JP2865709B2 - Electrostrictive effect element and method of manufacturing the same - Google Patents

Electrostrictive effect element and method of manufacturing the same

Info

Publication number
JP2865709B2
JP2865709B2 JP1171854A JP17185489A JP2865709B2 JP 2865709 B2 JP2865709 B2 JP 2865709B2 JP 1171854 A JP1171854 A JP 1171854A JP 17185489 A JP17185489 A JP 17185489A JP 2865709 B2 JP2865709 B2 JP 2865709B2
Authority
JP
Japan
Prior art keywords
group
electrostrictive
electrode plate
internal electrode
biphenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1171854A
Other languages
Japanese (ja)
Other versions
JPH0338076A (en
Inventor
厚 萩村
睦男 中島
育夫 稲毛
邦夫 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP1171854A priority Critical patent/JP2865709B2/en
Priority to EP90307104A priority patent/EP0407099B1/en
Priority to DE69024863T priority patent/DE69024863T2/en
Priority to KR1019900010103A priority patent/KR930010420B1/en
Priority to CA002020367A priority patent/CA2020367A1/en
Priority to US07/637,554 priority patent/US5173162A/en
Publication of JPH0338076A publication Critical patent/JPH0338076A/en
Application granted granted Critical
Publication of JP2865709B2 publication Critical patent/JP2865709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は低電圧で大変位量が生じ且つ層間距離が極め
て小さい積層電歪効果素子及びその製造方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated electrostrictive element in which a large displacement is generated at a low voltage and an interlayer distance is extremely small, and a method of manufacturing the same.

[従来の技術] 従来、アクチュエータとしては、電磁力で働くモータ
や、この電磁モータの回転を歯車の組み合わせにより直
進的な動きに変換するものや、電磁コイルとバネとを組
み合わせたボイスコイル等が代表的なものである。これ
らのアクチュエータは高速の連続回転や位置決めなどの
ために、あらゆる機械において広く用いられているが、
近年、光学精密機械、半導体素子等の分野を中心として
次第に新しい変換素子へのニーズが急増している。例え
ば、レーザやカメラ等の光学機器の加工精度や半導体製
造機器における位置決め精度に対する要求や、光学、天
文学などにおける光路長の調整に対する要求は既に1ミ
クロン以下のレベルに達しており、その要求は今後ます
ますシビアなものになっていくことは明らかである。
[Prior art] Conventionally, as an actuator, a motor that operates by an electromagnetic force, a motor that converts the rotation of the electromagnetic motor into a linear motion by a combination of gears, a voice coil that combines an electromagnetic coil and a spring, and the like are known. It is typical. These actuators are widely used in all machines for high-speed continuous rotation and positioning.
In recent years, needs for new conversion elements have been rapidly increasing, mainly in fields such as optical precision machines and semiconductor elements. For example, requirements for processing accuracy of optical equipment such as lasers and cameras, positioning accuracy in semiconductor manufacturing equipment, and adjustment of optical path length in optics and astronomy have already reached the level of 1 micron or less. Obviously, it will be more and more severe.

最近、電磁力を使わない新アクチュエータとして圧電
効果、電歪効果を利用するアクチュエータがにわかに脚
光を浴びており、エレクトロニクスセラミックス市場に
おいても新たなジャンルを拡大すべくその将来性に対し
て大きな期待が寄せられている。
Recently, actuators that use the piezoelectric effect and electrostriction effect as new actuators that do not use electromagnetic force are in the spotlight, and there is great expectation for their future potential in the electronics ceramics market to expand into new genres. Have been.

従来、積層チップコンデンサ構造の電歪効果素子は以
下の方法で製造されていた。まず、原料組成物を混合
し、仮焼し、この仮焼粉に適当なバインダ及び溶剤を混
合し、この混合物を用いてドクターブレード法により薄
膜を作成する。この薄膜に金属電極を印刷し、積層す
る。この積層体中の複数の金属電極板を一つ置きに外部
電極に接続して一方の系統を正、他方の系統を負とす
る。この製造方法においては正、負の電極板の重なった
部分の面積が全断面積よりも小さくしなければならず、
従って周辺部では電極板の重ならない部分が生じる。こ
のような電歪効果素子の電極板間に電圧を印加すると、
電極板の重なった部分では電界強度が大きくなるが、周
辺部分の電界強度は弱い。このため周辺部分の変位量が
小さくなり、ひいては素子全体の変位量が所望のものに
比べて小さくなるという欠点を有している。また、この
ことに起因して変形する部分と変形しない部分との境界
で応力の集中が発生し、長時間の印加もしくは繰返しの
印加に起因して素子自体が破壊するという欠点がある。
このため従来の積層チップコンデンサの製造法をそのま
ま利用することは困難である。
Conventionally, an electrostrictive effect element having a multilayer chip capacitor structure has been manufactured by the following method. First, the raw material composition is mixed and calcined, a suitable binder and a solvent are mixed with the calcined powder, and a thin film is formed using the mixture by a doctor blade method. A metal electrode is printed on this thin film and laminated. Every other metal electrode plate in this laminate is connected to an external electrode, and one system is positive and the other system is negative. In this manufacturing method, the area of the overlapping portion of the positive and negative electrode plates must be smaller than the total cross-sectional area,
Therefore, in the peripheral portion, a portion where the electrode plates do not overlap occurs. When a voltage is applied between the electrode plates of such an electrostrictive effect element,
The electric field strength is large in the overlapping portion of the electrode plates, but the electric field strength in the peripheral portion is weak. For this reason, there is a disadvantage that the displacement amount of the peripheral portion is small, and the displacement amount of the whole element is smaller than desired. In addition, stress concentration occurs at the boundary between the deformed portion and the non-deformed portion due to this, and there is a disadvantage that the element itself is broken due to long-time application or repeated application.
For this reason, it is difficult to use the conventional manufacturing method of the multilayer chip capacitor as it is.

