JPH0337584A - Magnetic field sensor - Google Patents

Magnetic field sensor

Info

Publication number
JPH0337584A
JPH0337584A JP1171412A JP17141289A JPH0337584A JP H0337584 A JPH0337584 A JP H0337584A JP 1171412 A JP1171412 A JP 1171412A JP 17141289 A JP17141289 A JP 17141289A JP H0337584 A JPH0337584 A JP H0337584A
Authority
JP
Japan
Prior art keywords
effect element
faraday effect
temperature
magnetic field
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1171412A
Other languages
Japanese (ja)
Inventor
Toshiharu Miyamoto
俊治 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1171412A priority Critical patent/JPH0337584A/en
Publication of JPH0337584A publication Critical patent/JPH0337584A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To enable detection of a magnetic intensity stable in a wide temperature range by making a phase difference between two axes, X and Y, of a 1/2 wavelength plate at a room temperature larger than pi(180 deg.) when a temperature coefficient of a Faraday effect element is negative. CONSTITUTION:Light 1 introduced from an optical fiber is transmitted through a polarizers 2, a 1/2 wavelength plate 7, a Faraday effect element 4 and an analyzer 5 sequentially. In this case, a rotary polarization element is replaced with the 1/2 wavelength plate 7 and when a temperature coefficient of the Faraday effect element is negative, a phase difference between two axes, X and Y, is made larger than pi in the 1/2 wavelength plate 7 at a room temperature and to the contrary, when the temperature coefficient of the Faraday effect element is positive, the phase difference between the two axes is made smaller than pi. This enables correction of a sensor as a whole in such a direction that the temperature coefficient of the Faraday effect element is down to zero thereby permitting detection of an intensity of a magnetic field stable in a wide temperature range.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁界センサに関し、よ−り詳細にはそのファ
ラデー効果素子の温度特性を補正して測定精度を向上し
得る磁界センサに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetic field sensor, and more particularly to a magnetic field sensor whose measurement accuracy can be improved by correcting the temperature characteristics of its Faraday effect element.

逆11りえ(− 第1の従来例として、光ファイバにより導かれる光を偏
光子、ファラデー効果素子、及び検光子に順次透過させ
て透過光の強度を検出することにより磁界強度を求める
磁界センサか知られているか、この場合検光子は、磁界
強度に比例した出力か得られるよう、偏光子に対し光軸
に関して45度旋回させて配置されている。上記ファラ
デー効果素子どしては今、磁気旋光能(磁界をかけるこ
とによりファラデー効果により偏光面が回転する現象を
生ずる能力)を有するか、自然旋光能(磁界等かかかっ
ていない状態であっても分子構造や結晶構造の特殊な非
対称性により直線偏光が物質を透過するとき偏光面が回
転する現象を生ずる能力)を有さない、例えはZn5e
多結晶を採用しているとすると、上記透過光の強度Pは
次式により与えられる。
Inverse 11 Rie (- The first conventional example is a magnetic field sensor that determines the magnetic field strength by sequentially transmitting light guided by an optical fiber through a polarizer, a Faraday effect element, and an analyzer and detecting the intensity of the transmitted light. As is known, in this case the analyzer is arranged at a rotation of 45 degrees with respect to the optical axis relative to the polarizer so as to obtain an output proportional to the magnetic field strength. Optical rotation ability (the ability to rotate the plane of polarized light due to the Faraday effect when a magnetic field is applied) or natural optical rotation ability (a special asymmetry in the molecular structure or crystal structure even when no magnetic field is applied) For example, Zn5e does not have the ability to cause the plane of polarization to rotate when linearly polarized light passes through a material.
If polycrystalline material is used, the intensity P of the transmitted light is given by the following equation.

P−Po (1+5in2θ) −P。(l−1−sin2Ve・11・Il)    
−(1)(但し、P・・透過光の強度:Po−・磁界を
セロとした場合の透過光の強度: θ ファラデー回転
角:Ve・・・2nSeのベルデ定数: ■・・・磁界
強度: C・・・7アラデー効果素子の長さ:  尚[
θ−Veiill]の関係がある。) そして、(1)式中、5in2Veilllの項をn〕
と置くと、rm=sin2Ve・■・0.n・・(2)
」が変調度、即ち光強度の変化割合である。
P-Po(1+5in2θ)-P. (l-1-sin2Ve・11・Il)
- (1) (However, P... Intensity of transmitted light: Po - - Intensity of transmitted light when the magnetic field is set to zero: θ Faraday rotation angle: Ve... Verdet constant of 2nSe: ■... Magnetic field strength : C...7 Length of Alladay effect element: Note that [
θ−Veill]. ) In formula (1), the term 5in2Veill is n]
If we put rm=sin2Ve・■・0. n...(2)
'' is the degree of modulation, that is, the rate of change in light intensity.

しかしながら、一般にファラデー効果素子のヘルプ定数
は、温度の影響を受けることが知られている。例えは、
室温(20°Cとする)のときの変調度をm。、室温か
20°CからΔT’Oだけ温度変化したときの変調度を
mlとしたときの変調度n〕の変化率は次式により与え
られる。
However, it is generally known that the help constant of a Faraday effect element is affected by temperature. For example,
The modulation depth at room temperature (20°C) is m. , when the modulation degree when the temperature changes by ΔT'O from room temperature or 20° C. is defined as ml, the rate of change of the modulation degree n] is given by the following equation.

