JPH0337155A - Electrically conductive ceramic composite material and its production - Google Patents

Electrically conductive ceramic composite material and its production

Info

Publication number
JPH0337155A
JPH0337155A JP1171820A JP17182089A JPH0337155A JP H0337155 A JPH0337155 A JP H0337155A JP 1171820 A JP1171820 A JP 1171820A JP 17182089 A JP17182089 A JP 17182089A JP H0337155 A JPH0337155 A JP H0337155A
Authority
JP
Japan
Prior art keywords
conductive ceramic
silicon carbide
ceramic composite
ceramic
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1171820A
Other languages
Japanese (ja)
Inventor
Shiro Yamamoto
山本 至郎
Isao Takakura
功 高倉
Mikio Nishikawa
西川 幹雄
Keizo Shimada
島田 恵造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1171820A priority Critical patent/JPH0337155A/en
Publication of JPH0337155A publication Critical patent/JPH0337155A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To provide the subject composite material composed of a porous alumina phase having interconnected fine pores and a ceramic phase of silicon carbide forming a continuous phase filled in the fine pores, formable to an arbitrary shape, having a thermal expansion coefficient close to that of alumina and suitable as a heat-generating element for inexpensive electric heater, etc. CONSTITUTION:The objective electrically conductive ceramic composite material is produced by filling an electrically conductive ceramic material composed mainly of silicon carbide in the fine pores of a porous ceramic (having pore diameter of 1-100mum and porosity of 5-50vol.%, especially 10-40vol.%) containing continuous pores connected with each other and at least partly opened to the surface. The silicon carbide is preferably produced by using an organic silicon polymer [more preferably polycarbosilane or polycarbosilastyrene copolymer(PCSS), especially PCSS] as a precursor.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、新規な導電性セラミックス複合体及びその製
造法に関するものである。更に詳細には、アルミナ及び
シリコンカーバイドを含む耐熱性、耐久性にすぐれ電気
ヒータ等の発熱体素子として好適な導電性セラミックス
複合体及び該複合体を工業的に製造する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel conductive ceramic composite and a method for manufacturing the same. More specifically, the present invention relates to a conductive ceramic composite containing alumina and silicon carbide that has excellent heat resistance and durability and is suitable as a heating element for an electric heater, and a method for industrially manufacturing the composite.

[従来の技術] 導電性セラミックスは、電気ヒータの発熱体として、特
に高温用の電気ヒータの発熱体として用いられているこ
とは周知である(例えば特開昭57−152693号、
特公昭60−16386号、特公昭60−28781号
等)。このような導電性セラミックスは通常シリコンカ
ーバイド粉末等の焼成物であるが、かかるシリコンカー
バイド粉末は成形性が不良で任意の形状になし難いばか
りでなく、高価であるため汎用ヒータとしては使用し難
い。
[Prior Art] It is well known that conductive ceramics are used as a heating element for electric heaters, especially as heating elements for high-temperature electric heaters (for example, Japanese Patent Laid-Open No. 57-152693,
Special Publication No. 60-16386, Special Publication No. 60-28781, etc.). Such conductive ceramics are usually fired products such as silicon carbide powder, but such silicon carbide powder has poor moldability and is difficult to form into arbitrary shapes, and is also expensive, making it difficult to use as a general-purpose heater. .

また、多くの用途で、発熱体素子を絶縁体で保護するこ
とが要求されるが、保護用絶縁物として高温に耐えかつ
安価な絶縁物であるアルミナとは熱膨脂係数が異なるた
め一体化し難いという問題がある。
In addition, in many applications, it is required to protect the heating element with an insulator, but as a protective insulator, alumina, which is an insulator that can withstand high temperatures and is inexpensive, has a different coefficient of thermal expansion, so it cannot be integrated. The problem is that it is difficult.

以上のような理由から、シリコンカーバイドを主体とす
る発熱体用の導電性セラミックスは限られた工業用ヒー
タの分野でしか用いられていないのが実情である。
For the reasons mentioned above, the reality is that conductive ceramics for heating elements, mainly made of silicon carbide, are used only in a limited field of industrial heaters.