上記のような欠点を解消する方法として、特開昭59-1
15579号公報には、電気泳動法を利用して、積層電歪効
果素子の側端面に露出した電極に対してその全面又は一
層おきに無機絶縁層を形成することを特徴とする電歪効
果素子の製造方法が開示されている。そのような製造方
法を用いる場合には上記のような欠点は解消される。し
かし、絶縁層が電歪効果を妨げたり絶縁層自体が破壊し
たりすることがないように積層電歪効果素子の側端面の
電極近傍にのみ絶縁物が付着することが最も好ましいに
もかかわらず、無機の絶縁層はセラミックス本体とのな
じみが良いため広範囲に付着し、従って側端面に露出し
た各々の電極に付着した絶縁層が相互に連続しないよう
に層間の距離を100ミクロン以上にしなければならな
い。しかし、層間が100ミクロン以上である場合には、
この電歪効果素子に10kV/cmの電界を印加するためには1
00Vの高電圧が必要になる。
As a method for solving the above disadvantages, Japanese Patent Laid-Open No.
No. 15579, using an electrophoresis method, an electrostrictive element characterized by forming an inorganic insulating layer on the entire surface or every other electrode exposed on the side end surface of the laminated electrostrictive element Is disclosed. When such a manufacturing method is used, the above-mentioned disadvantages are eliminated. However, although it is most preferable that the insulator adheres only to the electrode near the side end surface of the laminated electrostrictive effect element so that the insulating layer does not hinder the electrostrictive effect or the insulating layer itself is broken. The inorganic insulating layer adheres widely to the ceramic body because of its good compatibility with the ceramic body.Therefore, the distance between the layers must be at least 100 microns so that the insulating layers attached to the electrodes exposed on the side end surfaces do not continue with each other. No. However, if the interlayer is more than 100 microns,
In order to apply an electric field of 10 kV / cm to this electrostrictive effect element, 1
A high voltage of 00V is required.

[発明が解決しようとする課題] 近年、低電圧で駆動できしかも変位量の大きい電歪効
果素子が要求されているため層間の距離が小さい方が好
ましいことは明らかである。しかしながら、上記したよ
うに無機絶縁物を用いるかぎりは層間距離は100ミクロ
ンが限度である。また、前記の特開昭59-115579号公報
には、有機物による絶縁ではセラミックス、金属などと
の接着性が小さくまた高電界が加わる電歪効果素子の絶
縁として実用化は困難とされてきたことが記載されてい
る。このように低電圧で大変位量を得ることのできる積
層電歪効果素子及びその製造方法はいまだ実用化されて
いない。
[Problems to be Solved by the Invention] In recent years, since an electrostrictive effect element which can be driven at a low voltage and has a large displacement amount is required, it is apparent that a smaller distance between layers is preferable. However, as described above, as long as the inorganic insulator is used, the interlayer distance is limited to 100 microns. Further, in the above-mentioned Japanese Patent Application Laid-Open No. 59-115579, it has been considered that practical use as insulation of an electrostrictive element in which insulation with an organic substance has low adhesion to ceramics and metal and a high electric field is applied is difficult. Is described. Such a laminated electrostrictive element capable of obtaining a large displacement at a low voltage and a method of manufacturing the same have not yet been put to practical use.

本発明の目的は、有機絶縁物を利用し、層間距離を10
〜100ミクロンとすることが可能であり、そのことによ
って低電圧で大変位量が可能となる積層電歪効果素子な
らびにその製造方法を提供することである。
An object of the present invention is to utilize an organic insulator and to reduce the interlayer distance to 10
An object of the present invention is to provide a laminated electrostrictive effect element capable of achieving a large displacement amount at a low voltage, and a method of manufacturing the same.

[課題を解決するための手段] 本発明は上記の目的を達成するために成されたもので
あり、本発明の電歪効果素子は、電歪材料の膜又は薄板
と内部電極板とが交互に積層されている電歪効果素子で
あって、該素子の側端面に該内部電極板の端面が露出し
ており、該側端面上の該内部電極板の露出部とその近傍
の電歪材料上のみに、一般式(I) (式中、Xはフェニル基;ビフェニル基;及びフェニル
基及びビフェニル基の少なくとも1種がO、CO、S、CH
2、C(CH3)2及びC(CF3)2の少なくとも1種によって結合
されたポリフェニル基からなる群から選ばれた四価の基
であり、Yはフェニル基;ビフェニル基;フェニル基及
びビフェニル基の少なくとも1種がO、CO、S、SO2、C
H2、C(CH3)2及びC(CF3)2の少なくとも1種によって結合
されたポリフェニル基;アルキレン基;及びキシリレン
基からなる群から選ばれた二価の基である) で表わされる繰り返し単位を有するポリイミド樹脂の絶
縁層が形成されていることを特徴とする。
[Means for Solving the Problems] The present invention has been made to achieve the above object, and an electrostrictive effect element of the present invention has a structure in which a film or thin plate of an electrostrictive material and an internal electrode plate are alternately arranged. An end surface of the internal electrode plate is exposed at a side end surface of the element, and an exposed portion of the internal electrode plate on the side end surface and an electrostrictive material in the vicinity thereof are provided. Only above, the general formula (I) (Wherein X is a phenyl group; a biphenyl group; and at least one of the phenyl group and the biphenyl group is O, CO, S, CH
2 , a tetravalent group selected from the group consisting of a polyphenyl group linked by at least one of C (CH 3 ) 2 and C (CF 3 ) 2 , wherein Y is a phenyl group; a biphenyl group; And at least one of the biphenyl groups is O, CO, S, SO 2 , C
H 2 , a divalent group selected from the group consisting of a polyphenyl group, an alkylene group, and a xylylene group bonded by at least one of C (CH 3 ) 2 and C (CF 3 ) 2. Characterized in that a polyimide resin insulating layer having a repeating unit is formed.

