た。この沈殿をろ過して回収し、水で3回洗浄した後、真空乾燥機を用いて80℃、で、20時間乾燥した。得られたポリマー固体の赤外吸収スペクトルを測定したところ、1780cm−1付近、1377cm−1付近にポリイミドに起因するイミド構造の吸収ピークが検出された。このようにしてエポキシ基と反応可能な官能基を有し、一般式(1)で表される構造が1.1重量%含まれる有機溶剤可溶性ポリイミドJを得た。得られたポリマー2gにテトラヒドロフラン6gを加え、23℃で撹拌したところ溶解した。
Synthesis Example 10 Synthesis of Organic Solvent-Soluble Polyimide J Under a dry nitrogen stream, BAHF 28.2 g (0.077 mol), SiDA 0.75 g (0.003 mol), and 3-Aph 4.37 g (0.04) as an end-capping agent Mol) was dissolved in 80 g of NMP. To this, 31.02 g (0.1 mol) of ODPA was added together with 20 g of NMP, reacted at 20 ° C. for 1 hour, and then stirred at 50 ° C. for 4 hours. Thereafter, 15 g of xylene was added, and the mixture was stirred at 180 ° C. for 5 hours while water was azeotroped with xylene. After the stirring was completed, the solution was poured into 3 L of water to obtain a white precipitated polymer. The precipitate was collected by filtration, washed three times with water, and then dried at 80 ° C. for 20 hours using a vacuum dryer. When the resulting measuring the infrared absorption spectrum of the polymer solids, 1780 cm around -1, absorption peaks of an imide structure caused by a polyimide was detected near 1377 cm -1. Thus, an organic solvent-soluble polyimide J having a functional group capable of reacting with an epoxy group and containing 1.1% by weight of the structure represented by the general formula (1) was obtained. 6 g of tetrahydrofuran was added to 2 g of the obtained polymer, and the mixture was stirred at 23 ° C. and dissolved.

分散液作製例1
チタン酸バリウム(堺化学工業(株)製、BT−05:平均粒子径0.5μm)100重量部、メチルエチルケトン18重量部、リン酸化合物(リン酸エステル骨格を有する酸基を持つコポリマー、ビックケミー・ジャパン(株)製、BYK−W9010)1重量部をホモジナイザーを用いて混練し、分散液A−1を得た。
Dispersion preparation example 1
100 parts by weight of barium titanate (manufactured by Sakai Chemical Industry Co., Ltd., BT-05: average particle size 0.5 μm), 18 parts by weight of methyl ethyl ketone, phosphoric acid compound (copolymer having an acid group having a phosphate ester skeleton, One part by weight of BYK-W9010 manufactured by Japan Co., Ltd. was kneaded using a homogenizer to obtain dispersion A-1.

分散液作製例2
チタン酸バリウム(堺化学工業(株)製、BT−05:平均粒子径0.5μm)124.6重量部、チタン酸バリウム(Cabot,Inc.社製、K−Plus16:平均粒子径0.06μm)43.8重量部、メチルエチルケトン30重量部、リン酸化合物(リン酸エステル骨格を有する酸基を持つコポリマー、ビックケミー・ジャパン(株)製、BYK−W9010)1.7重量部をホモジナイザーを用いて混練し、分散液A−2を得た。
Dispersion preparation example 2
Barium titanate (manufactured by Sakai Chemical Industry Co., Ltd., BT-05: average particle size 0.5 μm) 124.6 parts by weight, barium titanate (manufactured by Cabot, Inc., K-Plus16: average particle size 0.06 μm) ) 43.8 parts by weight, 30 parts by weight of methyl ethyl ketone, 1.7 parts by weight of a phosphoric acid compound (copolymer having an acid group having a phosphate ester skeleton, BYK-W9010, manufactured by BYK-W9010) using a homogenizer The mixture was kneaded to obtain dispersion A-2.

その他に実施例、比較例で用いた各材料は以下のとおりである。
固形エポキシ化合物
エピコート157S70(商品名、エポキシ当量:210g/eq、ジャパンエポキシレジン(株)製)
エピコート154(商品名、エポキシ当量:180g/eq、ジャパンエポキシレジン(株)製)
エポトートYH−434L(商品名、エポキシ当量:130g/eq、東都化成(株)製)
エピコート1001(商品名、エポキシ当量:460g/eq、ジャパンエポキシレジン(株)製)。
In addition, each material used by the Example and the comparative example is as follows.
Solid epoxy compound Epicoat 157S70 (trade name, epoxy equivalent: 210 g / eq, manufactured by Japan Epoxy Resins Co., Ltd.)
Epicoat 154 (trade name, epoxy equivalent: 180 g / eq, manufactured by Japan Epoxy Resins Co., Ltd.)
Epototo YH-434L (trade name, epoxy equivalent: 130 g / eq, manufactured by Toto Kasei Co., Ltd.)
Epicoat 1001 (trade name, epoxy equivalent: 460 g / eq, manufactured by Japan Epoxy Resin Co., Ltd.).

液状エポキシ化合物
エピコート828(商品名、エポキシ当量187g/eq、ジャパンエポキシレジン(株)製)
エピコート1750(商品名、エポキシ当量158g/eq、ジャパンエポキシレジン(株)製)
エピクロンHP−4032(商品名、エポキシ当量152g/eq、大日本インキ化学工業(株)製)
エピコート152(商品名、エポキシ当量175g/eq、ジャパンエポキシレジン(株)製)。
Liquid epoxy compound epicoat 828 (trade name, epoxy equivalent 187 g / eq, manufactured by Japan Epoxy Resins Co., Ltd.)
Epicoat 1750 (trade name, epoxy equivalent 158 g / eq, manufactured by Japan Epoxy Resins Co., Ltd.)
Epicron HP-4032 (trade name, epoxy equivalent 152 g / eq, manufactured by Dainippon Ink & Chemicals, Inc.)
Epicoat 152 (trade name, epoxy equivalent 175 g / eq, manufactured by Japan Epoxy Resin Co., Ltd.).

硬化促進剤
2−フェニルイミダゾール(商品名2PZ、四国化成工業(株)製、非水溶性)
2−エチル−4−メチルイミダゾール(商品名2E4MZ、四国化成工業(株)製、水溶性)
カルボキシル化NBR
PNR−1HC(商品名、JSR(株)製)
溶剤:メチルエチルケトン。
Curing accelerator 2-phenylimidazole (trade name 2PZ, manufactured by Shikoku Chemicals Co., Ltd., water-insoluble)
2-Ethyl-4-methylimidazole (trade name 2E4MZ, manufactured by Shikoku Kasei Kogyo Co., Ltd., water-soluble)
Carboxylated NBR
PNR-1HC (trade name, manufactured by JSR Corporation)
Solvent: methyl ethyl ketone.

実施例1〜16および比較例1〜13
実施例1〜16および比較例1〜13の各成分について表1、2に示す配合比になるよう樹脂成分、溶剤、分散液をポリエチレン製の容積500mlのサンプル瓶に入れて、ボールミル架台上でボールを入れず分散液と樹脂溶液のみを入れて1時間、200rpmで回転させて行う回転混合を行い、半導体用接着組成物を作製した。
Examples 1-16 and Comparative Examples 1-13
For each component of Examples 1 to 16 and Comparative Examples 1 to 13, the resin component, the solvent, and the dispersion were placed in a polyethylene 500 ml sample bottle so as to have the blending ratios shown in Tables 1 and 2, and on the ball mill stand. Rotating mixing was performed by adding only the dispersion and the resin solution without adding balls and rotating at 200 rpm for 1 hour to prepare an adhesive composition for semiconductor.