[発明が解決しようとする課題] 本発明は、上述の如きシリコンカーバイド粉末焼成体か
らなる導電性セラミックスの問題を解決し、比較的任意
の形状とすることができ、かつアルミナに近似した熱膨
張係数をもつ安価な導電性セラミックスを提供しようと
するものである。
[Problems to be Solved by the Invention] The present invention solves the problems of conductive ceramics made of silicon carbide powder fired bodies as described above, can be formed into a relatively arbitrary shape, and has thermal expansion similar to that of alumina. The purpose is to provide inexpensive conductive ceramics with a high coefficient of conductivity.

更には、特殊な形状にすることを要求される分野や保護
絶縁物をつけることを要求される分野、例えば家庭用ヒ
ータ等の分野で、発熱体素子として容易に使用し得るよ
うな導電性セラミックスを提供しようとするものである
Furthermore, conductive ceramics that can be easily used as heating elements in fields that require special shapes or protective insulators, such as household heaters, etc. This is what we are trying to provide.

[課題を解決するための手段] 本発明者らは、上述の課題について鋭意研究の結果、連
通孔を有する多孔質アルミナの細孔内にシリコンカーバ
イドを主体とするセラミックスを充填した状態のセラミ
ックス複合体を形成することにより、従来のシリコンカ
ーバイド焼成物からなる導電性セラミックスの諸問題を
解決できることを見出だし、本発明に到達したものであ
る。
[Means for Solving the Problems] As a result of intensive research on the above-mentioned problems, the present inventors have developed a ceramic composite in which the pores of porous alumina having communicating pores are filled with ceramics mainly composed of silicon carbide. The inventors have discovered that the various problems of conventional conductive ceramics made of fired silicon carbide products can be solved by forming a ceramic body, and have thus arrived at the present invention.

すなわち、本発明は、互いに連通した多数の細孔を有す
る多孔質アルミナからなる第1の相と、該多孔質アルミ
ナの細孔内に充填されており、がつ少くとも一部が連続
相をなして表面までつながっているシリコンカーバイド
を主成分とするセラミックスからなる第2の相、とで構
成されていることを特徴とする導電性セラミックス複合
体である。
That is, the present invention includes a first phase made of porous alumina having a large number of pores communicating with each other; and a second phase made of ceramics containing silicon carbide as a main component, which is connected to the surface.

本発明のセラミックス複合体をtf4戒する多孔質アル
ミナは、互いに連通し少くとも一部が表面につながって
いる多数の細孔、いわゆる連続気泡を有するものであっ
て、孔のサイズが1〜100μmを中心に分布しており
、かつ、気孔率が5〜50容量%のものが好適であり、
10〜40容量%のものが特に好ましい。多孔質アルミ
ナを構成する成分は、純粋のアルミナである必要はなく
少量の他の成分を含むもので差支えない。かかる多孔質
アルミナ自体は絶縁性である。
The porous alumina that makes up the ceramic composite of the present invention has a large number of pores, so-called open cells, that are interconnected and at least partially connected to the surface, and the pore size is 1 to 100 μm. It is preferable that the porosity is distributed around 5 to 50% by volume,
Particularly preferred is 10 to 40% by volume. The components constituting porous alumina do not need to be pure alumina, and may contain small amounts of other components. Such porous alumina itself is insulating.

一方、上記多孔質アルミナの細孔内に充填されているセ
ラミックスは、シリコンカーバイドを主成分とする導電
性セラミックスである。このセラミックスは、ポリシラ
ン、ポリカルボシラン、ポリシラスチレン及びポリカル
ボシラスチレン共重合体よりなる群から選ばれた少くと
も1種の有機ケイ素ポリマーを前駆体とするものが好ま
しく、かかるセラミックスはシリコンカーバイドの他に
若干量の炭素を含むため、発熱体として適当な導電性を
有し、例えば電気抵抗にして10−2〜101Ω・cm
程度の導電体である。上述の有機ケイ素ポリマーのうち
でも、ポリカルボシラン、ポリカルボシラスチレン共重
合体(PCSS)が特に好適であ・す、とりわけpcs
sが最適である。
On the other hand, the ceramics filled in the pores of the porous alumina are conductive ceramics containing silicon carbide as a main component. Preferably, this ceramic has at least one organosilicon polymer selected from the group consisting of polysilane, polycarbosilane, polysilastyrene, and polycarbosilastyrene copolymer as a precursor; In addition, it contains a small amount of carbon, so it has suitable conductivity as a heating element, for example, has an electrical resistance of 10-2 to 101 Ω・cm.
It is a conductor of some degree. Among the above-mentioned organosilicon polymers, polycarbosilane and polycarbosilastyrene copolymer (PCSS) are particularly suitable.
s is optimal.