(ml  mo)/mo    ・・・(3)(但し、
ml + mo”温度(20+ΔT)’C!、20°C
のときの変調度) これを図示したのか、第1図中の実線aであり、同図中
X軸は温度(°C)、Y軸は変調度変化率(m、−mo
)/m。(%)の各変化を表す。実線aは、右上かりで
あり、変調度変化率は温度上昇と共に増大するゆえ、Z
n5e製フアラデー効果素子は正の温度係数を有するこ
とが解る。
(ml mo)/mo...(3) (However,
ml + mo” temperature (20+ΔT)'C!, 20°C
The degree of modulation when
)/m. (%) represents each change. The solid line a slopes to the upper right, and since the rate of change in modulation degree increases as the temperature rises, Z
It can be seen that the N5E Faraday effect element has a positive temperature coefficient.

上述の如く、上記第1の従来例によれば、変調度変化率
が温度変化に応して変化する、即ち温度係数かゼロでな
いので、その後に別個に補正作業を必要とするという面
倒かあり、又上記の如く検光子をπ/4だけ旋回させて
配置する作業も比較的面倒であるという欠点かあった。
As described above, according to the first conventional example, since the modulation rate changes in response to temperature changes, that is, the temperature coefficient is not zero, there is the trouble of requiring separate correction work after that. Also, as mentioned above, the work of rotating the analyzer by π/4 and arranging it is also relatively troublesome.

このため、第2の従来例として、第2図に示す如く、フ
ァラデー効果素子と、偏光子及び検光子の何れかとの間
に、π/4(即ち45度)の旋光能を有する旋光子を配
置させることにより、検光子は何ら旋回させることなく
配置できるようにしたものがある。同図中、光ファイバ
により導かれる光1は、偏光子2、旋光子3、ファラデ
ー効果素子4、検光子5を順次透過する。この場合、旋
光子3は、BSO(ヒスマスシリコンオキザイド:例え
はBi+2SiO+z)単結晶からなり、又ファラデー
効果素子4は、上記と同しくZn5e多結晶からなる。
For this reason, as a second conventional example, as shown in FIG. Some analyzers are arranged so that the analyzer can be arranged without any rotation. In the figure, light 1 guided by an optical fiber passes through a polarizer 2, an optical rotator 3, a Faraday effect element 4, and an analyzer 5 in order. In this case, the optical rotator 3 is made of a BSO (hismuth silicon oxide; for example, Bi+2SiO+z) single crystal, and the Faraday effect element 4 is made of Zn5e polycrystal as described above.

この場合、BSO単結晶は自然旋光能のみならず磁気旋
光能をも有し、しかも自然旋光能も温度の影響を受ける
ため、その変調度Ill、及びその変調度変化率は夫々
上記(2)、(3)式を参考として次の如く与えられる
In this case, the BSO single crystal has not only a natural optical rotation ability but also a magnetic optical rotation ability, and since the natural optical rotation ability is also affected by temperature, its modulation degree Ill and its modulation degree change rate are respectively calculated as described in (2) above. , is given as follows with reference to equation (3).

m= 5in2(Ve+ ・L +Ve2・Q2)H(
4) (Ill+   mo)/m。
m= 5in2(Ve+・L +Ve2・Q2)H(
4) (Ill+mo)/m.

=(++  (k、・ΔT−痣、十に2  ・ΔT−仏
2 )/ (Ve+aL  +Vez  IL )l/
(12に1ΔT)(5) (但し、ml + no”’温度(20+ΔT)0C,
20°Cのときの変調度;  Ve、 、Ve2 ・・
4nSe、 BSOのベルデ定数;  Q+ 、 Q2
−4nSe、 BSOの長さ:に1に2  ・ベルブ定
数Ve、 、Ve2の温度係数(即ち、単位温度当たり
の変化分):に、・・BSOの自然旋光能の温度係数:
 ΔT・・・20°Cからの温度変化)これを図示した
のか、第1図中の破線すであり、これによれは、変調度
変化率の温度係数は、BSOの自然旋光能の温度特性の
影響を受けて正から負に転し、しかも幾分温度係数ゼロ
に近付いているので、温度特性の補正が行われているこ
とか解る。
=(++ (k, ・ΔT-Bruise, 2 in 10 ・ΔT-Buddha 2)/ (Ve+aL +Vez IL)l/
(1ΔT in 12) (5) (However, ml + no”’temperature (20+ΔT)0C,
Modulation degree at 20°C; Ve, , Ve2...
4nSe, Verdet constant of BSO; Q+, Q2
-4nSe, Length of BSO: 1 to 2 ・Temperature coefficient of Berbe constant Ve, , Ve2 (i.e. change per unit temperature): ・Temperature coefficient of natural rotation power of BSO:
ΔT...Temperature change from 20°C) This is illustrated by the broken line in Figure 1, which shows that the temperature coefficient of the rate of change in modulation index is the temperature characteristic of the natural rotation power of BSO. The temperature coefficient changes from positive to negative due to the influence of , and it is also approaching zero, so it can be seen that the temperature characteristics are being corrected.

しかしながら、上記第2の従来例の如く、BSO旋光子
3を採用する場合、透過光の波長か例えは850−87
0nmでは、BSOの1mm長さ当たりの旋光角は10
,5度であるから、π/4(−45°)の旋光角を得る
ためには、45/lO,5−4,3mmの結晶厚さ(長
さ)を必要とする。しかるに、近年は磁気センサの小型
化の要求か強く、上記厚さでは、この小型化の要求に応
えることが出来ないという欠点あった。
However, when adopting the BSO optical rotator 3 as in the second conventional example, the wavelength of the transmitted light is, for example, 850-87
At 0 nm, the angle of rotation per 1 mm length of BSO is 10
, 5 degrees, in order to obtain an optical rotation angle of π/4 (-45 degrees), a crystal thickness (length) of 45/lO, 5-4.3 mm is required. However, in recent years there has been a strong demand for miniaturization of magnetic sensors, and the above-mentioned thickness has the disadvantage that it cannot meet this demand for miniaturization.