表1、2の組成比で作製した半導体用接着組成物を、スリットダイコーター(塗工機)を用いて、シリコーン系の離型処理を行った厚さ38μmのポリエチレンテレフタレートフィルム上に塗布し、100℃で4分間乾燥を行った。乾燥後の半導体用接着組成物上にプラスチックフィルムとして厚さ15μmのポリプロピレンフィルムを加熱ロール温度40℃でラミネートし、直径7.6cmの紙管にロール状に巻き取り、半導体用接着組成物層の厚さが30μmである半導体用接着シート材料(ポリプロピレンフィルム、半導体用接着組成物層、ポリエチレンテレフタレートフィルムの3層構造)を得た。   Using the slit die coater (coating machine), the adhesive composition for semiconductors produced with the composition ratios shown in Tables 1 and 2 was applied onto a 38 μm thick polyethylene terephthalate film subjected to a silicone-based mold release treatment. Drying was performed at 100 ° C. for 4 minutes. A polypropylene film having a thickness of 15 μm is laminated as a plastic film on the adhesive composition for semiconductor after drying at a heating roll temperature of 40 ° C. and wound into a paper tube having a diameter of 7.6 cm in a roll shape. An adhesive sheet material for semiconductor having a thickness of 30 μm (a three-layer structure of a polypropylene film, an adhesive composition layer for semiconductor, and a polyethylene terephthalate film) was obtained.

得られたプラスチックフィルムと半導体用接着組成物層の接着力測定は以下のようにして行った。半導体用接着シート材料(ポリプロピレンフィルム、半導体用接着組成物層、ポリエチレンテレフタレートフィルムの3層構造)を幅25mm、長さ300mmに切り取り、厚さ2mmのステンレス板に両面粘着テープを用いて、ポリエチレンテレフタレートフィルム面で固定し、上記のポリプロピレンフィルム(軽剥離側プラスチックフィルム)を半導体用接着組成物層から角度90度の方向に200mm/分の速度で剥がし、ポリプロピレンフィルムと半導体用接着組成物層の間の接着力(N/m)を測定した。次にポリプロピレンフィルムを除去した後の半導体用接着シート材料(ポリエチレンテレフタレートフィルと半導体接着組成物層の2層構造)を幅25mm、長さ300mmに切り取り、両面粘着テープを用いて厚さ2mmのステンレス板上に、半導体接着組成物面で固定し、上記のポリエチレンテレフタレートフィルム(重剥離側プラスチックフィルム)を半導体用接着組成物層から角度90度の方向に200mm/分の速度で剥がし、ポリエチレンテレフタレートフィルムと半導体用接着組成物の間の接着力(N/m)を測定した。結果を表3、4に示した。ポリプロピレンフィルムおよびポリエチレンテレフタレートフィルムの引き剥がしおよび接着力測定には、万能試験機(オリエンテック(株)製、RTM−100)を用いた。   The adhesion strength of the obtained plastic film and the adhesive composition layer for semiconductor was measured as follows. Adhesive sheet material for semiconductor (3-layer structure of polypropylene film, semiconductor adhesive composition layer, polyethylene terephthalate film) is cut to a width of 25 mm and a length of 300 mm, using a double-sided adhesive tape on a 2 mm thick stainless steel plate, polyethylene terephthalate The film is fixed on the surface, and the above-mentioned polypropylene film (lightly peeled side plastic film) is peeled from the semiconductor adhesive composition layer at an angle of 90 degrees at a speed of 200 mm / min, between the polypropylene film and the semiconductor adhesive composition layer. The adhesive strength (N / m) of was measured. Next, the adhesive sheet material for semiconductor (two-layer structure of polyethylene terephthalate fill and semiconductor adhesive composition layer) after removing the polypropylene film is cut out to a width of 25 mm and a length of 300 mm, and a stainless steel having a thickness of 2 mm using a double-sided adhesive tape. The polyethylene terephthalate film is fixed on the surface of the semiconductor adhesive composition, and the polyethylene terephthalate film (heavy release side plastic film) is peeled off from the semiconductor adhesive composition layer at an angle of 90 degrees at a rate of 200 mm / min. The adhesive force (N / m) between the adhesive composition for semiconductors was measured. The results are shown in Tables 3 and 4. A universal tester (Orientec Co., Ltd., RTM-100) was used to peel off the polypropylene film and the polyethylene terephthalate film and measure the adhesive strength.

得られた半導体用接着シート材料を用いて次のようにして半導体装置を製造した。   Using the obtained adhesive sheet material for semiconductor, a semiconductor device was manufactured as follows.

1.ラミネート工程および評価
ロール状に巻き取られた半導体用接着シート材料のバンプ電極への埋め込みは、貼り合わせ装置(テクノビジョン(株)製、モデル900S)を用いた。
1. Lamination process and evaluation Embedding of the adhesive sheet material for semiconductor wound in a roll shape into the bump electrode was performed using a bonding apparatus (Technology Vision Co., Ltd., model 900S).

まず、半導体用接着シート材料から軽剥離側プラスチックフィルム(例えば実施例1においてはポリプロピレンフィルム)を除去し、半導体用接着組成物面を露出させた。この時、半導体用接着組成物面の剥離痕の有無、さらには半導体接着組成物の重剥離側プラスチックフィルム(例えば実施例1においてはポリエチレンテレフタレートフィルム)からの剥離、脱落の有無を観察し、それぞれについて、有りの場合を×、無しの場合を○とした。さらに半導体用接着組成物面が外向きになるように曲率半径5mmで曲げたときに、半導体用接着組成物の割れの有無、または重剥離側プラスチックフィルムからの剥がれの有無を観察し、有りの場合を×、無しの場合を○として半導体用接着組成物の可撓性を評価した。   First, the light release side plastic film (for example, polypropylene film in Example 1) was removed from the semiconductor adhesive sheet material to expose the semiconductor adhesive composition surface. At this time, the presence or absence of peeling traces on the surface of the adhesive composition for a semiconductor, and further, the presence or absence of peeling or dropping of the semiconductor adhesive composition from the heavy release side plastic film (for example, polyethylene terephthalate film in Example 1) were observed. In the case of “Yes”, “X” is given when there is, and “O” is given when there is no. Furthermore, when bending with a radius of curvature of 5 mm so that the adhesive composition surface for the semiconductor faces outward, the presence or absence of cracking of the adhesive composition for semiconductor or peeling from the heavy release side plastic film is observed. The flexibility of the adhesive composition for semiconductors was evaluated with x as the case and ◯ as the case without.

次いで、貼り合わせ装置ステージ上に固定された平均高さ20μmのバンプ電極付き(256バンプ/チップ、ピッチ65μm、金メッキバンプ、液晶ドライバ用)シリコンウェハ(直径150mm、厚さ625μm)のバンプ電極に軽剥離側プラスチックフィルムを剥離した後の半導体用接着シート材料の半導体用接着組成物面を温度60℃、貼り合わせ速度50cm/分でラミネートした。この時、ボイドまたは空隙の有無を半導体用接着組成物面および断面を顕微鏡観察(20倍率)し、バンプ電極周辺および半導体用接着組成物とシリコンウェハ界面のボイドまたは空隙の有無を観察し、ボイド、空隙がある場合は×、それ以外は○とした。半導体ウェハ周囲の余分な半導体用接着組成物はカッター刃にて切断し、プラスチックフィルム(例えば実施例1においてはポリエチレンテレフタレートフィルム)を具備したバンプ電極が半導体用接着剤で埋め込まれた半導体ウェハを得た。   Next, a bump electrode with an average height of 20 μm (256 bumps / chip, pitch 65 μm, gold plating bump, for liquid crystal driver) fixed on the bonding apparatus stage is applied to the bump electrode of a silicon wafer (diameter 150 mm, thickness 625 μm). The adhesive composition surface for semiconductor of the adhesive sheet material for semiconductor after peeling off the release side plastic film was laminated at a temperature of 60 ° C. and a bonding speed of 50 cm / min. At this time, the surface and cross section of the adhesive composition for semiconductor were observed with a microscope (20 magnifications) for the presence or absence of voids or voids, and the presence or absence of voids or voids around the bump electrodes and at the interface between the semiconductor adhesive composition and the silicon wafer was observed. In the case where there is a gap, the mark is “X”, and in other cases, “◯” is marked. Excess semiconductor adhesive composition around the semiconductor wafer is cut with a cutter blade to obtain a semiconductor wafer in which bump electrodes equipped with a plastic film (for example, polyethylene terephthalate film in Example 1) are embedded with a semiconductor adhesive. It was.