かかるシリコンカーバイドを主体とする導電性セラミッ
クスは、多孔質アルミナの細孔内に実質上充填された状
態にあり、かつ少くともその一部が表面に達しているこ
とが必要である。
The conductive ceramic mainly composed of silicon carbide needs to be substantially filled in the pores of the porous alumina, and at least a part of it needs to reach the surface.

かかるセラミックス複合体を得るには、まず、例えば予
め所定の形状に底型・焼成した多孔質アルミナに有機ケ
イ素ポリマーを溶媒に溶かして含浸させる。有機ケイ素
ポリマーとしては、例えばポリシラン、ポリカルボシラ
ン、ポリシラスチレン、ポリカルボシラスチレン共重合
体等が挙げられる。これらのポリマーは安価な溶媒、例
えばアルキルベンゼン、具体的にはベンゼン、トルエン
、キシレン等に溶かして多孔質アルミナに含浸させられ
る。このうちポリオlレボシラン、ポリカルボシラスチ
レン共重合体(PCSS)は特に導電性の高いセラミッ
クスになるので好ましく、特にPCSSが最適である。
To obtain such a ceramic composite, first, for example, porous alumina, which has been molded and fired into a predetermined shape in advance, is impregnated with an organosilicon polymer dissolved in a solvent. Examples of the organosilicon polymer include polysilane, polycarbosilane, polysilastyrene, and polycarbosilastyrene copolymer. These polymers are dissolved in inexpensive solvents such as alkylbenzenes, specifically benzene, toluene, xylene, etc., and impregnated into porous alumina. Among these, polyolevosilane and polycarbosilastyrene copolymer (PCSS) are particularly preferred because they produce ceramics with high conductivity, and PCSS is particularly suitable.

予め作るアルミナは多孔質であって、孔のサイズが適当
であり、かつ、気孔率も適度のものが好ましい。孔のサ
イズは1〜100μmに中心サイズがあるものが好まし
く、孔が小さすぎると含浸が困難であったり、後述の再
焼成が難しかったりする。一方、孔が大きすぎると導電
相が剥げ易く、導電セラミックスとしての均一性が得難
くなる。
Preferably, the alumina prepared in advance is porous, with appropriate pore size and appropriate porosity. It is preferable that the pores have a center size of 1 to 100 μm; if the pores are too small, impregnation may be difficult or re-firing as described below may be difficult. On the other hand, if the pores are too large, the conductive phase tends to peel off, making it difficult to obtain uniformity as a conductive ceramic.

気孔率は5〜50%が好ましく、小さすぎると導電セラ
ミックスの導電性をあげ難く、大きすぎると壊れ易いこ
とが多い。
The porosity is preferably 5 to 50%; if it is too small, it will be difficult to improve the conductivity of the conductive ceramic, and if it is too large, it will often be easily broken.

多孔質アルミナの形態は、面状、棒状、ブロック状等が
挙げられる。熱論、特殊な形状、例えば均一に電気を通
すために、先に本発明者らが提案した特願昭63−29
209号によるもの等でもよい。
Porous alumina may have a planar shape, a rod shape, a block shape, or the like. Regarding heat theory, special shapes, for example, in order to conduct electricity uniformly, the present inventors previously proposed a patent application filed in 1983-29.
No. 209 may be used.

有機ケイ素ポリマーを均一に含浸した多孔質アルミナは
、次いで、不活性雰囲気中で有機ケイ素ポリマーがセラ
ミックス化する温度に加熱して再焼成し、多孔質アルミ
ナ内部でシリコンカーバイドを主成分とする導電性セラ
ミックスに転化させ、目的とする導電性のセラミックス
複合体となる。
The porous alumina uniformly impregnated with the organosilicon polymer is then heated and refired in an inert atmosphere to a temperature at which the organosilicon polymer turns into a ceramic, forming a conductive material mainly composed of silicon carbide inside the porous alumina. It is converted into ceramics and becomes the desired electrically conductive ceramic composite.