そこで第3の従来例として、上記π/4の旋光角を得る
他の方法として、第3図に示す如く、BSO旋光子の代
わりに、XY二軸の偏光にπの位相差を与えるいわゆる
水晶製1/2波長板6を使用し、水晶の複屈折を利用す
るものが知られている。この水晶製1/2波長板は厚さ
1mm程度で良く、BSOの場合の約t74の厚さに薄
型化出来る。尚、厚さが約1mmとなる根拠は以下の通
りである。1/2波長の光路差■は次式により与えられ
る。
Therefore, as a third conventional example, as another method for obtaining the optical rotation angle of π/4, as shown in FIG. It is known to use a half-wave plate 6 made of aluminum and utilize the birefringence of quartz crystal. This quartz half-wave plate only needs to have a thickness of about 1 mm, and can be made as thin as about t74 in the case of BSO. The reason why the thickness is approximately 1 mm is as follows. The optical path difference (2) for 1/2 wavelength is given by the following equation.

1− 、t / 2(ne−no) = 85072(1,5+7−1.538)−1722
2(nm) −17,222(μm)         ・ (6)
(但し、I・・・光路差: λ・・・透過光の波長、こ
の場合850nm;  n、、 n。・室温における水
晶の常光線及び異常光線に対する屈折率、この場合夫々
1538.1.517) 従って、理論的には17.222(71m)の水晶厚さ
かあれは良いのであるが、この厚さでは研磨か困跡であ
るため、厚さがdlとd2の2枚の水晶板を互いに光軸
が直交するように重ね合わせ、直線複屈折か相殺するよ
うにして、その厚さの差(d2d、)か上記光路差Iに
等しい厚さの1枚の水晶板と等価の波長板を得る。現在
市販のものでは上記の如く重ね合わせ貼り合わせた厚さ
か」二記の如く約1mmのものが多用されている。
1-, t/2(ne-no) = 85072 (1,5+7-1.538)-1722
2 (nm) -17,222 (μm) ・ (6)
(However, I... optical path difference: λ... wavelength of transmitted light, in this case 850 nm; n,, n. - refractive index for ordinary and extraordinary rays of crystal at room temperature, in this case 1538.1.517 respectively) ) Therefore, in theory, a crystal thickness of 17.222 (71 m) is good, but since this thickness would be difficult to polish, two crystal plates with thicknesses dl and d2 should be placed together. A wave plate equivalent to one crystal plate with a thickness equal to the difference in thickness (d2d,) or the above optical path difference I is made by overlapping the optical axes so that they are perpendicular and canceling the linear birefringence. obtain. Currently, commercially available products with a thickness of approximately 1 mm, such as those obtained by laminating and bonding as described above, are often used.

ところで、1/2波長板は、これを透過する光のXY二
軸間に位相差δ(理想的には2δ−πである)を与える
ものであり、その位相差δは次式により与えられる。
By the way, the half-wave plate gives a phase difference δ (ideally 2δ-π) between the X and Y axes of the light that passes through it, and the phase difference δ is given by the following formula. .

δ−(nc−no)(d2−d、 )/λ・2yr  
−(7)(但し、δ ・位相差;  ’O+ n、・・
・水晶の常光線及び異常光線に対する屈折率;d2.d
、・・・張り合わせ形水晶板の各板の厚さ: λ・・・
透過光の波長:) 従って、変調度変化率の温度係数、換言すればファラデ
ー効果素子(ZnSe)の温度係数の補正を行うに、第
2の従来例の場合にはBSO旋光子のヘルプ定数及び及
び自然旋光能により行ったか、上記第3の従来例の場合
には、1/2波長板の位相差δに着目して行う必要が生
ずる。
δ-(nc-no)(d2-d, )/λ・2yr
−(7) (However, δ ・phase difference; 'O+ n,...
-Refractive index of crystal for ordinary and extraordinary rays; d2. d
,...Thickness of each plate of laminated crystal plate: λ...
Wavelength of transmitted light:) Therefore, in order to correct the temperature coefficient of the rate of change in modulation degree, in other words, the temperature coefficient of the Faraday effect element (ZnSe), in the case of the second conventional example, the help constant of the BSO rotator and In the case of the third conventional example, it is necessary to focus on the phase difference δ of the 1/2 wavelength plate.

解決すべき問題点 しかしながら、上記第3の従来例において、1/2波長
板の位相差δの温度特性か上記変調度変化率(m、  
mo)/moの温度特性に与える影響については、未だ
調査されていないのが現状であった。
Problems to be Solved However, in the third conventional example, the temperature characteristics of the phase difference δ of the half-wave plate or the modulation rate change (m,
At present, the influence of mo)/mo on temperature characteristics has not yet been investigated.

本発明Iコなる磁界センサは、上記従来の問題点を解決
することを目的とし、そのための構成は、光ファイバに
より導かれる光の進路に沿って、偏光子、ファラデー効
果素子、及び検光子を順次配置し、かつ該ファラデー効
果素子と、該偏光子及び検光子の何れか一方との間に、
水晶製1/2波長板を更に配置してなる磁界センサにお
いて、ファラデー効果素子の温度係数が負の場合は、室
温における前記1/2波長板のXY二軸間の位相差をπ
(即ち180度)より大きくしかつ、ファラデー効果素
子の温度係数が正の場合は、室温における前記1/2波
長板のXY二軸間の位相差をπ(即ち180度)より小
さくした、ことを特徴とする。
The purpose of the magnetic field sensor of the present invention is to solve the above-mentioned conventional problems, and its configuration includes a polarizer, a Faraday effect element, and an analyzer along the path of light guided by an optical fiber. arranged sequentially, and between the Faraday effect element and either the polarizer or the analyzer,
In a magnetic field sensor in which a crystal half-wave plate is further arranged, if the temperature coefficient of the Faraday effect element is negative, the phase difference between the X and Y axes of the half-wave plate at room temperature is π
(i.e., 180 degrees) and if the temperature coefficient of the Faraday effect element is positive, the phase difference between the X and Y axes of the half-wave plate at room temperature is made smaller than π (i.e., 180 degrees). It is characterized by

実施例 第4図は本発明になる磁界センサの一実施例である、1
/2波長板を使用した該磁界センサの概略構成を示す斜
視図であり、同図中、第3図と同部分には同一符号を付
す。
Embodiment FIG. 4 shows an embodiment of the magnetic field sensor according to the present invention.
FIG. 3 is a perspective view showing a schematic configuration of the magnetic field sensor using a /2 wavelength plate, in which the same parts as in FIG. 3 are denoted by the same reference numerals.