2.ダイシング工程および評価
前記1.で得られた半導体ウェハのテープフレーム、およびダイシングテープへの固定は、ウェハマウンター装置(テクノビジョン(株)製、FM−1146−DF)を用い、バンプ電極とは反対側のウェハ基板面にダイシングテープ(リンテック(株)製、D−650)を貼り合わせることによって行った。次いで残りのプラスチックフィルムを除去した。ダイシング装置(DISCO(株)製、DFD−6240)の切削ステージ上に、半導体用接着組成物面が上になるようテープフレームを固定し、ダイシングを行った。
2. Dicing process and evaluation To fix the semiconductor wafer obtained in step 1 to the tape frame and dicing tape, use a wafer mounter (FM-1146-DF, manufactured by Technovision Co., Ltd.) and dicing the wafer substrate surface opposite to the bump electrode. A tape (D-650, manufactured by Lintec Corporation) was attached. The remaining plastic film was then removed. The tape frame was fixed on the cutting stage of a dicing apparatus (DSCO-6240, DFD-6240) so that the adhesive composition surface for the semiconductor would be on the surface, and dicing was performed.

以下のような切削条件でダイシングを行った。
ダイシング装置:DFD−6240(DISCO(株)製)
半導体チップサイズ:2.5×16.5mm
ブレード:NBC−ZH 127F−SE 27HCCC
スピンドル回転数:25000rpm
切削速度:50mm/s
切削深さ:ダイシングテープの深さ20μmまで切り込む
カット:ワンパスフルカット
カットモード:ダウンカット
切削水量:3.7L/分
切削水および冷却水:温度23℃、電気伝導度0.5MΩ・cm(超純水に炭酸ガスを注入)。
Dicing was performed under the following cutting conditions.
Dicing machine: DFD-6240 (manufactured by DISCO Corporation)
Semiconductor chip size: 2.5 × 16.5mm
Blade: NBC-ZH 127F-SE 27HCCC
Spindle speed: 25000rpm
Cutting speed: 50 mm / s
Cutting depth: Cut to 20 μm depth of dicing tape Cut: One-pass full cut Cut mode: Down cut Cutting water amount: 3.7 L / min Cutting water and cooling water: Temperature 23 ° C., electric conductivity 0.5 MΩ · cm (extra Carbon dioxide gas is injected into pure water).

バンプ電極が半導体用接着剤組成物で埋め込まれた半導体ウェハをダイシングにより個片チップ化したもの(半導体チップ)について、半導体用接着組成物表面の切削粉の付着の有無、半導体用接着組成物表面の割れ、欠けの有無、ウェハから接着剤層の剥がれの有無を顕微鏡により確認した。切削粉の付着については半導体用接着組成物表面に切削粉の付着のないものを○、付着があるものを×とした。結果は、表3、4の耐汚染性に示した。また、割れ、欠け、ウェハから半導体用接着組成物の剥がれについては、半導体用接着組成物の切削端部から半導体用接着組成物の割れ、欠けおよびウェハからの剥がれの長さが25μm以下の場合を○、25μmを越えるものを×とした。結果は、表3、4の耐傷性に示した。この割れ、欠けおよびウェハからの剥がれの模式図を図1に示した。符号1は組成物が塗布された半導体ウェハの一部であり、発生した接着組成物の割れ・欠け部を符号2、クラックを符号3で示した。また、接着組成物の割れ、欠けの大きさを測定するために、割れ・欠け2やクラック3の大きさは符号4で示した欠損部長さとして表される。また符号5は切削端部を示し、符号6は欠損部の長さでも最大のものを表している。   For semiconductor chips in which bump electrodes are embedded with a semiconductor adhesive composition into individual chips by dicing (semiconductor chips), the presence or absence of cutting powder on the surface of the semiconductor adhesive composition, the surface of the semiconductor adhesive composition The presence or absence of cracks and chips, and the presence or absence of peeling of the adhesive layer from the wafer were confirmed with a microscope. Regarding the adhesion of the cutting powder, the surface where the cutting powder did not adhere to the surface of the adhesive composition for a semiconductor was marked with ◯, and the surface where the cutting powder was adhered was marked with ×. The results are shown in Tables 3 and 4. In addition, with regard to cracking, chipping, and peeling of the semiconductor adhesive composition from the wafer, when the length of the semiconductor adhesive composition cracking, chipping, and peeling from the wafer is 25 μm or less from the cutting edge of the semiconductor adhesive composition ◯, and those exceeding 25 μm were marked with ×. The results are shown in Tables 3 and 4. A schematic diagram of this crack, chipping and peeling from the wafer is shown in FIG. Reference numeral 1 is a part of a semiconductor wafer coated with the composition. Reference numeral 2 indicates a crack / notch portion of the generated adhesive composition, and reference numeral 3 indicates a crack. Further, in order to measure the size of the crack or chip of the adhesive composition, the size of the crack / chip 2 or the crack 3 is expressed as the length of the defective portion indicated by reference numeral 4. Reference numeral 5 indicates a cutting end, and reference numeral 6 indicates the maximum length of the missing portion.

3.フリップチップボンディングおよび評価
前記2.で作製したバンプ電極が半導体用接着組成物で埋め込まれた半導体チップの回路基板への接続は、フリップチップボンディング装置(トライテック(株)製、DB−100)を用いた。また、錫メッキを施した厚さ9μmのパッド電極が付いている、厚さ50μmのポリイミドフィルムを回路基板とした。前記2.で作製した半導体チップのバンプ電極とパッド電極付きポリイミドフィルム回路基板上のパッド電極が重なるように温度200℃、時間20s、圧力0.4MPaの条件でフリップチップボンディングを行った。これによりポリイミドフィルム回路基板上に半導体チップを搭載した半導体付き回路基板を得た。ボンディング終了後、ポリイミドフィルムの半導体チップが実装されていない側から透して、実装した半導体チップの空隙またはボイドの有無を、半導体用接着組成物面および断面を顕微鏡観察(20倍率)することによって、確認した。空隙またはボイドがある場合は×、それ以外は○とした。結果は表の接続性に示した。
3. Flip chip bonding and evaluation A flip chip bonding apparatus (DB-100, manufactured by Tritech Co., Ltd.) was used for connection of the semiconductor chip in which the bump electrode prepared in Step 1 was embedded with the semiconductor adhesive composition to the circuit board. Further, a polyimide film having a thickness of 50 μm with a tin-plated pad electrode having a thickness of 9 μm was used as a circuit board. 2. Flip chip bonding was performed under the conditions of a temperature of 200 ° C., a time of 20 s, and a pressure of 0.4 MPa so that the bump electrode of the semiconductor chip produced in the above and the pad electrode on the polyimide film circuit board with the pad electrode overlapped. As a result, a circuit board with a semiconductor in which a semiconductor chip was mounted on a polyimide film circuit board was obtained. After the bonding is completed, the polyimide film is seen through from the side where the semiconductor chip is not mounted, and the presence or absence of voids or voids in the mounted semiconductor chip is observed by microscopic observation (20 magnifications) of the semiconductor adhesive composition surface and cross section. ,confirmed. When there was a void or a void, it was marked as “X”, otherwise it was marked as “◯”. The results are shown in the table connectivity.

実施例1〜16のフリップチップボンディング後の試料を半導体と回路基板の界面に垂直な方向から顕微鏡観察を行い、半導体チップに対する接着剤のはみ出しを評価したところ、はみ出しが最も大きいところでも0.2mmと非常に小さいものであった。   The samples after flip-chip bonding in Examples 1 to 16 were observed with a microscope from a direction perpendicular to the interface between the semiconductor and the circuit board, and the protrusion of the adhesive to the semiconductor chip was evaluated. And it was very small.