上記の電歪効果素子を製造する本発明の製造方法は、
電歪材料の膜又は薄板と内部電極板とが交互に積層され
ている電歪効果素子の側端面に該内部電極板の端面が露
出している該電歪効果素子を、一般式(II) (式中、Xはフェニル基;ビフェニル基;及びフェニル
基及びビフェニル基の少なくとも1種がO、CO、S、CH
2、C(CH3)2及びC(CF3)2の少なくとも1種によって結合
されたポリフェニル基からなる群から選ばれた四価の基
であり、Yはフェニル基;ビフェニル基;フェニル基及
びビフェニル基の少なくとも1種がO、CO、S、SO2、C
H2、C(CH3)2及びC(CF3)2の少なくとも1種によって結合
されたポリフェニル基;アルキレン基;及びキシリレン
基からなる群から選ばれた二価の基である) で表わされる繰り返し単位を有するポリアミド酸樹脂の
カルボキシル基を塩基で中和し、水で希釈して得た被膜
形成用電気泳動浴中に浸漬し、該電歪効果素子の内部電
極板を陽極として電気泳動を実施して該電歪効果素子の
側端面上の該内部電極板の露出部とその近傍のみに該ポ
リアミド酸を析出させて被膜層を形成し、その後加熱処
理して該被膜層のポリアミド酸樹脂をイミド化させて一
般式(I) (式中、X及びYは前記の通りである) で表わされる繰り返し単位を有するポリイミド樹脂の絶
縁層を形成させることを特徴とする。
The manufacturing method of the present invention for manufacturing the above electrostrictive effect element,
An electrostrictive element in which an end surface of the internal electrode plate is exposed at a side end surface of the electrostrictive element in which a film or a thin plate of an electrostrictive material and an internal electrode plate are alternately laminated is represented by a general formula (II) (Wherein X is a phenyl group; a biphenyl group; and at least one of the phenyl group and the biphenyl group is O, CO, S, CH
2 , a tetravalent group selected from the group consisting of a polyphenyl group linked by at least one of C (CH 3 ) 2 and C (CF 3 ) 2 , wherein Y is a phenyl group; a biphenyl group; And at least one of the biphenyl groups is O, CO, S, SO 2 , C
H 2 , a divalent group selected from the group consisting of a polyphenyl group, an alkylene group, and a xylylene group bonded by at least one of C (CH 3 ) 2 and C (CF 3 ) 2. The carboxyl group of the polyamic acid resin having a repeating unit is neutralized with a base, immersed in a film-forming electrophoresis bath obtained by diluting with water, and electrophoresis using the internal electrode plate of the electrostrictive effect element as an anode. To form a coating layer by depositing the polyamic acid only on the exposed portion of the internal electrode plate on the side end surface of the electrostrictive effect element and in the vicinity thereof, and then heat-treat the polyamide acid of the coating layer. The resin is imidized to give a compound of the general formula (I) (Wherein X and Y are as defined above). An insulating layer of a polyimide resin having a repeating unit represented by the following formula is formed.

本発明の製造方法において用いられる上記のポリアミ
ド酸樹脂はその一部が予めイミド化されていてもよい。
The polyamic acid resin used in the production method of the present invention may be partially imidized in advance.

上記の一般式(I)で表わされる繰り返し単位を有す
るポリイミド樹脂及び一般式(II)で表わされる繰り返
し単位を有するポリアミド樹脂において、Xの具体例と
して次ぎのものがある: また、Yの具体例としては次ぎのものがある: 前記の一般式(I)で表わされる繰り返し単位を有す
るポリイミド樹脂の電歪効果素子基材への密着性及び耐
熱性の観点からXが 又は であり、Yが であることが特に好ましい。
In the polyimide resin having the repeating unit represented by the general formula (I) and the polyamide resin having the repeating unit represented by the general formula (II), specific examples of X include the following: Further, specific examples of Y include the following: From the viewpoint of adhesion and heat resistance of the polyimide resin having the repeating unit represented by the general formula (I) to the electrostrictive element substrate, X is Or And Y is Is particularly preferred.

本発明の製造方法において用られる前記の一般式(I
I)で表わされる繰り返し単位を有するポリアミド酸樹
脂は一般式(III) (式中、Xは前記の通りである) を有するテトラカルボン酸無水物類と一般式(IV) H2N−Y−NH2 (IV) (式中、Yは前記の通りである) を有するジアミン類との付加反応によって得られる。
The above general formula (I) used in the production method of the present invention.
The polyamic acid resin having a repeating unit represented by I) has a general formula (III) (Wherein X is as defined above) and a general formula (IV) H 2 N—Y—NH 2 (IV) wherein Y is as defined above. Obtained by an addition reaction with diamines.