同図中、7は二枚の水晶板を張り合わせてなる1/2波
長板であるが、後述する如く第3図のl/2波長板6と
は厚さが異なる。
In the figure, 7 is a 1/2 wavelength plate made by laminating two crystal plates together, but as will be described later, it has a different thickness from the 1/2 wavelength plate 6 in FIG.

光ファイバにより導かれた光lは、偏光子2.1/2波
長板7、ファラデー効果素子4、及び検光子5を順次透
過する。尚1/2波長板7はファラデー効果素子4と検
光子5との間に配置しても良い。
The light 1 guided by the optical fiber sequentially passes through a polarizer 2, a 1/2 wavelength plate 7, a Faraday effect element 4, and an analyzer 5. Note that the 1/2 wavelength plate 7 may be placed between the Faraday effect element 4 and the analyzer 5.

この場合の検光子5を出た透過光の強度Pは次式により
与えられる。
In this case, the intensity P of the transmitted light exiting the analyzer 5 is given by the following equation.

P−P+/2(1+(cos2δ・coS2θ−5in
2δ・5in2θ))・・・(8) (但し、P・・・検光子5を出た透過光の強度:Pl・
・・入射光の強度; δ・・・l/2波長板の位相差:
θ・・ファラデー回転角) ここで、1/2波長板6が、正確にπの位相差を有する
と仮定すると、δ−π/2となるため、上記(8)式は
次式に書き換えられる。
P-P+/2(1+(cos2δ・coS2θ-5in
2δ・5in2θ))...(8) (However, P...Intensity of transmitted light exiting analyzer 5: Pl・
...Intensity of incident light; δ...Phase difference of l/2 wave plate:
(θ...Faraday rotation angle) Here, assuming that the half-wave plate 6 has a phase difference of exactly π, it becomes δ - π/2, so the above equation (8) can be rewritten as the following equation. .

P= P+/2(1−5in2θ)・(9)この式中、
5in2θの項が変調度を表す。
P= P+/2(1-5in2θ)・(9) In this formula,
The term 5in2θ represents the modulation degree.

次に、第4図の装置に全く磁界か作用していむいと仮定
すると、ファラデー回転を生しないため「θ−〇」とな
るゆえ、上記(8)式は次式に討き換えられる。
Next, assuming that no magnetic field acts on the device shown in FIG. 4, Faraday rotation does not occur and therefore "θ-0" is obtained, so the above equation (8) can be replaced with the following equation.

Pde−P+/2(1+ CO52δ)    ・ (
10)(但し、P6o・装置に磁界か作用せず、光か1
/2波長板のみにより変調作用を受けたときの透過光の
強度) この(10)式で求められるP、。の値は、透過光の直
流分(DC)強度を表しており、従って見掛Iフの変調
度mは次の様になる。
Pde-P+/2(1+ CO52δ) ・(
10) (However, P6o, no magnetic field acts on the device, and no light or 1
(Intensity of transmitted light when subjected to modulation effect only by the /2 wavelength plate) P, which is determined by this equation (10). The value of represents the direct current component (DC) intensity of the transmitted light, and therefore the modulation degree m of the apparent I is as follows.

m−(P  P、+c)/Pdc = (CO32δ0CO32θ−5in2δ6sin2
θ)/(1+cos2δ)    ・(11)ここで、
室温か20’Cのときの変調度を+112oとし、室温
か90°Cになったときの変調度をn19゜とすると、
変調度変化率は次式により与えられる。
m-(P P, +c)/Pdc = (CO32δ0CO32θ-5in2δ6sin2
θ)/(1+cos2δ) ・(11) Here,
If the modulation degree at room temperature or 20°C is +112o, and the modulation degree at room temperature or 90°C is n19°, then
The modulation degree change rate is given by the following equation.

(ms。−m2o)/mzo  ・・(12)計算例 次に、ファラデー効果素子として、ファラT回転かは度
の影響を全く受けない理想的温度性11−1 (即ち温度係数か七〇)のファラデー効果素子を導入し
たと仮定し、変調度mの変化率が1/2波長板7のxY
二軸間の位相差δの温度特性たけでとの程度の影響を受
けるか計算して見る。位相差δは上記(7)式から下記
の通りである。
(ms.-m2o)/mzo...(12) Calculation example Next, as a Faraday effect element, the Fara T rotation is not affected by the degree at all.Ideal temperature property 11-1 (i.e., the temperature coefficient is 70) Assuming that a Faraday effect element of
Calculate and see if the phase difference δ between the two axes is affected by the temperature characteristics alone. The phase difference δ is as follows from the above equation (7).

δ−(n、  no)(d2d+ )/λ・2yr  
−(7)この(7)式中の]/2波長板の設定厚さd2
d、(−光路差I)は、上記(6)式から下記の如く与
えられている。
δ−(n, no)(d2d+)/λ・2yr
−(7) In this formula (7), the setting thickness d2 of the /2 wavelength plate
d, (-optical path difference I) is given as follows from the above equation (6).

d2−d、=I−λ/2(n、  no)     −
(13)ここで具体的な例として、730 nm(0,
73μm)の波′長を例として計算してみる。このとき
、同式中の水晶の常光線及び異常光線に対す屈折率n。
d2-d, = I-λ/2(n, no) −
(13) Here, as a specific example, 730 nm (0,
The calculation will be performed using a wavelength of 73 μm) as an example. At this time, the refractive index n of the crystal for ordinary rays and extraordinary rays in the same formula.