[発明の効果コ 以上の如き本発明により、比較的任意の形状の、アルミ
ナ等の保護絶縁物で覆えるアルミナに近似した物性の導
電性セラミックス複合体が比較的容易に得られる。この
導電性セラミックス複合体は導電性、機械的物性等の各
種の好ましい性質を備え、かつ耐久性にすぐれ800〜
1000℃での使用にも十分耐えることができる。しか
も、任意の形状のものが得易く、安価であり、セラミッ
クス系保護絶縁物特にアルミナに熱膨張係数が近似して
いるため容易に一体化できるので、家庭用品等、広い用
途に用いることができる。
[Effects of the Invention] According to the present invention as described above, a conductive ceramic composite of a relatively arbitrary shape and having physical properties similar to alumina that can be covered with a protective insulator such as alumina can be obtained relatively easily. This conductive ceramic composite has various desirable properties such as conductivity and mechanical properties, and has excellent durability.
It can withstand use at 1000°C. Moreover, it is easy to obtain any shape, is inexpensive, and has a thermal expansion coefficient similar to that of ceramic protective insulators, especially alumina, so it can be easily integrated, so it can be used in a wide range of applications such as household items. .

[実施例1 次に、本発明の実施例及び比較例を挙げるが、本発明は
これにより限定されるものではない。尚、特に断りのな
い限り、各例中の「部」は重量部である。
[Example 1 Next, Examples and Comparative Examples of the present invention will be given, but the present invention is not limited thereto. In addition, unless otherwise specified, "parts" in each example are parts by weight.

実施例1 市販の多孔質アルミナ板を入手した。これは水につける
と重量増が30%あり、細孔の状態をR微鏡観察すると
、孔径l0〜50μmの多数の連通孔が主体であった。
Example 1 A commercially available porous alumina plate was obtained. When immersed in water, the weight increased by 30%, and when the state of the pores was observed using an R microscope, it was mainly composed of a large number of communicating pores with a pore diameter of 10 to 50 μm.

一方、次のようにしてポリカルボシラスチレン共重合体
を得た。すなわち、ジクロルジメチルシランとジクロル
メチルフェニルシランの等モルを使い、トルエン中で金
属ナトリウムを加えて重合してポリシラスチレンを得た
。このポリシラスチレンを400℃で窒素雰囲気中で処
理し、軟化点190〜200℃のポリカルボシラスチレ
ン共重合体を得た。
On the other hand, a polycarbosilastyrene copolymer was obtained in the following manner. That is, using equimolar amounts of dichlorodimethylsilane and dichloromethylphenylsilane, metal sodium was added and polymerized in toluene to obtain polysilastyrene. This polysilastyrene was treated at 400°C in a nitrogen atmosphere to obtain a polycarbosilastyrene copolymer with a softening point of 190 to 200°C.

この共重合対100部をトルエンt、ooo部に溶かし
、この共重合体溶液を上記のアルミナに含浸させた。−
昼夜浸し、乾燥させた後、更に再度含浸させ、乾燥させ
た。
100 parts of this copolymer was dissolved in t and ooo parts of toluene, and the above alumina was impregnated with this copolymer solution. −
After being soaked day and night and dried, it was impregnated again and dried.

このサンプルを最高1,300℃で、延べ時間32時間
〈室温から600℃までを緩やかに昇温し、以後昇温速
度を上げ1,300℃とし、室温に戻した。〉で、窒素
気流中で焼成した。得られたセラミックス複合体は重量
115部、体積抵抗率15Ωcmであった。このセラミ
ックス複合体に電気を通したところ、表面温度を1,0
00℃以上にすることができた。
This sample was heated at a maximum temperature of 1,300° C. for a total of 32 hours (slowly increasing the temperature from room temperature to 600° C., then increasing the heating rate to 1,300° C., and returning to room temperature. > in a nitrogen stream. The obtained ceramic composite had a weight of 115 parts and a volume resistivity of 15 Ωcm. When electricity was passed through this ceramic composite, the surface temperature decreased to 1.0
It was possible to raise the temperature to 00°C or higher.