4.導通性評価(初期導通性および熱衝撃試験後)
前記3.で作製した半導体付き回路基板の初期導通性および熱衝撃試験後導通性を評価した。導通性評価はデジタルマルチメーター(アドバンテスト(株)製、TR6847)を用いて測定した。初期導通性は前記3.で作製した半導体付き回路基板20個について評価を行い、一箇所でも導通不良(抵抗値が無限大となり断線している)があれば不良とし、半導体付き回路基板20個あたりの不良品の個数を表2に示した。熱衝撃試験は、前記初期導通性の良品について評価した。半導体付き回路基板を−40℃で5分間維持後、125℃で5分間維持を1サイクルとして、これを1000サイクル行った後の半導体付き回路基板の導通性を評価した。初期導通性試験の良品の20個について評価を行い、一箇所でも導通不良(抵抗値が無限大となり断線している)があれば不良とし、半導体付き回路基板20個あたりの不良品の個数を表2に示した。
4). Conductivity evaluation (after initial continuity and thermal shock test)
3 above. The initial conductivity and the conductivity after the thermal shock test of the circuit board with a semiconductor fabricated in the above were evaluated. The conductivity evaluation was measured using a digital multimeter (manufactured by Advantest Corporation, TR6847). The initial continuity is the same as described in 3. The 20 circuit boards with semiconductor manufactured in the above are evaluated, and if there is a continuity failure (the resistance value is infinite and disconnected) even at one location, it is determined as defective, and the number of defective products per 20 circuit boards with semiconductor is determined. It is shown in Table 2. In the thermal shock test, the non-defective product having the initial conductivity was evaluated. After maintaining the circuit board with a semiconductor at −40 ° C. for 5 minutes and then maintaining at 125 ° C. for 5 minutes as one cycle, the continuity of the circuit board with semiconductor after 1000 cycles was evaluated. Evaluate 20 good products in the initial continuity test, and if there is a continuity failure (resistance value is infinite and disconnected) even at one location, it is considered as defective. The number of defective products per 20 circuit boards with semiconductors It is shown in Table 2.

5.液晶表示テスト
前記4.の熱衝撃試験評価後の半導体付き回路基板を液晶パネルに組み込み半導体装置を作製し、表示テストを行った。表示されたものは○、それ以外の表示されない、またはノイズが発生しているものは×とした。
5. Liquid crystal display test After the thermal shock test evaluation, a circuit board with a semiconductor was incorporated in a liquid crystal panel to produce a semiconductor device, and a display test was performed. The displayed ones were marked with ◯, and the other ones that were not displayed or had noise were marked with ×.

6.誘電特性評価
半導体用接着組成物の比誘電率はJIS K 6911(1995年)に準じて測定した。面積6cm×6cm、厚さ0.3mmのアルミニウム基板上の全面に半導体用接着組成物からなる塗膜を形成する。塗膜上に蒸着法により測定用電極を形成する。測定用電極は直径10mmの円形パターン、塗膜の膜厚は10μm〜20μmの範囲とする。測定用電極とアルミニウム基板に挟まれた部分が測定対象領域となる。測定対象領域の1MHzにおける静電容量をインピーダンスアナライザ4294Aおよびサンプルホルダー16451B(共にアジレントテクノロジー社製)を用いて、JIS K 6911(1995年)に準じて測定した。求めた静電容量と評価部分の大きさから比誘電率を算出した。
6). Dielectric Properties Evaluation The relative dielectric constant of the semiconductor adhesive composition was measured according to JIS K 6911 (1995). A coating film made of the adhesive composition for a semiconductor is formed on the entire surface of an aluminum substrate having an area of 6 cm × 6 cm and a thickness of 0.3 mm. An electrode for measurement is formed on the coating film by vapor deposition. The measurement electrode has a circular pattern with a diameter of 10 mm, and the film thickness of the coating film ranges from 10 μm to 20 μm. A portion sandwiched between the measurement electrode and the aluminum substrate is a measurement target region. The capacitance at 1 MHz in the measurement target region was measured according to JIS K 6911 (1995) using an impedance analyzer 4294A and a sample holder 16451B (both manufactured by Agilent Technologies). The relative dielectric constant was calculated from the obtained capacitance and the size of the evaluation part.

実施例7
表1の組成比に基づいて作製した半導体用接着組成物を用い、プラスチックフィルムとして、ポリプロピレンフィルムをシリコーン系の離型処理を行った厚さ38μmポリエチレンテレフタレートフィルムに換えた以外は実施例1と同様にして半導体用接着シート材料を得た。
Example 7
The same as in Example 1 except that the adhesive composition for semiconductors produced based on the composition ratio in Table 1 was used, and the polypropylene film was replaced with a 38 μm thick polyethylene terephthalate film subjected to silicone-based mold release treatment as the plastic film. Thus, an adhesive sheet material for a semiconductor was obtained.

実施例8
表1の組成比に基づいて作製した半導体用接着組成物を用い、塗布用のプラスチックフィルムとして、離型処理をしていない厚さ38μmのポリエチレンテレフタレートフィルムを用いた以外は実施例1と同様にして半導体用接着シート材料を得た。
Example 8
Using the adhesive composition for semiconductors produced based on the composition ratio in Table 1, and using a polyethylene terephthalate film having a thickness of 38 μm that was not subjected to mold release treatment as the plastic film for coating, the same as in Example 1. Thus, an adhesive sheet material for semiconductor was obtained.

実施例1〜16および比較例1〜13の半導体用接着組成物の組成を表1、2に、評価結果を表3、4に示した。   The compositions of the adhesive compositions for semiconductors of Examples 1 to 16 and Comparative Examples 1 to 13 are shown in Tables 1 and 2, and the evaluation results are shown in Tables 3 and 4.

実施例17
表5に記載された組成比で、実施例1と同様に半導体用接着組成物を作製した。この半導体用接着組成物を、スリットダイコーター(塗工機)を用いて、厚さ80μmの未延伸ポリプロピレンフィルム(商品名、トレファンNO型番ZK−99、東レ(株)製)の親水化処理を行っていない面上に塗布し、その後75℃で4分間乾燥を行った。乾燥後の半導体用接着組成物上にプラスチックフィルムとして厚さ15μmの2軸延伸ポリプロピレンフィルム(商品名、トレファンBO型番YK57)の未処理面を重ね、加熱ロール温度40℃でラミネートし、直径7.6cmの紙管にロール状に巻き取り、半導体用接着層の厚さが30μmの半導体用接着シート材料を得た。
Example 17
An adhesive composition for a semiconductor was prepared in the same manner as in Example 1 with the composition ratio described in Table 5. This semiconductor adhesive composition is hydrophilized to an unstretched polypropylene film (trade name, Treffan NO model number ZK-99, manufactured by Toray Industries, Inc.) having a thickness of 80 μm using a slit die coater (coating machine). The film was coated on the surface not subjected to the coating, and then dried at 75 ° C. for 4 minutes. An untreated surface of a 15 μm-thick biaxially stretched polypropylene film (trade name, Treffan BO Model No. YK57) as a plastic film is laminated on the dried adhesive composition for a semiconductor, laminated at a heating roll temperature of 40 ° C., and a diameter of 7 It was wound up into a roll of 6 cm paper tube to obtain a semiconductor adhesive sheet material having a semiconductor adhesive layer thickness of 30 μm.

得られた半導体用接着シート材料を用い、前記1.で用いた平均高さ20μmのバンプ電極付き(256バンプ/チップ、ピッチ65μm、金メッキバンプ、液晶ドライバ用)シリコンウェハとして直径150mm、厚さ550μmのシリコンウェハを用いた以外は実施例1と同様にして評価した。結果を表5に示す。   Using the obtained adhesive sheet material for semiconductor, Example 1 except that a silicon wafer with a diameter of 150 mm and a thickness of 550 μm was used as a silicon wafer with bump electrodes having an average height of 20 μm (256 bumps / chip, pitch 65 μm, gold-plated bump, for liquid crystal driver) used in And evaluated. The results are shown in Table 5.