、noの値は次の如くなる。, no values are as follows.

20℃     90℃ 口。      1.519         1.5
.411524no−1,5391,5386011 更にファラデー効果素子4のファラデー回転角は、例え
は2° (−π/90)で一定とする。
20℃ 90℃ Mouth. 1.519 1.5
.. 411524no-1, 5391, 5386011 Furthermore, it is assumed that the Faraday rotation angle of the Faraday effect element 4 is constant at 2° (-π/90), for example.

計算の手順としては、ます上記屈折率n0、n。The calculation procedure is based on the above refractive indexes n0 and n.

2 値及び(13)式を基に(7)式より20°C及び90
°Cのときの各位相差δを求め、次に(11)式で変調
度m2.及びm9.を夫々求め、最後に(12)式て変
調度変化率(ms。−mzo)/mzoを求める。
2 Based on the value and formula (13), from formula (7), 20°C and 90
Determine each phase difference δ at °C, then use equation (11) to determine the modulation degree m2. and m9. are determined respectively, and finally, the modulation degree change rate (ms.-mzo)/mzo is determined using equation (12).

この場合、上記変調度変化率の温度特性を補正する要素
として1/2波長板7の設定厚さd2d1に着目して見
る。一種類の設定厚さd2d、に対して上記変調度変化
率か一種類求められるから、設定厚さd2−d、を変化
させて夫々に対し変調度変化率を求め、全体として変調
度変化率の温度特性の補正が可能であるか否かを検討す
れば良い。尚、上記設定厚さd2−d、は、室温(即ち
20°C)下では、上記(13)式より次のようになる
In this case, attention will be paid to the set thickness d2d1 of the half-wave plate 7 as an element for correcting the temperature characteristic of the modulation rate change rate. Since one type of the above modulation rate of change can be obtained for one type of set thickness d2d, the modulation rate of change is determined for each set thickness d2-d, and the modulation rate of change as a whole is calculated. It is sufficient to consider whether or not it is possible to correct the temperature characteristics of . Note that the set thickness d2-d is calculated as follows from the above equation (13) at room temperature (ie, 20° C.).

d2−dl−λ/2(n、  no) −〇、73/2(1,519−1,539)−36,5
(μm) 従って、上記設定厚さd2 d+は36.5μmを略中
心として、10〜50μmの範囲で変化させlこ。
d2-dl-λ/2(n, no) -〇,73/2(1,519-1,539)-36,5
(μm) Therefore, the set thicknesses d2 and d+ are varied within a range of 10 to 50 μm with approximately 36.5 μm as the center.

第5図に、この計算結果を示す。同図中X軸は1/2波
長板の設定厚さ(+L+ −cl+ )  (μm)変
化、Y軸は変調度の変化率(m、o  m2o)/m2
o(%)変化を表し、同図より下記のことが言える。
FIG. 5 shows the results of this calculation. In the figure, the X-axis is the change in the set thickness of the 1/2-wave plate (+L+ -cl+) (μm), and the Y-axis is the rate of change in the modulation degree (m, o m2o)/m2
It represents o (%) change, and the following can be said from the same figure.

■ l/2波長板の設定厚さが図中pの位置、即ち波長
730μm用に36.5μmになっているときは、実際
に波長730μmの光が透過すると、センサ全体の変調
度変化率の値(即ち温度係数)は約ゼロであり安定な温
度特性を示す。
■ When the set thickness of the 1/2 wavelength plate is at position p in the figure, that is, 36.5 μm for a wavelength of 730 μm, when light with a wavelength of 730 μm actually passes through, the modulation rate of change of the entire sensor will change. The value (ie, temperature coefficient) is approximately zero, indicating stable temperature characteristics.

■ 設定厚さが図中qの位置、即ち波長780μIn用
に約49μIn厚さになっているときは、実際に波長7
30μmの光が透過すると、温度係数は+05%となる
■ When the set thickness is at position q in the diagram, that is, approximately 49μIn for a wavelength of 780μIn, the actual wavelength 7
When light of 30 μm is transmitted, the temperature coefficient becomes +05%.

■ 設定厚さが図中rの位置、即ち波長830μn〕用
に約46μm厚さになっているときは、実際に波長73
0μmの光か透過すると、温度係数は+2.4%となる
■ When the set thickness is about 46 μm for the position r in the figure, that is, for a wavelength of 830 μn, the actual wavelength is 73 μm.
When light of 0 μm is transmitted, the temperature coefficient becomes +2.4%.

■ 設定厚さを大きくするほどセンサ全体の変調度変化
率の値(温度係数)は大きくなる。又設定厚さが波長7
30μmの光用の厚さより大きくなると温度係数は正に
なり、かつ波長730μn〕の光用の厚さより小さくな
るど、温度係数は負になる。
■ The larger the set thickness, the larger the value of the rate of change in modulation degree (temperature coefficient) of the entire sensor. Also, the set thickness is wavelength 7
The temperature coefficient becomes positive as the thickness becomes larger than the thickness for light with a wavelength of 730 μm, and becomes negative as the thickness becomes smaller than the thickness for light with a wavelength of 730 μm.

以上の設定厚さと、温度係数の正負との関係を第6及び
第7図に解り易く略図的に示す。尚第6図(B)〜(D
)、及び第7図(B)〜(I))は、X軸か温度、Y軸
が変調度変化率の各変化を表す。
The relationship between the above set thickness and the sign of the temperature coefficient is schematically shown in FIGS. 6 and 7 for easy understanding. In addition, Fig. 6 (B) to (D
) and FIGS. 7(B) to (I)), the X-axis represents temperature, and the Y-axis represents changes in modulation degree change rate.