厚さ50μmのアルミナ(アルコキシド法によると推定
される。三菱鉱業セメント製〉を入手し、上記のセラミ
ックス複合体サンプルにガラスを接着剤として貼合せ、
絶縁物被覆導電セラミックスとした。接着は上記サンプ
ルとアルミナ薄葉の間“に、薄葉のガラスを挟んで、ア
ルゴン気流中で1゜200℃まで昇温し、溶融接着させ
た。得られた複層体は眉間の接着状態が良好で強靭なも
のとなった。
Alumina (estimated to be made by the alkoxide method, manufactured by Mitsubishi Mining Cement) with a thickness of 50 μm was obtained, and glass was bonded to the above ceramic composite sample using an adhesive.
It was made of insulator-coated conductive ceramics. For adhesion, a thin glass sheet was sandwiched between the sample and the alumina thin sheet, and the temperature was raised to 1° to 200°C in an argon stream to melt and bond.The resulting multilayer body had good adhesion between the eyebrows. It became strong.

実施例2 電解隔壁用として市販のセラミックス板を入手した。水
につけると重量増が28%であり、緻密な多孔質アルミ
ナであった。
Example 2 A commercially available ceramic plate for use as an electrolytic partition was obtained. When immersed in water, the weight increased by 28%, indicating that it was dense porous alumina.

流動点241℃のポリカルボシラン(バーメチルポリシ
ランの転位物〉をキシレンに溶がして5%溶液とし、上
記のセラミックスの重量100部のものに含浸させた。
Polycarbosilane (rearranged product of barmethylpolysilane) having a pour point of 241° C. was dissolved in xylene to make a 5% solution, and 100 parts by weight of the above ceramic was impregnated with the solution.

−昼夜含浸後、乾燥し、再度含浸させ、乾燥した。- After day and night impregnation, drying, impregnation again and drying.

このサンプルを実施例1と同様に、最高1j00℃で焼
成した。得られた複合セラミックスは、重量109部、
体積固有抵抗182Ωcmであった。このものは高温ヒ
ータの発熱体素子として有用なものであった。
This sample was fired in the same manner as in Example 1 at a maximum temperature of 1j00°C. The obtained composite ceramic had a weight of 109 parts,
The volume resistivity was 182 Ωcm. This product was useful as a heating element for a high-temperature heater.

実施例3 「マシナブルセラミックス」と称する多孔質アルミナ(
日本通商製〉入手した。
Example 3 Porous alumina (called “machinable ceramics”)
I got it from Nippon Tsusho.

実施例1で用いたポリカルボシラスチレンの溶液をこの
セラミックスに含浸させた。実施例1と同様に、含浸、
乾燥を繰り返した。
This ceramic was impregnated with the polycarbosilastyrene solution used in Example 1. Similar to Example 1, impregnation,
Repeated drying.

得られたサンプルの重量は元の多孔質アルミナ(マシナ
ブルセラミックス〉100部に対して117部であった
。このサンプルを、窒素気流中で、最高1,300℃で
焼成した。得られたセラミックス複合体の重量は109
部、体積固有抵抗は42Ωcmであった。このセラミッ
クス複合体に電気を通したところ赤熱し、高温ヒータの
発熱体素子として有用なことが確認された。
The weight of the obtained sample was 117 parts based on 100 parts of the original porous alumina (machinable ceramics).This sample was fired at a maximum temperature of 1,300°C in a nitrogen stream.The obtained ceramic The weight of the composite is 109
The volume resistivity was 42 Ωcm. When electricity was passed through this ceramic composite, it became red hot, confirming its usefulness as a heating element for a high-temperature heater.