実施例18〜129、比較例14〜71
表5〜16に記載された組成比で、実施例1と同様に半導体用接着組成物を作製した。得られた各半導体用接着組成物を、実施例17と同様にしてフィルムに塗布し、半導体用接着シート材料を得た。実施例17と同様にして評価し、得られた結果を表5〜16に示す。
Examples 18-129, Comparative Examples 14-71
In the same manner as in Example 1, semiconductor adhesive compositions were prepared at the composition ratios described in Tables 5-16. Each obtained adhesive composition for a semiconductor was applied to a film in the same manner as in Example 17 to obtain an adhesive sheet material for a semiconductor. Evaluation was carried out in the same manner as in Example 17, and the results obtained are shown in Tables 5-16.

実施例17〜129、比較例14〜71について、各例で使用した原材料を以下に示す。   The raw materials used in Examples 17 to 129 and Comparative Examples 14 to 71 are shown below.

有機溶剤可溶性ポリイミド
有機溶剤可溶性ポリイミドA(前記の合成物)
有機溶剤可溶性ポリイミドB(前記の合成物)
有機溶剤可溶性ポリイミドC(前記の合成物)
PI−101(商品名、丸善石油化学(株)製)
なお、4gのPI−101にテトラヒドロフラン6gを加え、23℃で撹拌したところ溶解した。
Organic solvent soluble polyimide Organic solvent soluble polyimide A (previously synthesized)
Organic solvent soluble polyimide B (previously synthesized)
Organic solvent soluble polyimide C (previously synthesized)
PI-101 (trade name, manufactured by Maruzen Petrochemical Co., Ltd.)
Note that 6 g of tetrahydrofuran was added to 4 g of PI-101, and the mixture was stirred at 23 ° C. to dissolve.

固形エポキシ化合物
エピコート157S70(商品名、エポキシ当量:210g/eq、ジャパンエポキシレジン(株)製)
エピクロンHP−7200H(商品名、エポキシ当量:280g/eq、大日本インキ化学工業(株)製)。
Solid epoxy compound Epicoat 157S70 (trade name, epoxy equivalent: 210 g / eq, manufactured by Japan Epoxy Resins Co., Ltd.)
Epicron HP-7200H (trade name, epoxy equivalent: 280 g / eq, manufactured by Dainippon Ink & Chemicals, Inc.).

液状エポキシ化合物
エピコート828(商品名、エポキシ当量187g/eq、ジャパンエポキシレジン(株)製)
エピコートYX8000(商品名、エポキシ当量205g/eq、ジャパンエポキシレジン(株)製)。
Liquid epoxy compound epicoat 828 (trade name, epoxy equivalent 187 g / eq, manufactured by Japan Epoxy Resins Co., Ltd.)
Epicoat YX8000 (trade name, epoxy equivalent 205 g / eq, manufactured by Japan Epoxy Resins Co., Ltd.).

硬化促進剤
2PZ(商品名、四国化成工業(株)製、非水溶性)
2E4MZ(商品名、四国化成工業(株)製、水溶性)
溶剤:メチルエチルケトン、テトラヒドロフラン、n−プロピルアルコール。
Curing accelerator 2PZ (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd., water-insoluble)
2E4MZ (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd., water-soluble)
Solvent: methyl ethyl ketone, tetrahydrofuran, n-propyl alcohol.

実施例130〜149、比較例72〜91
表17〜18の組成比に基づいて作製した半導体用接着組成物を用い、前記3.フリップチップボンディング時間を60sにした以外は実施例9と同様にして評価した。
Examples 130-149, Comparative Examples 72-91
2. Using the adhesive composition for semiconductors produced based on the composition ratios in Tables 17 to 18, Evaluation was performed in the same manner as in Example 9 except that the flip chip bonding time was set to 60 s.

実施例130〜149、比較例72〜91の材料、組成比および評価結果を表17〜18に示した。   The materials, composition ratios, and evaluation results of Examples 130 to 149 and Comparative Examples 72 to 91 are shown in Tables 17 to 18.

実施例47〜67、110〜129、130〜149および比較例34〜39、52〜71、72〜91で使用したポリイミドAを有機溶剤可溶性ポリイミドDに換えた以外は同様にして、サンプル作製、評価を行ったところ、実施例47〜67、110〜129、130〜149および比較例34〜39、52〜71、72〜91と同様の結果を得た。   Samples were prepared in the same manner as in Examples 47 to 67, 110 to 129, 130 to 149 and Comparative Examples 34 to 39, 52 to 71, and 72 to 91 except that the polyimide A used in the organic solvent soluble polyimide D was changed. When evaluated, the same results as in Examples 47 to 67, 110 to 129, 130 to 149 and Comparative Examples 34 to 39, 52 to 71, and 72 to 91 were obtained.

実施例47〜67、110〜129、130〜149および比較例34〜39、52〜71、72〜91で使用したポリイミドAを有機溶剤可溶性ポリイミドEに換えた以外は同様にして、サンプル作製、評価を行ったところ、実施例47〜67、110〜129、130〜149および比較例34〜39、52〜71、72〜91と同様の結果を得た。   Samples were prepared in the same manner as in Examples 47 to 67, 110 to 129, 130 to 149 and Comparative Examples 34 to 39, 52 to 71, and 72 to 91 except that the polyimide A used in the organic solvent soluble polyimide E was changed. When evaluated, the same results as in Examples 47 to 67, 110 to 129, 130 to 149 and Comparative Examples 34 to 39, 52 to 71, and 72 to 91 were obtained.

実施例47〜67、110〜129、130〜149および比較例34〜39、52〜71、72〜91で使用したポリイミドAを有機溶剤可溶性ポリイミドFに換えた以外は同様にして、サンプル作製、評価を行ったところ、実施例47〜67、110〜129、130〜149および比較例34〜39、52〜71、72〜91と同様の結果を得た。   Samples were prepared in the same manner except that the polyimide A used in Examples 47 to 67, 110 to 129, 130 to 149 and Comparative Examples 34 to 39, 52 to 71, and 72 to 91 was replaced with the organic solvent soluble polyimide F. When evaluated, the same results as in Examples 47 to 67, 110 to 129, 130 to 149 and Comparative Examples 34 to 39, 52 to 71, and 72 to 91 were obtained.

実施例47〜67、110〜129、130〜149および比較例34〜39、52〜71、72〜91で使用したポリイミドAを有機溶剤可溶性ポリイミドGに換えた以外は同様にして、サンプル作製、評価を行ったところ、実施例47〜67、110〜129、130〜149および比較例34〜39、52〜71、72〜91と同様の結果を得た。   Samples were prepared in the same manner as in Examples 47 to 67, 110 to 129, 130 to 149 and Comparative Examples 34 to 39, 52 to 71, and 72 to 91 except that the polyimide A used in the organic solvent soluble polyimide G was changed. When evaluated, the same results as in Examples 47 to 67, 110 to 129, 130 to 149 and Comparative Examples 34 to 39, 52 to 71, and 72 to 91 were obtained.

実施例47〜67、110〜129、130〜149および比較例35〜40、53〜72、73〜92で使用したポリイミドAを有機溶剤可溶性ポリイミドHに換えた以外は同様にして、サンプル作製、評価を行ったところ、実施例47〜67、110〜129、130〜149および比較例34〜39、52〜71、72〜91と同様の結果を得た。   Samples were prepared in the same manner as in Examples 47 to 67, 110 to 129, 130 to 149 and Comparative Examples 35 to 40, 53 to 72, and 73 to 92 except that the polyimide A used in the organic solvent soluble polyimide H was changed. When evaluated, the same results as in Examples 47 to 67, 110 to 129, 130 to 149 and Comparative Examples 34 to 39, 52 to 71, and 72 to 91 were obtained.

実施例150、151
表19に記載された組成比で、実施例1と同様に半導体用接着組成物を作製した。得られた各半導体用接着組成物を、実施例17と同様にしてフィルムに塗布し、半導体用接着シート材料を得た。実施例17と同様にして評価し、得た結果を表19に示す。
Examples 150 and 151
A semiconductor adhesive composition was produced in the same manner as in Example 1 with the composition ratio described in Table 19. Each obtained adhesive composition for a semiconductor was applied to a film in the same manner as in Example 17 to obtain an adhesive sheet material for a semiconductor. Evaluation was conducted in the same manner as in Example 17, and the results obtained are shown in Table 19.