第6図(I3)に示す如く、7アラデー効果素子の温度
係数が実際に正(右上がり)の場合には、同図(A)に
示す如く、1/2波長板7の厚さしを、波長730μm
の光用の設定厚さE。(−365μm)より小さく設定
すれ11よい。すると、同図(C)に示す如く、ファラ
デー回転かn1□(肚の形管を受けないような理想的温
度特性のファラデ効果素子を使用したと仮定したときの
センサ全体の温度係数は、上記■の項で説明した如く負
(右下かり)になる。従って、同図(B)の温度特性は
同図(C)の温度特性により補正されて、実際のセンサ
全体の温度特性は同図(D)に示す如く所定温度範囲に
わたり略ゼロとなり、良好な温度5 補正がなされることか解る。
As shown in FIG. 6 (I3), if the temperature coefficient of the 7 Alladay effect element is actually positive (upwards to the right), the thickness of the 1/2 wavelength plate 7 should be changed as shown in FIG. 6 (A). , wavelength 730μm
Setting thickness E for light. It is better to set it smaller than (-365 μm). Then, as shown in the same figure (C), the temperature coefficient of the entire sensor when assuming that a Faraday effect element with ideal temperature characteristics that does not receive Faraday rotation or n1 As explained in the section (2), it becomes negative (toward the bottom right).Therefore, the temperature characteristics in the same figure (B) are corrected by the temperature characteristics in the same figure (C), and the actual temperature characteristics of the entire sensor are as shown in the same figure. As shown in (D), it becomes approximately zero over a predetermined temperature range, indicating that good temperature 5 correction is achieved.

次に、第7図(B)に示す如く、ファラデー効果素子の
温度係数か実際に負(右下かり)の場合には、同図(A
)に示す如く、1/2波長板7の厚さtを、上記設定厚
さt。(=36.5μm)より大きく設定すればよい。
Next, as shown in Figure 7 (B), if the temperature coefficient of the Faraday effect element is actually negative (lower right),
), the thickness t of the 1/2 wavelength plate 7 is set to the above-mentioned set thickness t. (=36.5 μm) or more.

すると、同図(C)に示す如く、理想的温度特性のファ
ラデー効果素子を使用したと仮定したときのセンサ全体
の温度係数は、同しく上記■の項で説明した如く正(右
上かり)になるので、同図(B)の温度特性は同図(C
)の温度特性により補正されて、全体の温度特性は同図
(D)に示す如く同じく良好な温度補正かなされること
が解る。
Then, as shown in the same figure (C), assuming that a Faraday effect element with ideal temperature characteristics is used, the temperature coefficient of the entire sensor becomes positive (toward the top right), as also explained in section (■) above. Therefore, the temperature characteristic in the same figure (B) is the same as that in the same figure (C
), and it can be seen that the overall temperature characteristic is similarly well corrected as shown in FIG.

実験例 次に第8図により、実際の実験例を示す。Experimental example Next, FIG. 8 shows an actual experimental example.

同図中、発光ダイオード11から出射される光は、光フ
アイバ12により導かれて、偏光子2、l/2波長板7
、Zn5e製フアラデー効果素子4、検光子5を順次透
過する。その透過光は更に光フアイバ13により導かれ
て受光ダイオード14に至6 す、変換された電流かアンプ15を介してACアンプ1
6、DCアンプ17て夫々交流分及び直流分か増幅され
、更に割算器18で割算されて、アウトプッ)19から
交流分及び直流分の比AC/DCか出力される。一方、
AC電源20に接続したコイル21を巻回したコ字形鉄
心22が、上記ファラデー効果素子4を取り囲むよう配
設されて該素子4に磁界を与えている。これらは恒温槽
23内に収納されて、上述した20°C〜90°Cの温
度変化を正確に行い得るようになっている。
In the figure, light emitted from a light emitting diode 11 is guided by an optical fiber 12, and is passed through a polarizer 2 and a 1/2 wavelength plate 7.
, a Faraday effect element 4 made of Zn5e, and an analyzer 5 in order. The transmitted light is further guided by an optical fiber 13 to a light receiving diode 14, and the converted current is passed through an amplifier 15 to an AC amplifier 1.
6. The AC and DC components are amplified by the DC amplifier 17, further divided by the divider 18, and outputted from an output 19 as a ratio AC/DC of the AC and DC components. on the other hand,
A U-shaped iron core 22 wound with a coil 21 connected to an AC power source 20 is arranged to surround the Faraday effect element 4 and apply a magnetic field to the element 4. These are housed in a constant temperature bath 23 so that the above-mentioned temperature change from 20°C to 90°C can be performed accurately.

この場合、発光ダイオード11からの光の波長は850
nmとし、ファラデー効果素子4はZn5e製で長さは
12mmとし、かつ172波長板6の設定厚さ(d2−
dt)は光の波長830 n m用及び87Onm用に
夫々正規に対応する46゜3μm及び48.3μmの二
種類の厚さに設定して実験を行った。
In this case, the wavelength of the light from the light emitting diode 11 is 850.
The Faraday effect element 4 is made of Zn5e and has a length of 12 mm, and the set thickness of the 172 wavelength plate 6 (d2-
dt) was set at two different thicknesses, 46° 3 μm and 48.3 μm, which correspond normally to light wavelengths of 830 nm and 87 Onm, respectively.

その結果を示したのが第9図であり、同図中X軸は温度
、Y軸は変調度変化率の各変化を表す。
The results are shown in FIG. 9, in which the X axis represents temperature and the Y axis represents changes in modulation rate.