上記のテトラカルボン酸無水物類としては、例えば、
ピロメリット酸二無水物、3,3′,4,4′−ベンゾフェノ
ンテトラカルボン酸二無水物、2,2′,3,3′−ベンゾフ
ェノンテトラカルボン酸二無水物、3,3′,4,4′−ビフ
ェニルテトラカルボン酸二無水物、2,2′,3,3′−ビフ
ェニルテトラカルボン酸二無水物、2,2−ビス(3,4−ジ
カルボキシフェニル)プロパン二無水物、2,2−ビス
(2,3−ジカルボキシフェニル)プロパン二無水物、ビ
ス(3,4−ジカルボキシフェニル)エーテル二無水物、
ビス(3,4−ジカルボキシフェニル)スルホン二無水
物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二
無水物、ビス(2,3−ジカルボキシフェニル)メタン二
無水物、ビス(3,4−ジカルボキシフェニル)メタン二
無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水
物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、
1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,2,
3,4−ベンゼンテトラカルボン酸二無水物、3,4,9,10−
ペリレンテトラカルボン酸二無水物、2,3,6,7−アント
ラセンテトラカルボン酸二無水物、1,2,7,8−フェナン
トレンテトラカルボン酸二無水物等が好ましいものとし
て挙げられる。これらのうちで特に好ましいテトラカル
ボン酸二無水物は、ピロメリット酸二無水物、3,3′,4,
4′−ベンゾフエノンテトラカルボン酸二無水物、3,
3′,4,4′−ビフェニルテトラカルボン酸二無水物、お
よびビス(3,4−ジカルボキシフェニル)エーテル二無
水物である。
As the above tetracarboxylic anhydrides, for example,
Pyromellitic dianhydride, 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, 2,2', 3,3'-benzophenonetetracarboxylic dianhydride, 3,3 ', 4, 4'-biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2, 2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride,
Bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride,
1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,2,
3,4-benzenetetracarboxylic dianhydride, 3,4,9,10-
Preferred are perylenetetracarboxylic dianhydride, 2,3,6,7-anthracenetetracarboxylic dianhydride, 1,2,7,8-phenanthrenetetracarboxylic dianhydride and the like. Of these, particularly preferred tetracarboxylic dianhydrides are pyromellitic dianhydride, 3,3 ′, 4,
4'-benzophenonetetracarboxylic dianhydride, 3,
3 ', 4,4'-biphenyltetracarboxylic dianhydride and bis (3,4-dicarboxyphenyl) ether dianhydride.

上記のジアミン類としては、3,3′−ジアミノベンゾ
フェノン、1,3−ビス(3−アミノフェノキシ)ベンゼ
ン、4,4′−ビス(3−アミノフェノキシ)ビフェニ
ル、2,2−ビス[4−(3−アミノフェノキシ)フェニ
ル]プロパン、2,2−ビス[4−(3−アミノフェノキ
シ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパ
ン、ビス[4−(3−アミノフェノキシ)フェニル]ス
ルフィド、ビス[4−(3−アミノフェノキシ)フェニ
ル]ケトン、ビス[4−(3−アミノフェノキシ)フェ
ニル]スルホン等の、メタ位のジアミンが挙げられ、こ
れらは単独で、或いは2種以上混合して用いられる。
Examples of the above diamines include 3,3'-diaminobenzophenone, 1,3-bis (3-aminophenoxy) benzene, 4,4'-bis (3-aminophenoxy) biphenyl, and 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, bis [4- (3- Meta-position diamines such as amino [phenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) phenyl] ketone, and bis [4- (3-aminophenoxy) phenyl] sulfone; Alternatively, two or more kinds are used in combination.

上記したテトラカルボン酸無水物とジアミンとの反応
は通常、有機溶媒中で実施する。有機溶媒としては、例
えば、N−メチル−2−ピロリドン、N,N−ジメチルア
セトアミド、N,N−ジメチルホルムアミド、1,3−ジメチ
ル−2−イミダゾリジノン、N,N−ジエチルアセトアミ
ド、N,N−ジメチルメトキシアセトアミド、ジメチルス
ルホキシド、ピリジン、ジメチルスルホン、ヘキサメチ
ルホスホルアミド、テトラメチル尿素、N−メチルカプ
ロラクタム、テトラヒドロフラン、m−ジオキサン、p
−ジオキサン、1,2−ジメトキシエタン、ビス(2−メ
トキシエチル)エーテル、1,2−ビス(2−メトキシエ
トキシ)エタン、ビス[2−(2−メトキシエトキシ)
エチル]エーテル等があげられる。これらの有機溶媒は
単独でも或いは2種以上混合して用いても構わない。反
応温度は通常200℃以下−20℃以上、好ましくは50℃以
下−10℃以上、さらに好ましくは0℃以上である室温程
度である。反応圧力は特に限定されず、常圧で十分実施
できる。反応時間は溶剤の種類、反応温度および用いら
れるジアミンや酸二無水物により異なりうるが、ポリア
ミド酸の生成が完了するのに十分な時間反応させるには
通常2〜40時間、好ましくは4〜24時間程度で十分であ
る。
The reaction between the tetracarboxylic anhydride and the diamine is usually performed in an organic solvent. As the organic solvent, for example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, dimethylsulfoxide, pyridine, dimethylsulfone, hexamethylphosphoramide, tetramethylurea, N-methylcaprolactam, tetrahydrofuran, m-dioxane, p
-Dioxane, 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, bis [2- (2-methoxyethoxy)
Ethyl] ether and the like. These organic solvents may be used alone or in combination of two or more. The reaction temperature is usually about 200 ° C. or lower, −20 ° C. or higher, preferably 50 ° C. or lower, −10 ° C. or higher, and more preferably about 0 ° C. or higher, about room temperature. The reaction pressure is not particularly limited, and the reaction can be sufficiently performed at normal pressure. The reaction time may vary depending on the type of the solvent, the reaction temperature and the diamine or acid dianhydride used, but it is usually 2 to 40 hours, preferably 4 to 24 hours for the reaction to be carried out for a time sufficient to complete the formation of the polyamic acid. About an hour is enough.

斯くして得られるポリアミド酸溶液はポリアミド酸を
5〜40重量%、特に好ましくは10〜30重量%含有する溶
液であり、対数粘度が0.5〜4dl/g(35℃、温度0.5g/m
l、N,N−ジメチルアセトアミドで測定した値)、特に好
ましくは0.6〜2.5dl/gであるものが後述する水溶化性、
及び加熱処理後のポリイミドの被膜物性に優れるので望
ましい。
The polyamic acid solution thus obtained is a solution containing 5 to 40% by weight, particularly preferably 10 to 30% by weight of polyamic acid, and has a logarithmic viscosity of 0.5 to 4 dl / g (35 ° C., temperature 0.5 g / m 2
l, the value measured with N, N-dimethylacetamide), particularly preferably 0.6 to 2.5 dl / g, the water solubility described below,
Also, it is desirable because the polyimide film properties after the heat treatment are excellent.