実施例152〜155
表20に記載された組成比で、実施例1と同様に半導体用接着組成物を作製した。得られた各半導体用接着組成物を、実施例17と同様にしてフィルムに塗布し、半導体用接着シート材料を得た。実施例17と同様にして評価し、得た結果を表20に示す。
Examples 152-155
A semiconductor adhesive composition was produced in the same manner as in Example 1 with the composition ratio described in Table 20. Each obtained adhesive composition for a semiconductor was applied to a film in the same manner as in Example 17 to obtain an adhesive sheet material for a semiconductor. Evaluation was carried out in the same manner as in Example 17, and the results obtained are shown in Table 20.

実施例156
表9の実施例48に記載された組成比で実施例1と同様にして半導体用接着組成物を作製した。この半導体用接着組成物を、スリットダイコーター(塗工機)を用いて、厚さ80μmの未延伸ポリプロピレンフィルム(商品名、トレファンNO型番ZK−99、東レ(株)製)の親水化処理を行っていない面上に塗布し、その後75℃で4分間乾燥を行った。乾燥後の半導体用接着組成物上に、厚さ160μmの粘着剤層が形成されたプラスチック製ベースフィルム(商品名、BGE−124S、トーヨーアドテック(株)製)を、粘着剤層面が半導体用接着組成物に粘着するように、加熱ロール温度25℃でラミネートし、直径7.6cmの紙管にロール状に巻き取った。これにより、ポリプロピレンフィルム、半導体用接着組成物層、粘着剤層、プラスチックフィルムがこの順に4層積層されたバックグラインドテープ機能と半導体接着機能を併せ持つ半導体用接着シート材料を得た。
Example 156
A semiconductor adhesive composition was produced in the same manner as in Example 1 with the composition ratio described in Example 48 of Table 9. This semiconductor adhesive composition is hydrophilized to an unstretched polypropylene film (trade name, Treffan NO model number ZK-99, manufactured by Toray Industries, Inc.) having a thickness of 80 μm using a slit die coater (coating machine). The film was coated on the surface not subjected to the coating, and then dried at 75 ° C. for 4 minutes. A plastic base film (trade name, BGE-124S, manufactured by Toyo Adtec Co., Ltd.) in which a 160 μm-thick pressure-sensitive adhesive layer is formed on the dried adhesive composition for semiconductor, and the pressure-sensitive adhesive layer surface is bonded to semiconductor The film was laminated at a heating roll temperature of 25 ° C. so as to adhere to the composition, and wound into a roll on a paper tube having a diameter of 7.6 cm. As a result, a semiconductor adhesive sheet material having both a back grind tape function and a semiconductor adhesive function in which four layers of a polypropylene film, a semiconductor adhesive composition layer, a pressure-sensitive adhesive layer, and a plastic film were laminated in this order was obtained.

各材料間の接着力測定は以下のようにして行った。半導体用接着シート材料(ポリプロピレンフィルム、半導体用接着組成物層、粘着剤層、ベースフィルムの4層構造)を幅25mm、長さ300mmに切り取り、厚さ2mmのステンレス板に両面粘着テープを用いて、ポリエチレンテレフタレートフィルム面で固定し、上記のポリプロピレンフィルム(軽剥離側プラスチックフィルム)を半導体用接着組成物層から角度90度の方向に200mm/分の速度で剥がし、ポリプロピレンフィルムと半導体用接着組成物層の間の接着力を測定した。この接着力は10N/mであった。次にポリプロピレンフィルムを除去した後の半導体用接着シート材料(ベースフィルム、粘着剤層、半導体接着組成物層の3層構造)を幅25mm、長さ300mmに切り取り、両面粘着テープを用いて厚さ2mmのステンレス板上に、半導体接着組成物面で固定し、上記の粘着剤層付きベースフィルム(重剥離側プラスチックフィルム)を半導体用接着組成物層から角度90度の方向に200mm/分の速度で、粘着剤層と半導体用接着組成物層の界面で剥がし、粘着剤層と半導体用接着組成物の間の接着力を測定した。その結果、27N/mであった。   The adhesion strength between the materials was measured as follows. Adhesive sheet material for semiconductor (4-layer structure of polypropylene film, adhesive composition layer for semiconductor, adhesive layer, base film) is cut to a width of 25 mm and a length of 300 mm, using a double-sided adhesive tape on a 2 mm thick stainless steel plate The polyethylene terephthalate film is fixed on the surface, and the above-mentioned polypropylene film (lightly peeled side plastic film) is peeled off from the semiconductor adhesive composition layer at an angle of 90 degrees at a rate of 200 mm / min. The adhesion between the layers was measured. This adhesive force was 10 N / m. Next, after removing the polypropylene film, the semiconductor adhesive sheet material (three-layer structure of the base film, the pressure-sensitive adhesive layer, and the semiconductor adhesive composition layer) is cut into a width of 25 mm and a length of 300 mm, and the thickness is measured using a double-sided adhesive tape. A semiconductor adhesive composition surface is fixed on a 2 mm stainless steel plate, and the base film with the pressure-sensitive adhesive layer (heavy release side plastic film) is 200 mm / min in the direction of 90 degrees from the semiconductor adhesive composition layer. Then, it peeled off at the interface between the pressure-sensitive adhesive layer and the adhesive composition layer for semiconductor, and the adhesive force between the pressure-sensitive adhesive layer and the adhesive composition for semiconductor was measured. As a result, it was 27 N / m.

ロール状に巻き取られたバックグラインドテープ機能と半導体接着機能を併せ持つ半導体用接着シート材料のバンプ電極への埋め込みは、貼り合わせ装置(テクノビジョン(株)製、モデル900S)を用いた。   A bonding apparatus (Model 900S, manufactured by Technovision Co., Ltd.) was used for embedding the adhesive sheet material for a semiconductor having both a back grind tape function wound in a roll shape and a semiconductor bonding function into a bump electrode.

貼り合わせ装置ステージ上に固定された平均高さ20μmのバンプ電極付き(256バンプ/チップ、ピッチ65μm、金メッキバンプ、液晶ドライバ用)シリコンウェハ(直径150mm、厚さ625μm)のバンプ電極に軽剥離側プラスチックフィルムであるポリプロピレンフィルムを剥離した後の半導体用接着シート材料の半導体用接着組成物面を温度60℃、貼り合わせ速度50cm/分でラミネートした。半導体ウェハ周囲の余分な半導体用接着組成物はカッター刃にて切断した。これにより、半導体用接着剤上に粘着剤層、ベースフィルムがこの順に積層されている電極が半導体用接着剤で埋め込まれた半導体ウェハを得た。   With a bump electrode with an average height of 20 μm fixed on the bonding device stage (256 bumps / chip, pitch 65 μm, gold-plated bump, for liquid crystal driver) on the bump electrode of a silicon wafer (diameter 150 mm, thickness 625 μm), light release side The adhesive composition surface for semiconductor of the adhesive sheet material for semiconductor after peeling the polypropylene film which is a plastic film was laminated at a temperature of 60 ° C. and a bonding speed of 50 cm / min. Excess semiconductor adhesive composition around the semiconductor wafer was cut with a cutter blade. As a result, a semiconductor wafer was obtained in which an electrode in which a pressure-sensitive adhesive layer and a base film were laminated in this order on a semiconductor adhesive was embedded with the semiconductor adhesive.

次いで、この半導体ウェハのバンプ電極とは反対側の面を、研削・研磨装置(DISCO(株)製、DGP−8760)を用いて半導体ウェハの厚みが100μmになるよう研削・研磨を行った。続いて、半導体用接着剤から粘着剤層付きベースフィルムを剥がした。   Next, the surface of the semiconductor wafer opposite to the bump electrode was ground and polished using a grinding / polishing apparatus (DGP-8760, manufactured by DISCO Corporation) so that the thickness of the semiconductor wafer became 100 μm. Subsequently, the base film with the pressure-sensitive adhesive layer was peeled off from the semiconductor adhesive.