これによれは、l/2波長板7の設定厚さか波長830
nm用の場合(d2−d、=46.3μm)は線Cのよ
うになり90°Cで変化率か+1.6%てあり、又設定
厚さが波長870用の場合(d2d、=4s、3μm)
は線dのようになり900Cて変化率が+3.4%であ
った。それゆえ、実際の光の波長850nmに対し、設
定厚さ(d2dt)を適宜変えることにより、変調度変
化率の値(温度係数)を変え得ることが解る。
This depends on the set thickness of the 1/2 wavelength plate 7 or the wavelength 830
In the case of wavelength 870 (d2-d, = 46.3 μm), line C shows the change rate at 90°C, and the change rate is +1.6%. , 3μm)
was as shown by line d, and the rate of change was +3.4% at 900C. Therefore, it can be seen that by appropriately changing the set thickness (d2dt) for an actual light wavelength of 850 nm, the value of the modulation rate change (temperature coefficient) can be changed.

ここで、第9図を第6及び第7図と比較して考察すると
、1/2波長板が実際に使用された光の波長850μm
用の設定厚さを有している場合にはその温度特性は第9
図中破線eで示すようになると思われるので、設定厚さ
を小さくすることにより実際の温度特性をセンサ全体の
温度係数か負(右下かり)になる方向に移動するよう補
正出来、逆に設定厚さを大きくすることにより正(右上
かり)になる方向に移動するよう補正出来ることか解り
、上述した計算か正しいことが証明された。
Here, when comparing Figure 9 with Figures 6 and 7, we can see that the 1/2 wavelength plate is actually used at a wavelength of 850 μm.
If it has a set thickness for
It seems to be as shown by the broken line e in the figure, so by reducing the set thickness, it is possible to correct the actual temperature characteristics so that the temperature coefficient of the entire sensor becomes negative (towards the bottom right), and vice versa. It was found that by increasing the set thickness, it was possible to correct the movement in the positive direction (upward to the right), proving that the above calculation was correct.

発明の効果 上述の如く、本発明になる磁界センサによれは、旋光子
の代わりに1/2fi長板を使用して、7アラデー効果
素子の温度係数が負の場合には、室温における1/2波
長板のXY二軸間の位相差をπより大きくし、逆に7ア
ラデー効果素子の温度係数が正の場合には、上記二軸間
の位相差をπより小さくしているので、次に示す利点か
ある。
Effects of the Invention As described above, the magnetic field sensor according to the present invention uses a 1/2 fi long plate in place of the optical polarizer, and when the temperature coefficient of the 7 Alladay effect element is negative, the magnetic field sensor at room temperature If the phase difference between the X and Y axes of the two-wave plate is made larger than π, and conversely, the temperature coefficient of the 7 Alladay effect element is positive, then the phase difference between the two axes is made smaller than π, so the following There are some advantages shown in this.

■ センサ全体として、ファラデー効果素子の温度係数
がゼロ(即ち変調度の変化率かセロ)となる方向に補正
することか出来、広い温度範囲にわたり安定して磁界強
さを検出し得、検出精度を向上し得る。
■ As a whole sensor, the temperature coefficient of the Faraday effect element can be corrected in the direction of zero (that is, the rate of change of modulation degree or zero), and the magnetic field strength can be stably detected over a wide temperature range, improving detection accuracy. can be improved.

■ 172波長板は厚さか約1. m m程度と小さい
ので、センサ全体の厚さを小さくして、センサを小型化
し得る。
■ The thickness of the 172 wavelength plate is approximately 1. Since it is as small as about mm, the overall thickness of the sensor can be reduced and the sensor can be miniaturized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁界センサの第1の従来例及び第2の従来例に
おけるセンサの変調度変化率と温度との関係を示す図、 第2図は磁界センサの上記第2の従来例の概略構成を示
す斜視図、 9 第3図は磁界センサの第3の従来例の概略構成を示す斜
視図、 第4図は本発明になる磁界センサの一実施例である、1
/2波長板を使用した該磁界センサの概略構成を示ず斜
視図、 第5図は本発明磁界センサの変調度変化率とl/2波長
板の設定厚さの変化との関係を計算的に求めて示す図、 第6図(A)は本発明磁界センサのファラデ効果素子の
温度係数が負でありかつ1/2波長板の厚さか正規の厚
さより小さい場合の概略構成図、第6図(B)は上記フ
ァラデー効果素子単独の温度特性を示す図、 第6図(C)は理想的温度特性(即ち温度係数かセロ)
を有するファラデー効果素子と上記l/2彼長板とを用
いたときのセンサの温度特性図、第6図(D)は第6図
(B)及び(C)の各温度特性を台底した温度特性図、 第7図(A)は本発明磁界センサのファラデ効果素子の
温度係数か正でありかつl/2波長板0 の厚さか正規の厚さより大きい場合の概略構成図、第7
図(B)〜(D)は夫々第7図(A)の条件下での第6
図(B)〜(D)に対応する図、第8図は本発明磁界セ
ンサの一実施例の実験例の概略構成を示す図、 第9図は本発明磁界センサの変調度変化率と温度との関
係を実験的に求めて示した図である。 1・・光      2・・偏光子 3・・BSO製π/4旋光子 4・・・ファラデー効果素子  5・・・検光子6.7
− Z n S e製1/2波長板11・・発光ダイオ
ード 12.13・・光ファイバ 14・・・受光ダイオード 15〜17−アンプ  18・・・割算器21・・・コ
イル     22・・鉄心23・・・恒温槽。
FIG. 1 is a diagram showing the relationship between the rate of change in the modulation degree of the sensor and the temperature in a first conventional example and a second conventional example of a magnetic field sensor. FIG. 2 is a schematic configuration of the second conventional example of a magnetic field sensor. 9. FIG. 3 is a perspective view showing a schematic configuration of a third conventional example of a magnetic field sensor. FIG. 4 is an embodiment of a magnetic field sensor according to the present invention. 1
FIG. 5 is a perspective view showing the schematic structure of the magnetic field sensor using a /2 wavelength plate. FIG. Figure 6 (A) is a schematic configuration diagram when the temperature coefficient of the Faraday effect element of the magnetic field sensor of the present invention is negative and the thickness of the half-wave plate is smaller than the normal thickness. Figure (B) shows the temperature characteristics of the Faraday effect element alone, and Figure 6 (C) shows the ideal temperature characteristics (i.e. temperature coefficient or cello).
Figure 6 (D) is a temperature characteristic diagram of the sensor when using the Faraday effect element having the above-mentioned 1/2 length plate, and the temperature characteristics of Figures 6 (B) and (C) are at the bottom. Temperature characteristic diagram, Figure 7 (A) is a schematic configuration diagram when the temperature coefficient of the Faraday effect element of the magnetic field sensor of the present invention is positive and the thickness of the 1/2 wavelength plate 0 is larger than the normal thickness.
Figures (B) to (D) show the results of the sixth test under the conditions of Figure 7 (A), respectively.
Figures corresponding to Figures (B) to (D), Figure 8 is a diagram showing a schematic configuration of an experimental example of an embodiment of the magnetic field sensor of the present invention, Figure 9 is a diagram showing the modulation rate of change and temperature of the magnetic field sensor of the present invention. FIG. 2 is a diagram illustrating the relationship between 1...Light 2...Polarizer 3...BSO π/4 optical rotator 4...Faraday effect element 5...Analyzer 6.7
- Half-wave plate made by ZnS e 11... Light emitting diode 12, 13... Optical fiber 14... Light receiving diode 15 to 17 - Amplifier 18... Divider 21... Coil 22... Iron core 23... Constant temperature bath.