本発明の製造方法においては、前記の一般式(II)で
表わされる繰り返し単位を有するポリアミド酸樹脂は水
の存在下で塩基、例えばアミン又はアルカリ金属イオン
の添加によって、そのCOOH基がCOO-イオンに解離して水
に可溶となるか又は安定にコロイド分散することがで
き、電気泳動によって陽極である積層電歪効果素子上に
析出し、不溶化することができる。
In the production method of the present invention, the polyamic acid resin having a repeating unit represented by the above general formula (II) is prepared by adding a base, for example, an amine or an alkali metal ion in the presence of water, so that the COOH group becomes COO - ion. And can be dissolved in water or can be stably dispersed in colloid, and can be precipitated and insolubilized by electrophoresis on the laminated electrostrictive effect element as an anode.

上記の塩基としては、アンモニア:ジアルキルアミ
ン、ジエタノールアミン、モルホリン等の二級アミン
類:トリエチルアミン、トリブチルアミン、トリエタノ
ールアミン、トリイソプロパノールアミン、ジメチルエ
タノールアミン、ジメチルイソプロパノールアミン、ジ
エチルエタノールアミン、ジメチルベンジルアミン等の
三級アミン類:苛性ソーダ、苛性カリ等の無機塩基類が
用いられるが、水希釈後の安定性や得られる被膜の性質
から三級アミン類が特に好ましい。
Examples of the base include ammonia: secondary amines such as dialkylamine, diethanolamine, and morpholine: triethylamine, tributylamine, triethanolamine, triisopropanolamine, dimethylethanolamine, dimethylisopropanolamine, diethylethanolamine, dimethylbenzylamine, and the like. Tertiary amines: Inorganic bases such as caustic soda and caustic potash are used, but tertiary amines are particularly preferable in view of stability after dilution with water and properties of a coating film obtained.

水稀釈性を付与する為に必要な塩基量は中和すべきポ
リアミド酸のカルボキシル当量に対して30〜110モル%
が一般的であり、特に40〜100モル%であることが好ま
しい。斯くして中和を行うことによって、ポリアミド酸
は完全に水溶性となるか或いは部分的に水溶化して懸濁
状態となり水稀釈性を有するようになる。いづれの場合
においても、ポリアミド酸を中和し、これを下記の程度
の樹脂濃度となるように水希釈することにより、電気泳
動処理が可能なポリアミド酸水溶液からなる、被膜形成
用電気泳動浴とすることが出来るのである。
The amount of base required for imparting water dilutability is 30 to 110 mol% based on the carboxyl equivalent of the polyamic acid to be neutralized.
In general, and particularly preferably 40 to 100 mol%. By performing the neutralization in this manner, the polyamic acid becomes completely water-soluble or partially solubilized to become a suspended state and becomes water-dilutable. In any case, by neutralizing the polyamic acid and diluting it with water so as to have a resin concentration of the following degree, an electrophoretic bath for forming a film comprising a polyamic acid aqueous solution capable of electrophoresis treatment and You can do it.

このようにして析出したポリアミド酸樹脂は加熱処理
によって一般式(I) (式中、Xは前記の通りである) で表わされる繰り返し単位を有するポリイミド樹脂に変
換される。
The polyamic acid resin thus precipitated is subjected to a heat treatment to obtain a compound of the general formula (I) (Wherein X is as defined above) is converted to a polyimide resin having a repeating unit represented by the following formula:

上記のようにして得られたポリイミド樹脂絶縁層は絶
縁層厚50μ程度で絶縁耐力が1000V以上であり且つ金属
との接着も非常に優れている。また、これまで問題であ
ったセラミックスとの濡れ性も無機絶縁層よりも小さい
ため側端面の近傍付近にのみ絶縁層が付着し、層間の距
離を従来のものより極端に小さくすることが可能であ
る。
The polyimide resin insulating layer obtained as described above has an insulating layer thickness of about 50 μm, has a dielectric strength of 1000 V or more, and has excellent adhesion to metal. In addition, since the wettability with ceramics, which has been a problem so far, is smaller than that of the inorganic insulating layer, the insulating layer adheres only in the vicinity of the side end surface, and the distance between the layers can be extremely reduced as compared with the conventional one. is there.

実施例 1 撹拌器、還流冷却器及び窒素導入管を備えた反応容器
中で、3,3′−ジアミノベンゾフェノン53.0g(0.25モ
ル)をN,N−ジメチルアセトアミド240mlに溶解した。こ
の溶液に3,3′,4,4′−ベンゾフェノンテトラカルボン
酸二無水物78.6g(0.244モル)の粉末を添加し、10℃で
24時間撹拌してポリアミド酸溶液を得た。得られたポリ
アミド酸の対数粘度は0.6dl/gであった。このポリアミ
ド酸溶液中にジメチルエタノールアミン39.1g(対カル
ボキシル当量90モル%)を除々に加え、20分間室温にて
撹拌後、水905.3gを撹拌しつつ徐々に室温にて加え水希
釈してポリアミド酸水溶液を調製した(樹脂濃度10重量
%)。
Example 1 In a reaction vessel equipped with a stirrer, a reflux condenser and a nitrogen inlet tube, 53.0 g (0.25 mol) of 3,3'-diaminobenzophenone was dissolved in 240 ml of N, N-dimethylacetamide. To this solution was added powder of 78.6 g (0.244 mol) of 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride,
The mixture was stirred for 24 hours to obtain a polyamic acid solution. The logarithmic viscosity of the obtained polyamic acid was 0.6 dl / g. 39.1 g of dimethylethanolamine (90 mol% based on carboxyl equivalent) was gradually added to the polyamic acid solution, and the mixture was stirred at room temperature for 20 minutes. An aqueous acid solution was prepared (resin concentration 10% by weight).

また積層体の試料については一方の端面は一層おきに
金属電極が露出しておりもう一方の端面は全金属電極が
露出しているものを予め作っておいた。一層おきに金属
電極が露出した側に銀電極を焼付け、半田でリード線を
接続した。前記水溶液をプラスチックの槽へ入れ、被膜
形成用電気泳動浴とし、被膜対象となる前記積層体を陽
極として浸潤しリード線を陽極に接続した。100Vで20秒
間電圧を印加して電気泳動を行った。その後積層体を取
り出し、水洗後150℃で2時間、280℃で2時間の加熱処
理により乾燥イミド化を行った。次に積層体をまん中で
切断し、イミド樹脂絶縁膜付着側に銀電極を塗布しリー
ド線を付けた。同様の操作を行うことにより電極一枚毎
に左右に絶縁層を有する積層体が得られた。この絶縁層
の厚さは50ミクロン程度で絶縁耐力は1000V以上である
ことが確認された。
Further, with respect to the sample of the laminated body, one in which metal electrodes were exposed at every other end face and all metal electrodes were exposed at the other end face was prepared in advance. A silver electrode was baked on the side where the metal electrode was exposed every other layer, and a lead wire was connected with solder. The aqueous solution was put into a plastic tank, used as an electrophoresis bath for forming a film, and the laminate to be coated was infiltrated with the anode and a lead wire was connected to the anode. Electrophoresis was performed by applying a voltage at 100 V for 20 seconds. Thereafter, the laminate was taken out, washed with water, and subjected to heat treatment at 150 ° C. for 2 hours and 280 ° C. for 2 hours to perform dry imidization. Next, the laminate was cut in the middle, a silver electrode was applied to the side where the imide resin insulating film was attached, and a lead wire was attached. By performing the same operation, a laminate having insulating layers on the left and right for each electrode was obtained. It was confirmed that the thickness of this insulating layer was about 50 microns and the dielectric strength was 1000 V or more.

実施例 2 撹拌機、還流冷却器及び窒素導入管を備えた容器に、
2,2−ビス[4−(3−アミノフェノキシ)フェニル]
プロパン41.0g(0.1モル)とN,N−ジメチルアセトアミ
ド200mlを装填し、0℃付近まで冷却し、窒素雰囲気下
に於いてピロメリット酸二無水物21.8g(0.1モル)の粉
末を加え、0℃付近で2時間撹拌した。次に上記溶液を
室温に戻し、窒素雰囲気下で約20時間の撹拌を行った。
こうして得られたポリアミド酸の対数粘度は1.5dl/gで
あった。このポリアミド酸溶液中にトリエチルアミン2
0.2g(対カルボキシル当量100モル%)を徐々に加え1
時間室温にて撹拌後、水973gを撹拌しつつ徐々に加えて
希釈しポリアミド酸水溶液を調整した(樹脂濃度5重量
%)。
Example 2 In a container equipped with a stirrer, a reflux condenser and a nitrogen inlet tube,
2,2-bis [4- (3-aminophenoxy) phenyl]
41.0 g (0.1 mol) of propane and 200 ml of N, N-dimethylacetamide were charged, cooled to around 0 ° C., and a powder of 21.8 g (0.1 mol) of pyromellitic dianhydride was added under a nitrogen atmosphere. The mixture was stirred at around ° C for 2 hours. Next, the solution was returned to room temperature and stirred under a nitrogen atmosphere for about 20 hours.
The logarithmic viscosity of the polyamic acid thus obtained was 1.5 dl / g. Triethylamine 2 in this polyamic acid solution
0.2 g (relative to carboxyl equivalent 100 mol%)
After stirring at room temperature for 97 hours, 973 g of water was gradually added with stirring to dilute to prepare a polyamic acid aqueous solution (resin concentration: 5% by weight).

実施例1と同様にして積層体の試料を作成し、この試
料及び上記のポリアミド酸水溶液を用いて、実施例1と
同様にして絶縁層を設けた。この絶縁層は厚さ50μで10
00V以上の絶縁耐力を有していた。
A sample of the laminated body was prepared in the same manner as in Example 1, and an insulating layer was provided in the same manner as in Example 1 using this sample and the above-mentioned polyamic acid aqueous solution. This insulating layer has a thickness of 50μ and 10
It had a dielectric strength of 00V or more.

実施例 3 撹拌機、還流冷却器及び窒素導入管を備えた容器に、
2,2−ビス[4−(3−アミノフェノキシ)フェニル]
プロパン41.0g(0.1モル)とN,N−ジメチルアセトアミ
ド219.6gをくわえ、室温で窒素雰囲気下に、3,3′,4,
4′−ベンゾフェノンテトラカルボン酸二無水物31.6g
(0.098モル)を乾燥固体のまま、溶液温度の上昇に注
意しながら、少量づつ加え、室温で23時間反応した。こ
うして得られたポリアミド酸の対数粘度は0.70dl/gであ
った。このポリアミド酸溶液中にトリエタノールアミン
14.6g(対カルボキシル当量50モル%)を徐々に加え、
2時間40℃にて撹拌、水117.2gを撹拌しつつ徐々に加え
て希釈しポリアミド酸水溶液を調製した(樹脂濃度15重
量%)。
Example 3 In a container equipped with a stirrer, a reflux condenser and a nitrogen inlet tube,
2,2-bis [4- (3-aminophenoxy) phenyl]
Add 41.0 g (0.1 mol) of propane and 219.6 g of N, N-dimethylacetamide, and add 3,3 ', 4,
4'-benzophenonetetracarboxylic dianhydride 31.6 g
(0.098 mol) in a dry solid state while paying attention to the rise in solution temperature, and reacted at room temperature for 23 hours. The logarithmic viscosity of the polyamic acid thus obtained was 0.70 dl / g. Triethanolamine in this polyamic acid solution
14.6 g (relative to carboxyl equivalent 50 mol%) was gradually added,
The mixture was stirred for 2 hours at 40 ° C., and 117.2 g of water was gradually added thereto with stirring for dilution to prepare a polyamic acid aqueous solution (resin concentration: 15% by weight).

実施例1と同様にして積層体の試料を作成し、この試
料及び上記のポリアミド酸水溶液を用いて、実施例1と
同様にして絶縁層を設けた。この絶縁層は厚さ50μで10
00V以上の絶縁耐力を有していた。
A sample of the laminated body was prepared in the same manner as in Example 1, and an insulating layer was provided in the same manner as in Example 1 using this sample and the above-mentioned polyamic acid aqueous solution. This insulating layer has a thickness of 50μ and 10
It had a dielectric strength of 00V or more.

実施例4〜19 ジアミンの種類と量、N,N−ジメチルアセトアミドの
量、テトラカルボン酸二無水物の種類と量、中和に使用
するジメチルエタノールアミンの量、稀釈に用いる水の
量をかえる他は総て実施例1と同様の操作で行った。
Examples 4 to 19 Change the type and amount of diamine, the amount of N, N-dimethylacetamide, the type and amount of tetracarboxylic dianhydride, the amount of dimethylethanolamine used for neutralization, and the amount of water used for dilution. The other operations were the same as in Example 1.

尚、中和に使用するジメチルエタノールアミンの量は
対カルボキシル当量90重量%より算出されたものとし、
稀釈に用いる水の量は樹脂濃度10重量%となるように算
出されたものとした。又、表中PMDAは無水ピロメリット
酸、BTDAは3,3′,4,4′−ベンゾフェノンテトラカルボ
ン酸二無水物、ODPAはビス(3,4−ジカルボキシフェニ
ル)エーテル二無水物、BPDAは3,3′,4,4′−ビフェニ
ルテトラカルボン酸二無水物を示す。
The amount of dimethylethanolamine used for neutralization was calculated from 90% by weight of carboxyl equivalent,
The amount of water used for dilution was calculated to be a resin concentration of 10% by weight. In the table, PMDA is pyromellitic anhydride, BTDA is 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, ODPA is bis (3,4-dicarboxyphenyl) ether dianhydride, and BPDA is 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride is shown.

いずれの場合にも、絶縁層は厚さ50μで1000V以上の
絶縁耐力を有していた。
In each case, the insulating layer had a thickness of 50 μm and a dielectric strength of 1000 V or more.

[発明の効果] 本発明により、これまで積層体の一層の厚さを100ミ
クロン以下にすることが不可能であったものを20〜100
ミクロンにすることが可能になった。また、これまで有
機物においては絶縁性が悪いとして注目されていなかっ
たが、驚くべきことにポリイミド樹脂を用いると絶縁体
力が無機物に匹敵するところまで上昇した。
[Effects of the Invention] According to the present invention, it has been impossible to reduce the thickness of one layer of the laminate to 100 μm or less.
It is now possible to make a micron. In addition, organic materials have not been noticed as having poor insulating properties, but surprisingly, use of a polyimide resin has increased the insulating power to a level comparable to inorganic materials.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電歪材料の膜又は薄板と内部電極板とが交
互に積層されている電歪効果素子であって、該素子の側
端面に該内部電極板の端面が露出しており、該側端面上
の該内部電極板の露出部とその近傍の電歪材料上のみ
に、一般式(I) (式中、Xはフェニル基;ビフェニル基;及びフェニル
基及びビフェニル基の少なくとも1種がO、CO、S、CH
2、C(CH3)2及びC(CF3)2の少なくとも1種によって結合
されたポリフェニル基からなる群から選ばれた四価の基
であり、Yはフェニル基;ビフェニル基;フェニル基及
びビフェニル基の少なくとも1種がO、CO、S、SO2、C
H2、C(CH3)2及びC(CF3)2の少なくとも1種によって結合
されたポリフェニル基;アルキレン基;及びキシリレン
基からなる群から選ばれた二価の基である) で表わされる繰り返し単位を有するポリイミド樹脂の絶
縁層が形成されていることを特徴とする電歪効果素子。
1. An electrostrictive effect element in which a film or thin plate of an electrostrictive material and an internal electrode plate are alternately laminated, wherein an end face of the internal electrode plate is exposed at a side end face of the element. Only on the exposed portion of the internal electrode plate on the side end face and on the electrostrictive material in the vicinity thereof, the general formula (I) (Wherein X is a phenyl group; a biphenyl group; and at least one of the phenyl group and the biphenyl group is O, CO, S, CH
2 , a tetravalent group selected from the group consisting of a polyphenyl group linked by at least one of C (CH 3 ) 2 and C (CF 3 ) 2 , wherein Y is a phenyl group; a biphenyl group; And at least one of the biphenyl groups is O, CO, S, SO 2 , C
H 2 , a divalent group selected from the group consisting of a polyphenyl group, an alkylene group, and a xylylene group bonded by at least one of C (CH 3 ) 2 and C (CF 3 ) 2. An electrostrictive effect element, wherein an insulating layer of a polyimide resin having a repeating unit is formed.
【請求項2】電歪材料の膜又は薄板と内部電極板とが交
互に積層されている電歪効果素子の側端面に該内部電極
板の端面が露出している該電歪効果素子を、一般式(I
I) (式中、Xはフェニル基;ビフェニル基;及びフェニル
基及びビフェニル基の少なくとも1種がO、CO、S、CH
2、C(CH3)2及びC(CF3)2の少なくとも1種によって結合
されたポリフェニル基からなる群から選ばれた四価の基
であり、Yはフェニル基;ビフェニル基;フェニル基及
びビフェニル基の少なくとも1種がO、CO、S、SO2、C
H2、C(CH3)2及びC(CF3)2の少なくとも1種によって結合
されたポリフェニル基;アルキレン基;及びキシリレン
基からなる群から選ばれた二価の基である) で表わされる繰り返し単位を有するポリアミド酸樹脂の
カルボキシル基を塩基で中和し、水で希釈して得た被膜
形成用電気泳動浴中に浸漬し、該電歪効果素子の内部電
極板を陽極として電気泳動を実施して該電歪効果素子の
側端面上の該内部電極板の露出部とその近傍のみに該ポ
リアミド酸を析出させて被膜層を形成し、その後加熱処
理して該被膜層のポリアミド酸樹脂をイミド化させて一
般式(I) (式中、X及びYは前記の通りである) で表わされる繰り返し単位を有するポリイミド樹脂の絶
縁層を形成させることを特徴とする請求項1記載の電歪
効果素子の製造方法。
2. An electrostrictive element in which an end face of the internal electrode plate is exposed at a side end face of the electrostrictive element in which a film or a thin plate of an electrostrictive material and an internal electrode plate are alternately laminated. General formula (I
I) (Wherein X is a phenyl group; a biphenyl group; and at least one of the phenyl group and the biphenyl group is O, CO, S, CH
2 , a tetravalent group selected from the group consisting of a polyphenyl group linked by at least one of C (CH 3 ) 2 and C (CF 3 ) 2 , wherein Y is a phenyl group; a biphenyl group; And at least one of the biphenyl groups is O, CO, S, SO 2 , C
H 2 , a divalent group selected from the group consisting of a polyphenyl group, an alkylene group, and a xylylene group bonded by at least one of C (CH 3 ) 2 and C (CF 3 ) 2. The carboxyl group of the polyamic acid resin having a repeating unit is neutralized with a base and immersed in an electrophoresis bath for film formation obtained by diluting with water, and electrophoresis using the internal electrode plate of the electrostrictive effect element as an anode. To form a coating layer by depositing the polyamic acid only on the exposed portion of the internal electrode plate on the side end surface of the electrostrictive effect element and in the vicinity thereof, and then heat-treat the polyamide acid of the coating layer. The resin is imidized to give a compound of the general formula (I) The method for producing an electrostrictive effect element according to claim 1, wherein an insulating layer of a polyimide resin having a repeating unit represented by the following formula (where X and Y are as defined above) is formed.
JP1171854A 1989-07-05 1989-07-05 Electrostrictive effect element and method of manufacturing the same Expired - Lifetime JP2865709B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1171854A JP2865709B2 (en) 1989-07-05 1989-07-05 Electrostrictive effect element and method of manufacturing the same
EP90307104A EP0407099B1 (en) 1989-07-05 1990-06-28 Multi-layered ceramic elements and method for producing same
DE69024863T DE69024863T2 (en) 1989-07-05 1990-06-28 Multi-layer ceramic element and method for its production
KR1019900010103A KR930010420B1 (en) 1989-07-05 1990-07-04 Multi-layered ceramic element and method for producing the same
CA002020367A CA2020367A1 (en) 1989-07-05 1990-07-04 Multi-layered ceramic elements and method for producing same
US07/637,554 US5173162A (en) 1989-07-05 1991-01-04 Multi-layered electrostrictive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1171854A JP2865709B2 (en) 1989-07-05 1989-07-05 Electrostrictive effect element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0338076A JPH0338076A (en) 1991-02-19
JP2865709B2 true JP2865709B2 (en) 1999-03-08

Family

ID=15931014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1171854A Expired - Lifetime JP2865709B2 (en) 1989-07-05 1989-07-05 Electrostrictive effect element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2865709B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012105318A1 (en) * 2012-06-19 2013-12-19 Epcos Ag Method for producing a ceramic component and a ceramic component

Also Published As

Publication number Publication date
JPH0338076A (en) 1991-02-19

Similar Documents

Publication Publication Date Title
JP3534151B2 (en) Polyimide precursor composition and polyimide film
CN107325285B (en) Polyimide, polyimide-based adhesive, adhesive material, adhesive layer, adhesive sheet, laminate, wiring board, and method for producing same
US6320019B1 (en) Method for the preparation of polyamic acid and polyimide
US20100316877A1 (en) Method for preparing polyimide and polyimide prepared using the same
EP0424805B1 (en) Copolyimide ODPA/BPDA/4,4'-ODA/p-PDA
US20040010062A1 (en) Polyimide copolymer and methods for preparing the same
TW200300111A (en) Polyimide-metal layered products and polyamideimide-metal layered product
JP2016121295A (en) Polyimide precursor composition, polyimide molded article, and method for preparing polyimide molded article
US5173162A (en) Multi-layered electrostrictive effect element
US11859038B2 (en) Method for manufacturing a block copolymer of polyamide acid
DE69318675T2 (en) ADHESIVE FILM AND ITS PRODUCTION
CN106947079B (en) Modified polyimide, adhesive composition, copper foil with resin, copper-clad laminate, printed wiring board, and multilayer substrate
JP6427904B2 (en) Polyimide precursor composition, method for producing polyimide molded body, and polyimide molded body
JP6427905B2 (en) Polyimide precursor composition, method for producing polyimide molded body, and polyimide molded body
US5520960A (en) Electrically conductive polyimides containing silver trifluoroacetylacetonate
JP2018119122A (en) Polyimide precursor composition and method for producing polyimide molding
JP2865709B2 (en) Electrostrictive effect element and method of manufacturing the same
KR900003810B1 (en) Flexible printed circuit board and process for its production
JPH09174756A (en) Polyimide-metal foil composite film
US20100085680A1 (en) Crystalline encapsulants
JP4099769B2 (en) Process for producing methoxysilyl group-containing silane-modified polyimidesiloxane resin, the resin, the resin composition, a cured film, and a metal foil laminate
TW202146232A (en) Metal-clad polymer films and electronic devices
DE3689881T2 (en) BENDABLE PRINTED CIRCUIT BOARD COATED WITH COPPER.
JP2919946B2 (en) Laminated electrostrictive element and method of manufacturing the same
KR930010420B1 (en) Multi-layered ceramic element and method for producing the same