この後、実施例1の2.ダイシング工程、3.フリップチップボンディング、4.導通性評価、5.液晶表示テストを行ったところ、実施例48同様の結果を得た。   After that, in Example 1. 2. Dicing process 3. flip chip bonding; 4. Conductivity evaluation, When a liquid crystal display test was conducted, the same results as in Example 48 were obtained.

実施例157
図2に示すように、外周部に平均高さ20μmのバンプ(64バンプ/チップ、ピッチ260μm、金メッキバンプ)が形成され、中央部にキャパシタ用電極(大きさ、1mm×1mm)が形成されたLSIが形成されたシリコンウェハ(直径150mm、厚さ625μm)を用いた以外は実施例1と同様にしてポリイミドフィルム回路基板上に半導体チップを搭載した半導体付き回路基板を得た。半導体と回路基板間に形成されたキャパシタの静電容量は、周波数1MHzにおいて25pFであった。静電容量の測定は、バンプを通じて半導体側のキャパシタ電極を回路基板上に引き出した端子と回路基板側のキャパシタ電極を回路基板上に引き出した端子間をインピーダンスアナライザ4294Aおよびサンプルホルダー16451B(共にアジレントテクノロジー社製)を用いて行った
Example 157
As shown in FIG. 2, bumps (64 bumps / chip, pitch 260 μm, gold-plated bumps) having an average height of 20 μm were formed on the outer periphery, and capacitor electrodes (size, 1 mm × 1 mm) were formed in the center. A circuit board with a semiconductor in which a semiconductor chip was mounted on a polyimide film circuit board was obtained in the same manner as in Example 1 except that a silicon wafer on which LSI was formed (diameter 150 mm, thickness 625 μm) was used. The capacitance of the capacitor formed between the semiconductor and the circuit board was 25 pF at a frequency of 1 MHz. The capacitance is measured by connecting an impedance analyzer 4294A and a sample holder 16451B (both from Agilent Technologies) between the terminals where the semiconductor-side capacitor electrodes are drawn on the circuit board through the bumps and the terminals where the circuit-board-side capacitor electrodes are drawn on the circuit board. Made by the company)

Figure 0005040252
Figure 0005040252

Figure 0005040252
Figure 0005040252

Figure 0005040252
Figure 0005040252

Figure 0005040252
Figure 0005040252

Figure 0005040252
Figure 0005040252

Figure 0005040252
Figure 0005040252

Figure 0005040252
Figure 0005040252

Figure 0005040252
Figure 0005040252

Figure 0005040252
Figure 0005040252

Figure 0005040252
Figure 0005040252

Figure 0005040252
Figure 0005040252

Figure 0005040252
Figure 0005040252

Figure 0005040252
Figure 0005040252

Figure 0005040252
Figure 0005040252

Figure 0005040252
Figure 0005040252

Figure 0005040252
Figure 0005040252

Figure 0005040252
Figure 0005040252

Figure 0005040252
Figure 0005040252

Figure 0005040252
Figure 0005040252

Figure 0005040252
Figure 0005040252

ダインシング後の半導体用接着組成物付き半導体ウェハの概略図Schematic of semiconductor wafer with adhesive composition for semiconductor after dicing キャパシタ電極加工された半導体ウェハの概略図Schematic diagram of a capacitor wafer processed semiconductor wafer

符号の説明Explanation of symbols

1 組成物が塗布された半導体ウェハの一部
2 欠け・割れ部
3 クラック
4 欠損部長さ
5 切削端部
6 最大欠損部長さ
7 バンプ
8 キャパシタ電極パッド
DESCRIPTION OF SYMBOLS 1 Part of semiconductor wafer coated with composition 2 Chip / crack 3 Crack 4 Chip length 5 Cutting edge 6 Maximum chip length 7 Bump 8 Capacitor electrode pad

Claims (7)

(a)有機溶剤可溶性ポリイミドと(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物、(c)硬化促進剤、(d)ペロブスカイト型結晶構造あるいは複合ペロブスカイト型結晶構造を有する高誘電率無機粒子とを含有し、(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物を100重量部に対し、(a)有機溶剤可溶性ポリイミドを15〜90重量部、(c)硬化促進剤を0.1〜10重量部含有し、(b)エポキシ基を2個以上有し、エポキシ当量が100〜500であるエポキシ化合物が25℃、1.013×10N/mにおいて液状である化合物と25℃、1.013×10N/mにおいて固形である化合物を含有し、液状であるエポキシ化合物の含有量が全エポキシ化合物に対し20重量%以上60重量%以下である半導体用接着組成物。 (A) an organic solvent-soluble polyimide and (b) an epoxy compound having two or more epoxy groups and an epoxy equivalent of 100 to 500 , (c) a curing accelerator, (d) a perovskite crystal structure or a composite perovskite crystal High-dielectric constant inorganic particles having a structure, (b) 100 parts by weight of an epoxy compound having two or more epoxy groups and having an epoxy equivalent of 100 to 500 , (a) an organic solvent-soluble polyimide 15 to 90 parts by weight, (c) 0.1 to 10 parts by weight of a curing accelerator, (b) an epoxy compound having two or more epoxy groups and having an epoxy equivalent of 100 to 500 is 25 ° C., 1 An epoxy compound containing a compound which is liquid at 013 × 10 5 N / m 2 and a compound which is solid at 25 ° C. and 1.013 × 10 5 N / m 2 The semiconductor adhesive composition having a content of 20 to 60% by weight based on the total epoxy compound. (a)有機溶剤可溶性ポリイミドが、一般式(2)〜(7)のいずれかで表される構造を有し、かつエポキシ基と反応可能な官能基を側鎖および末端に各々少なくとも一つ有するポリマーであり、一般式(1)で表される構造を一般式(2)〜(7)中のRとしてポリマー全量に対し2〜15重量%有する請求項1記載の半導体用接着組成物。
Figure 0005040252
(式中、Rは2価の炭化水素基を示し、Rは1価の炭化水素基を示し、同じでも異なっていてもよい。nは1〜10の整数を示す。)
Figure 0005040252
(式中、Rは4〜14価の有機基であり、Rは2〜12価の有機基であって、R、Rの少なくとも一つは1,1,1,3,3,3−ヘキサフルオロプロピレン基、イソプロピレン基、エーテル基、チオエーテル基およびSO基からなる群より選ばれる基を少なくとも一つ含有する。RおよびRは、フェノール性水酸基、スルホン酸基およびチオール基からなる群より選ばれる基を少なくとも一つ有する有機基を示し、同じでも異なっていてもよい。Xは1価の有機基、Yは2価の有機基、Zは1価の有機基を示す。mは8〜200の範囲を示す。αおよびβはそれぞれ0〜10の整数を示し、α+βは1〜10の整数である。)
(A) The organic solvent-soluble polyimide has a structure represented by any one of the general formulas (2) to (7), and has at least one functional group capable of reacting with an epoxy group at each side chain and terminal. 2. The adhesive composition for a semiconductor according to claim 1, which is a polymer and has a structure represented by the general formula (1) as R 4 in the general formulas (2) to (7) in an amount of 2 to 15 wt% based on the total amount of the polymer.
Figure 0005040252
(In the formula, R 1 represents a divalent hydrocarbon group, R 2 represents a monovalent hydrocarbon group, and may be the same or different. N represents an integer of 1 to 10.)
Figure 0005040252
(In the formula, R 3 is a 4 to 14 valent organic group, R 4 is a 2 to 12 valent organic group, and at least one of R 3 and R 4 is 1,1,1,3,3. , 3-hexafluoro propylene, isopropylene, .R 5 and R 6 at least one containing an ether group, a group selected from the group consisting of a thioether group and a SO 2 group, the phenolic hydroxyl group, sulfonic acid group and An organic group having at least one group selected from the group consisting of thiol groups, which may be the same or different, X is a monovalent organic group, Y is a divalent organic group, and Z is a monovalent organic group. M represents a range of 8 to 200. α and β each represents an integer of 0 to 10, and α + β is an integer of 1 to 10.)
さらにリン酸化合物を有する請求項1記載の半導体用接着組成物。 Furthermore, the adhesive composition for semiconductors of Claim 1 which has a phosphoric acid compound. 半導体ウェハ上に形成された請求項1記載の半導体用接着組成物のダイシングした後の切削状態が、半導体用接着組成物の切削端部を基準位置0μmとして半導体用接着組成物の欠損部分の最大長さが25μm以下である半導体用接着組成物付き半導体ウェハ。 The cutting state after dicing the adhesive composition for a semiconductor according to claim 1 formed on a semiconductor wafer is a maximum of a defective portion of the adhesive composition for a semiconductor with a cutting edge of the adhesive composition for a semiconductor as a reference position of 0 μm. The semiconductor wafer with the adhesive composition for semiconductors whose length is 25 micrometers or less. 請求項1記載の半導体用接着組成物から得られた耐熱性樹脂を有する半導体装置。 A semiconductor device having a heat resistant resin obtained from the adhesive composition for a semiconductor according to claim 1. 電極が形成された半導体素子を複数個搭載したウェハの上に、請求項1〜3のいずれか記載の半導体用接着組成物を有するプラスチックフィルムを半導体用接着組成物が形成されている面を素子側にして仮接着し、その後ダイシングにより個片化を行い、個片化した半導体用接着組成物付き半導体素子を実装基板に搭載し、半導体素子上に形成された電極と実装基板の上の電極を直接接触させることで電気的接続を行う半導体素子の製造方法。 A plastic film having the semiconductor adhesive composition according to any one of claims 1 to 3 is formed on a wafer on which a plurality of semiconductor elements having electrodes formed thereon are mounted. The semiconductor element with the adhesive composition for semiconductor is mounted on the mounting substrate, and the electrode formed on the semiconductor element and the electrode on the mounting substrate are temporarily bonded to the side and then separated into pieces by dicing. A method for manufacturing a semiconductor device, in which electrical connection is made by direct contact with each other. 電極が形成された半導体素子を複数個搭載したウェハの上に、請求項1〜3のいずれか記載の半導体用接着組成物、粘着剤層、プラスチックフィルムを、この順に形成し、続いて半導体素子が形成されていないウェハ面を研磨加工し、その後ダイシングにより個片化を行い、個片化した半導体用接着組成物付き半導体素子を実装基板に搭載し、半導体素子上に形成された電極と実装基板の上の電極を直接接触させることで電気的接続を行う半導体素子の製造方法。 The semiconductor adhesive composition according to any one of claims 1 to 3, a pressure-sensitive adhesive layer, and a plastic film are formed in this order on a wafer on which a plurality of semiconductor elements having electrodes formed thereon are mounted. After polishing the wafer surface on which no solder is formed, it is separated into individual pieces by dicing, and the separated semiconductor element with an adhesive composition for semiconductor is mounted on a mounting substrate, and the electrodes formed on the semiconductor element are mounted. A method for manufacturing a semiconductor element, wherein an electrical connection is made by directly contacting an electrode on a substrate.
JP2006279623A 2006-10-13 2006-10-13 Adhesive composition for semiconductor, semiconductor device using the same, and method for producing semiconductor device Expired - Fee Related JP5040252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006279623A JP5040252B2 (en) 2006-10-13 2006-10-13 Adhesive composition for semiconductor, semiconductor device using the same, and method for producing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006279623A JP5040252B2 (en) 2006-10-13 2006-10-13 Adhesive composition for semiconductor, semiconductor device using the same, and method for producing semiconductor device