Claims (1)

【特許請求の範囲】[Claims] 光ファイバにより導かれる光の進路に沿って、偏光子、
ファラデー効果素子、及び検光子を順次配置し、かつ該
ファラデー効果素子と、該偏光子及び検光子の何れか一
方との間に、水晶製1/2波長板を更に配置してなる磁
界センサにおいて、ファラデー効果素子の温度係数が負
の場合は、室温における前記1/2波長板のXY二軸間
の位相差をπ(即ち180度)より大きくしかつ、ファ
ラデー効果素子の温度係数が正の場合は、室温における
前記1/2波長板のXY二軸間の位相差をπ(即ち18
0度)より小さくした、ことを特徴とする磁界センサ。
Along the path of the light guided by the optical fiber, a polarizer,
In a magnetic field sensor, a Faraday effect element and an analyzer are sequentially arranged, and a quartz half-wave plate is further arranged between the Faraday effect element and either the polarizer or the analyzer. , when the temperature coefficient of the Faraday effect element is negative, the phase difference between the X and Y axes of the half-wave plate at room temperature is larger than π (i.e., 180 degrees), and the temperature coefficient of the Faraday effect element is positive. In this case, the phase difference between the X and Y axes of the half-wave plate at room temperature is π (i.e., 18
A magnetic field sensor characterized by being smaller than 0 degrees).
JP1171412A 1989-07-03 1989-07-03 Magnetic field sensor Pending JPH0337584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1171412A JPH0337584A (en) 1989-07-03 1989-07-03 Magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1171412A JPH0337584A (en) 1989-07-03 1989-07-03 Magnetic field sensor

Publications (1)

Publication Number Publication Date
JPH0337584A true JPH0337584A (en) 1991-02-18

Family

ID=15922660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1171412A Pending JPH0337584A (en) 1989-07-03 1989-07-03 Magnetic field sensor

Country Status (1)

Country Link
JP (1) JPH0337584A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158709A (en) * 2015-08-05 2015-12-16 北京航空航天大学 Embedded NV-center diamond based magnetic field metering device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158709A (en) * 2015-08-05 2015-12-16 北京航空航天大学 Embedded NV-center diamond based magnetic field metering device
CN105158709B (en) * 2015-08-05 2017-12-22 北京航空航天大学 One kind is based on embedded NV‑The magnetic field measuring device of colour center diamond

Similar Documents

Publication Publication Date Title
US5053617A (en) Instrument for concurrently optically measuring thermal and electric quantities
US6232763B1 (en) Magneto-optical element and optical magnetic field sensor
US4560932A (en) Magneto-optical converter utilizing Faraday effect
JPH0211868B2 (en)
US20020145414A1 (en) Magneto-optic current sensor
JPH05249207A (en) Photosensor
JPH0337584A (en) Magnetic field sensor
JPS58140716A (en) Magnetic field-light transducer
JPS59107273A (en) Photocurrent and magnetic field sensor
JP3046874B2 (en) Optical voltage / electric field sensor
JPH08220149A (en) Photovoltaic sensor
JPS5899761A (en) Electric field/magnetic field measuring apparatus with light
Simon et al. About the optical activity of incommensurate [N (CH3) 4] 2ZnCl4 (TMAZC)
JPH05264603A (en) Apparatus and method for measuring photomagnetic field
JP2585411B2 (en) Faraday effect material and magnetic field sensor
JPH0760164B2 (en) Optical voltage electric field sensor
JPS62150185A (en) Magnetic field measuring apparatus
JP2585412B2 (en) Faraday effect material and magnetic field sensor
JP2592942B2 (en) Faraday effect material and magnetic field sensor
JPH09264939A (en) Polarization-independent-type physical-quantity measuring method
JPH06265840A (en) Method for measuring boundary anchoring strength of liquid crystal display device
JPS59218971A (en) Measuring device of magnetic field
JPH09189752A (en) Fiber-optic current and magnetic field sensor
JPH07128419A (en) Optical sensor
JP2003279601A (en) Faraday rotator, and polarization control method and current measurement method using the same