Claims (4)

【特許請求の範囲】[Claims] (1)互いに連通した多数の細孔を有する多孔質アルミ
ナからなる第1の相と、該多孔質アルミナの細孔内に充
填されており、かつ少くとも一部が連続相をなして複合
体表面までつながっているシリコンカーバイドを主成分
とするセラミックスからなる第2の相、とで構成されて
いることを特徴とする導電性セラミックス複合体。
(1) A composite comprising a first phase made of porous alumina having a large number of pores communicating with each other, and the pores of the porous alumina being filled and at least a part of which forms a continuous phase. 1. A conductive ceramic composite comprising: a second phase made of ceramics containing silicon carbide as a main component, which is connected to the surface;
(2)第2の相が有機ケイ素ポリマーの焼成物である請
求項(1)に記載の導電性セラミックス複合体。
(2) The conductive ceramic composite according to claim 1, wherein the second phase is a fired product of an organosilicon polymer.
(3)予め焼成した多孔質アルミナに、有機ケイ素ポリ
マーの溶液を含浸させ、乾燥後焼成することを特徴とす
る、導電性セラミックス複合体の製造法。
(3) A method for producing a conductive ceramic composite, which comprises impregnating pre-fired porous alumina with a solution of an organosilicon polymer, drying and firing.
(4)有機ケイ素ポリマーが、ポリシラン、ポリカルボ
シラン、ポリシラスチレン又はポリカルボシラスチレン
共重合体の少くとも1種である請求項(3)に記載の導
電性セラミックス複合体の製造法。
(4) The method for producing a conductive ceramic composite according to claim (3), wherein the organosilicon polymer is at least one of polysilane, polycarbosilane, polysilastyrene, or polycarbosilastyrene copolymer.
JP1171820A 1989-07-05 1989-07-05 Electrically conductive ceramic composite material and its production Pending JPH0337155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1171820A JPH0337155A (en) 1989-07-05 1989-07-05 Electrically conductive ceramic composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1171820A JPH0337155A (en) 1989-07-05 1989-07-05 Electrically conductive ceramic composite material and its production

Publications (1)

Publication Number Publication Date
JPH0337155A true JPH0337155A (en) 1991-02-18

Family

ID=15930345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1171820A Pending JPH0337155A (en) 1989-07-05 1989-07-05 Electrically conductive ceramic composite material and its production

Country Status (1)

Country Link
JP (1) JPH0337155A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019119612A1 (en) * 2017-12-21 2019-06-27 深圳市卓力能电子有限公司 Preparation process for novel porous ceramic heating body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019119612A1 (en) * 2017-12-21 2019-06-27 深圳市卓力能电子有限公司 Preparation process for novel porous ceramic heating body

Similar Documents

Publication Publication Date Title
US6187256B1 (en) Method of producing a conductive silicon carbide-based sintered compact
JPH04229592A (en) Microwave absorption heating body
JPH0283276A (en) Porous composite ceramic structure
JPH0337155A (en) Electrically conductive ceramic composite material and its production
Nangrejo et al. Silicon carbide–titanium carbide composite foams produced using a polymeric precursor
JPH0340966A (en) Conductive ceramic formed article and its production
JPS62219486A (en) Panel heating element
JP2560680B2 (en) Heat-resistant insulated wire and method of manufacturing the same, and method of manufacturing heat-resistant insulating material
JP2685370B2 (en) Ceramics heater
US4337498A (en) Small ignition device comprising string-like silicon carbide heating element affixed to terminal supports
Vezzoli et al. New high dielectric strength materials: Micro/nanocomposites of suspended Au clusters in SiO2/SiO2 Al2O3 Li2O Gels
KR100530554B1 (en) Electro-Thermal Insulator Materials and Fabrication Thereof
JP3618369B2 (en) Ceramic heating element
JP2955127B2 (en) Ceramic heater
JP3353043B2 (en) Manufacturing method of low order titanium oxide ceramics
JPH01298068A (en) Production of ceramic formed body
JP2007173038A (en) Sheet heating element
JPH0360465A (en) Combined ceramic product
JPH0547455A (en) Ceramic heater
JP3598726B2 (en) SiC-based composite material with improved oxidation resistance and method for producing the same
JPH02217367A (en) Composite ceramic formed product and its production
JP2001284039A (en) Manufacturing method of simple furnace and sintered body
JPS63176385A (en) Manufacture of electroconductive ceramic composite body
JPH02267167A (en) Composite ceramic sheet-like molded product and production thereof
JPH0234562A (en) Production of conductive silicon carbide sheet