Publications (2)

Publication Number Publication Date
JP2008094993A JP2008094993A (en) 2008-04-24
JP5040252B2 true JP5040252B2 (en) 2012-10-03

Family

ID=39378185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006279623A Expired - Fee Related JP5040252B2 (en) 2006-10-13 2006-10-13 Adhesive composition for semiconductor, semiconductor device using the same, and method for producing semiconductor device

Country Status (1)

Country Link
JP (1) JP5040252B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10703945B2 (en) 2018-04-25 2020-07-07 Daxin Materials Corporation Method for temporary bonding workpiece and adhesive

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422878B2 (en) * 2006-10-24 2014-02-19 東レ株式会社 Adhesive composition for semiconductor, semiconductor device using the same, and method for manufacturing semiconductor device
WO2010137711A1 (en) * 2009-05-29 2010-12-02 三井化学株式会社 Composition for sealing semiconductor, semiconductor device, and process for manufacturing semiconductor device
MY160024A (en) * 2009-07-10 2017-02-15 Toray Industries Adhesive composition, adhesive sheet, circuit board and semiconductor device both produced using these, and processes for producing these
JP2014133855A (en) * 2012-12-11 2014-07-24 Fujifilm Corp Remover of siloxane resin, method for removing siloxane resin using the same, and methods for manufacturing semiconductor substrate product and semiconductor element
WO2019022062A1 (en) * 2017-07-26 2019-01-31 リンテック株式会社 Bonding film for semiconductors and bonding sheet for semiconductors
WO2020157828A1 (en) * 2019-01-29 2020-08-06 日立化成株式会社 Resin composition, method for manufacturing semiconductor device, and semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309200A (en) * 2001-04-17 2002-10-23 Ajinomoto Co Inc Adhesive film
JP2006144022A (en) * 2002-06-26 2006-06-08 Hitachi Chem Co Ltd Filmy adhesive, adhesive sheet, and semiconductor device
JP2004319823A (en) * 2003-04-17 2004-11-11 Sumitomo Bakelite Co Ltd Adhesive film for semiconductor, semiconductor device and method for manufacturing the same
JP4275584B2 (en) * 2004-07-05 2009-06-10 出光興産株式会社 Electrophotographic photoreceptor
JP4972903B2 (en) * 2004-10-04 2012-07-11 東レ株式会社 Dielectric composition
JP5050315B2 (en) * 2005-03-04 2012-10-17 日立化成工業株式会社 Gate insulating film and thin film transistor using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10703945B2 (en) 2018-04-25 2020-07-07 Daxin Materials Corporation Method for temporary bonding workpiece and adhesive

Also Published As

Publication number Publication date
JP2008094993A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP3995022B2 (en) Adhesive composition for semiconductor, semiconductor device using the same, and method for manufacturing semiconductor device
JP5040247B2 (en) Adhesive composition for semiconductor, semiconductor device using the same, and method for manufacturing semiconductor device
JP5740979B2 (en) Adhesive composition, adhesive sheet, circuit board and semiconductor device using the same, and manufacturing method thereof
KR102220124B1 (en) Adhesive agent, adhesive film, and semiconductor device and method for manufacturing same
JP5422878B2 (en) Adhesive composition for semiconductor, semiconductor device using the same, and method for manufacturing semiconductor device
JP5141366B2 (en) Adhesive film for semiconductor and method of manufacturing semiconductor device using the same
JP5040252B2 (en) Adhesive composition for semiconductor, semiconductor device using the same, and method for producing semiconductor device
JP6040935B2 (en) Resin composition, resin composition sheet, semiconductor device and manufacturing method thereof
TWI608066B (en) Resin composition, resin sheet and manufacturing method thereof, and manufacturing method of semiconductor device
JP2009194054A (en) Adhesive composition for semiconductor, and method of manufacturing semiconductor device using the same
TWI596185B (en) Adhesive sheet for semiconductor device with bump electrode and method for manufacturing semiconductor device
JP5103870B2 (en) Adhesive composition for semiconductor, semiconductor device using the same, and method for manufacturing semiconductor device
JP5292793B2 (en) Adhesive sheet for semiconductor, semiconductor device using the same, and method for manufacturing semiconductor device
JP6716939B2 (en) Adhesive, adhesive film made of the same, semiconductor device including cured products thereof, and method of manufacturing the same
JP2009021562A (en) Adhesive sheet for semiconductor, semiconductor device using the same, and semiconductor manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees