JP2001284039A - Manufacturing method of simple furnace and sintered body - Google Patents

Manufacturing method of simple furnace and sintered body

Info

Publication number
JP2001284039A
JP2001284039A JP2000093211A JP2000093211A JP2001284039A JP 2001284039 A JP2001284039 A JP 2001284039A JP 2000093211 A JP2000093211 A JP 2000093211A JP 2000093211 A JP2000093211 A JP 2000093211A JP 2001284039 A JP2001284039 A JP 2001284039A
Authority
JP
Japan
Prior art keywords
powder
temperature
furnace
silicon carbide
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000093211A
Other languages
Japanese (ja)
Other versions
JP4783489B2 (en
Inventor
Atsushi Fujimaru
篤 藤丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aida Chemical Industries Co Ltd
Original Assignee
Aida Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aida Chemical Industries Co Ltd filed Critical Aida Chemical Industries Co Ltd
Priority to JP2000093211A priority Critical patent/JP4783489B2/en
Publication of JP2001284039A publication Critical patent/JP2001284039A/en
Application granted granted Critical
Publication of JP4783489B2 publication Critical patent/JP4783489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Electric Ovens (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a simple furnace and metallic or ceramic sintered body wherein a temperature control superior in reproducibility is stably made possible by using a microwave oven for home use. SOLUTION: This simple furnace is the simple furnace arranged in the microwave oven for home use, and in an inner circumferential wall surface of a container consisting of a heat insulating material, a mixture of silicon carbide powders of particle size 1 to 15 μm silicon carbide powders of particle size 30 to 100 μm, and a heat resistant film forming materials.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、家庭用電子レンジ
を用いて安定に且つ再現性に優れた温度コントロールを
可能にした簡易炉及び焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a simple furnace and a method for manufacturing a sintered body which enable stable and excellent reproducible temperature control using a household microwave oven.

【0002】[0002]

【従来の技術】従来、金属焼成品を作成するには、金属
粉末を圧縮生成した成形品や金属粉末にバインダーを混
合して成形した成形品などを、電気炉、又はガス炉、窯
などに入れて所定時間加熱して焼成している。
2. Description of the Related Art Conventionally, in order to produce a fired metal product, a molded product obtained by compressing a metal powder or a molded product obtained by mixing a metal powder with a binder is molded into an electric furnace, a gas furnace, or a kiln. It is put and heated for a predetermined time and fired.

【0003】[0003]

【発明が解決しようとする課題】しかし、電気炉やガス
炉は、設備費や稼動費がかかるなどの問題があった。ま
た、例えば家庭用、クラフト、趣味等に使用されるよう
な簡易電気炉においては、仮に温度調整機能が具備され
ていても内部の温度がばらつき易く、膨大な消費電力が
かかるものであった。そこで、本発明は、近年、一般家
庭に広く普及している家庭用電子レンジに着目し、この
ようなマイクロ波を利用した簡易炉を作成することを目
的とする。
However, electric furnaces and gas furnaces have problems such as high equipment costs and operating costs. Further, for example, in a simple electric furnace used for home use, crafts, hobbies, and the like, even if a temperature adjusting function is provided, the internal temperature tends to fluctuate, and enormous power consumption is required. In view of the above, an object of the present invention is to focus on a household microwave oven that has been widely used in general households in recent years, and to provide a simple furnace using such a microwave.

【0004】[0004]

【課題を解決するための手段】マイクロ波を吸収し、そ
れを熱エネルギーに変換するマイクロ波吸収体は、カー
ボンと炭化珪素で構成されることが多く、また、このカ
ーボンと炭化珪素に導通性のある金属粉末やフェライト
を配合することが多いが、これらカーボンや金属粉末や
フェライトは、燃焼や酸化、構造変性により発熱能力が
変化する。例えばカーボンは、数百℃を超えるような高
温では燃焼してしまうため、カーボン量が減少して安定
した発熱能力を得られない。また、金属粉末、特に活性
金属は、高温酸化により、発熱速度が一定せず、また鉄
などは、高温(800℃付近)で構造変化を起こし、そ
れにより磁気特性が変化することにより、マイクロ波吸
収による発熱速度、能力に著しく影響をもたらし、発熱
速度、能力が不安定になるため、炉内温度コントロール
が重要である金属、セラミック焼結体の焼結には適用す
ることが困難である。一方、炭化珪素は、耐火性が高
く、劣化や構造変化などが少なく安定しているため、極
めて安定な発熱を得ることができる。しかし、炭化珪素
は、高い電気抵抗を持っているため、マイクロ波を照射
してから発熱するまでの時間がかかるという問題があ
り、そのため電子レンジを壊してしまうおそれがあっ
た。また、前述のようにこの炭化珪素に、カーボンや導
電性の高い鉄や銅などの金属粉末を配合して発熱速度を
速めているが、その場合も前述のようにカーボンは燃焼
により、金属粉末は酸化などにより、何れも発熱速度が
安定しない。そこで、本発明は、鉄や銅などの金属粉末
の代わりに炭化珪素の微粉末を添加することにより、炭
化珪素粉末どうしの充填率を高くして接触面積を増や
し、それによって導電性を高め、マイクロ波照射による
発熱速度を速め、さらに酸化、劣化による影響を受けず
安定した発熱能力を得ようとするものである。即ち二種
類の炭化珪素粉末を適宜に組み合わせて用いることによ
り、具体的には粒径1〜15μmの炭化珪素粉末と粒径
30〜100μmの炭化珪素粉末との混合比を適宜に調
整することにより、発熱速度をコントロールし得ること
を見出した。
SUMMARY OF THE INVENTION A microwave absorber that absorbs microwaves and converts it into heat energy is often made of carbon and silicon carbide. In many cases, metal powders and ferrites having a certain characteristic are mixed. However, these carbons, metal powders and ferrites change their heat generating ability due to combustion, oxidation and structural modification. For example, carbon burns at a high temperature exceeding several hundred degrees Celsius, so that the amount of carbon decreases and stable heat generation ability cannot be obtained. In addition, metal powders, particularly active metals, have a non-uniform heating rate due to high-temperature oxidation, and iron and the like undergo structural changes at high temperatures (around 800 ° C.), thereby changing their magnetic properties. Absorption significantly affects the heat generation rate and capacity, and the heat generation rate and capacity become unstable. Therefore, it is difficult to apply the method to sintering of metal and ceramic sintered bodies in which furnace temperature control is important. On the other hand, silicon carbide has high fire resistance and is stable with little deterioration or structural change, so that extremely stable heat generation can be obtained. However, since silicon carbide has a high electric resistance, there is a problem that it takes time from the irradiation of microwaves to the generation of heat, and there is a possibility that the microwave oven may be broken. In addition, as described above, the heat generation rate is increased by mixing metal powder such as carbon or highly conductive iron or copper with this silicon carbide. Are not stable due to oxidation or the like. Therefore, the present invention, by adding a fine powder of silicon carbide instead of metal powders such as iron and copper, to increase the filling rate between silicon carbide powder and increase the contact area, thereby increasing the conductivity, The purpose is to increase the heat generation rate by microwave irradiation and to obtain a stable heat generation ability without being affected by oxidation and deterioration. That is, by appropriately combining and using two types of silicon carbide powders, specifically, by appropriately adjusting the mixing ratio between the silicon carbide powder having a particle size of 1 to 15 μm and the silicon carbide powder having a particle size of 30 to 100 μm. It was found that the rate of heat generation could be controlled.

【0005】即ち、本発明は、家庭用電子レンジ内に配
置する簡易炉であって、断熱材で構成された容器の内周
壁面部に、粒径1〜15μmの炭化珪素粉末と粒径30
〜100μmの炭化珪素粉末と水ガラスや可塑性粘土物
質等の耐熱性造膜材とを混合したものを塗布してなるこ
とを特徴とする簡易炉に関するものである。
That is, the present invention relates to a simple furnace placed in a household microwave oven, wherein a silicon carbide powder having a particle size of 1 to 15 μm and a particle size of 30 are provided on the inner peripheral wall of a container made of a heat insulating material.
The present invention relates to a simple furnace formed by applying a mixture of a silicon carbide powder having a thickness of about 100 μm and a heat-resistant film-forming material such as water glass or a plastic clay material.

【0006】また、本発明は、前記簡易炉内に、金属粉
末又はセラミック粉末の一種以上を含有する組成物を所
望の形状に造形又は物品に付着させ、乾燥固化させた造
形体又は物品付着物を入れ、この簡易炉を家庭用電子レ
ンジ内に所定時間配置して焼成することを特徴とする金
属、セラミック焼結体の製造方法をも提案する。
The present invention also relates to a shaped article or article adhering to a simplified furnace, wherein a composition containing at least one of a metal powder and a ceramic powder is adhered to a shaped article or article in a desired shape and dried and solidified. And a method for producing a sintered metal or ceramic body, characterized in that the simple furnace is placed in a household microwave oven for a predetermined time and fired.

【0007】さらに、本発明は、前記簡易炉内に、乾燥
固化させた焼結用の造形体又は物品付着物と共に、軟化
点が既知のガラス粉末を成形した成形体、又は軟化点が
既知のガラス粉末にSiO2、ZrO、アルミナ粉末等
の耐火性の高い物質を混合した混合ガラス粉末を成形し
た成形体から選ばれる二種以上を組み合わせて成り、各
成形体は、それぞれ軟化する温度が異なり、それぞれの
温度で軟化して略球状となるような形状に成形されてい
る温度検知材を入れ、温度検知材を構成する各成形体の
形状変化(略球状への変化)によって炉内温度を検知す
るようにした金属、セラミック焼結体の製造方法をも提
案する。即ち上記温度検知材を用いて予め温度条件を確
認した後に、焼結用の造形体又は物品付着物を炉内に入
れて焼成しても良いし、上述のように焼結用の造形体又
は物品付着物を温度検知材と同時に炉内に入れて炉内温
度を検知しつつ焼成するようにしても良い。
Further, the present invention provides a molded article obtained by molding a glass powder having a known softening point together with a dried and solidified shaped article for sintering or an article adhered to the simple furnace, or a molded article having a known softening point. It is made by combining two or more types selected from molded products formed by mixing glass powder with highly refractory substances such as SiO 2 , ZrO, and alumina powder, and each molded product has a different softening temperature. Then, put a temperature detecting material which is molded into a shape that is softened at each temperature and become substantially spherical, and the furnace temperature is changed by changing the shape (change to a substantially spherical shape) of each molded body constituting the temperature detecting material. A method for producing a metal or ceramic sintered body to be detected is also proposed. That is, after confirming the temperature conditions in advance using the temperature detecting material, the shaped body for sintering or the article adhering matter may be placed in a furnace and fired, or the shaped body for sintering as described above or The article deposits may be placed in a furnace at the same time as the temperature detection material, and fired while detecting the furnace temperature.

【0008】[0008]

【発明の実施の形態】前述のように本発明の簡易炉は、
断熱材で構成された容器の内周壁面部に、二種類の炭化
珪素粉末と耐熱性造膜材とを混合したものを塗布して発
熱体層を形成するものであって、具体的には発熱体層を
構成する粒径1〜15μmの炭化珪素粉末と粒径30〜
100μmの炭化珪素粉末とを適宜に混合することによ
り、発熱速度をコントロールするものである。また、耐
熱性造膜材は、二種類の炭化珪素粉末を発熱体層に保持
するものであれば、特にその成分を限定するものではな
く、例えば水ガラスや可塑性粘土物質等を使用すること
ができる。さらに、二種類の炭化珪素粉末と耐熱性造膜
材との割合についても特に限定するものではないが、二
種類の炭化珪素粉末の合計量を50〜70重量%にして
残部(30〜50重量%)を耐熱性造膜材とすることが
望ましい。さらに、例えばこの耐熱性造膜材として水ガ
ラス及び可塑性粘土物質を用いる場合には、水ガラス2
0〜50重量%と可塑性粘土物質0〜30重量%とを組
み合わせて用いることが望ましい。また、本発明の簡易
炉を構成する断熱材は、マイクロ波の影響を受けないも
のであれば特にその材質や形状を限定するものではない
が、後述する温度検知材を内部に配置する場合には、外
側からその形状変化を目視できるように覗き穴を形成し
ておくことが望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the simple furnace of the present invention
A heating element layer is formed by applying a mixture of two kinds of silicon carbide powder and a heat-resistant film-forming material on the inner peripheral wall portion of a container formed of a heat insulating material, and specifically, Silicon carbide powder having a particle size of 1 to 15 μm and a particle size of 30 to
The heat generation rate is controlled by appropriately mixing 100 μm silicon carbide powder. The heat-resistant film-forming material is not particularly limited as long as it holds two types of silicon carbide powder in the heating element layer.For example, water glass or a plastic clay material may be used. it can. Furthermore, the ratio between the two types of silicon carbide powder and the heat-resistant film-forming material is not particularly limited, but the total amount of the two types of silicon carbide powder is set to 50 to 70% by weight, and the balance (30 to 50% by weight) is set. %) Is desirably a heat-resistant film-forming material. Further, for example, when water glass and a plastic clay material are used as the heat-resistant film-forming material, the water glass 2
It is desirable to use a combination of 0 to 50% by weight and 0 to 30% by weight of a plastic clay material. In addition, the heat insulating material constituting the simple furnace of the present invention is not particularly limited in its material and shape as long as it is not affected by microwaves. It is desirable to form a peephole so that the shape change can be visually observed from the outside.

【0009】本発明の発熱体層は、前述のように粒径1
〜15μmの炭化珪素粉末と粒径30〜100μmの炭
化珪素粉末とを適宜に混合して発熱速度をコントロール
するものであるが、より具体的には、汎用の500W、
50Hzの家庭用電子レンジを使用した場合、粒径1〜
15μmの炭化珪素粉末及び粒径30〜100μmの炭
化珪素粉末の混合比と発熱速度との関係は図1に示すと
おりとなる。即ち粒径1〜15μmの炭化珪素粉末に対
し、粒径30〜100μmの炭化珪素粉末を1:4の割
合で混合すると、この発熱体はマイクロ波を照射してか
ら10分で900℃付近まで発熱した。また、粒径1〜
15μmの炭化珪素粉末に対し、粒径30〜100μm
の炭化珪素粉末を1:8の割合で混合すると、この発熱
体はマイクロ波を照射してから20分で900℃付近ま
で発熱した。次に、粒径1〜15μmの炭化珪素粉末に
対し、粒径30〜100μmの炭化珪素粉末を1:2の
割合で混合すると、この発熱体はマイクロ波を照射して
から8分で900℃付近まで発熱した。さらに、粒径1
〜15μmの炭化珪素粉末に対し、粒径30〜100μ
mの炭化珪素粉末を2:1の割合で混合すると、この発
熱体はマイクロ波を照射してから24分で900℃付近
まで発熱した。このように二種の炭化珪素粉末の混合比
を調整することにより発熱速度をコントロールすること
ができる。この発熱速度は、炭化珪素粉末の充填率に起
因し、炭化珪素粉末の微粉末(粒径1〜15μm)と粗
い粉末(粒径30〜100μm)の混合比により充填率
が高く、炭化珪素粉末どうしの接触面積が大きいときに
は、発熱速度が速くなる。これに対し、炭化珪素粉末の
粗い粉末が多過ぎると充填率が低くなり、炭化珪素粉末
どうしの接触面積が小さくなり、発熱速度が遅くなる。
また、同様に炭化珪素粉末の微粉末が多過ぎても充填率
が低くなり、炭化珪素粉末どうしの接触面積が小さくな
り、発熱速度は遅くなる。したがって、例えばこのケー
スにおいて粒径1〜15μmの炭化珪素粉末と粒径30
〜100μmの炭化珪素粉末とを0.5:9.5〜9.
5:0.5程度の範囲で調整すればよく、この範囲外で
は発熱速度が著しく長いものとなる。さらに、より望ま
しい範囲を特定するために例えば20分を目処にすれ
ば、このケースでは1:8〜2:1程度の範囲がより望
ましい範囲となる。
The heating element layer of the present invention has a particle size of 1 as described above.
The heat generation rate is controlled by appropriately mixing silicon carbide powder having a particle size of 30 μm to 15 μm and silicon carbide powder having a particle size of 30 μm to 100 μm.
When using a 50 Hz household microwave oven,
The relationship between the mixing ratio of the 15 μm silicon carbide powder and the silicon carbide powder having a particle size of 30 to 100 μm and the heat generation rate is as shown in FIG. That is, when silicon carbide powder having a particle size of 30 to 100 μm is mixed at a ratio of 1: 4 with silicon carbide powder having a particle size of 1 to 15 μm, the heating element is heated to around 900 ° C. in 10 minutes after irradiation with microwaves. Fever. In addition, particle size 1
For a silicon carbide powder of 15 μm, a particle size of 30 to 100 μm
Was mixed at a ratio of 1: 8, the heating element generated heat up to around 900 ° C. in 20 minutes after irradiation with microwaves. Next, a silicon carbide powder having a particle size of 1 to 15 μm and a silicon carbide powder having a particle size of 30 to 100 μm are mixed at a ratio of 1: 2. Heat was generated to the vicinity. In addition, particle size 1
Particle size of 30-100μ for silicon carbide powder of ~ 15μm
When the silicon carbide powders of m were mixed at a ratio of 2: 1, the heating element generated heat up to around 900 ° C. in 24 minutes after being irradiated with the microwave. By adjusting the mixing ratio of the two types of silicon carbide powder, the heat generation rate can be controlled. This heat generation rate is caused by the filling ratio of the silicon carbide powder, and the filling ratio is high due to the mixing ratio of the fine powder (particle size: 1 to 15 μm) and the coarse powder (particle size: 30 to 100 μm). When the contact area between them is large, the heat generation speed increases. On the other hand, if the amount of the silicon carbide powder is too large, the filling rate decreases, the contact area between the silicon carbide powders decreases, and the heat generation rate decreases.
Similarly, if the amount of the fine silicon carbide powder is too large, the filling rate is low, the contact area between the silicon carbide powders is small, and the heat generation rate is low. Therefore, for example, in this case, a silicon carbide powder having a particle size of 1 to 15 μm and a particle size of 30
0.5 to 9.5-9.
The adjustment may be performed in a range of about 5: 0.5. Outside this range, the heat generation rate becomes extremely long. Further, if, for example, about 20 minutes is specified in order to specify a more desirable range, a range of about 1: 8 to 2: 1 is a more desirable range in this case.

【0010】これに対し、前記従来のカーボンと炭化珪
素に鉄を配合した発熱体を、断熱材で構成された容器の
内周壁面部に塗布し、同様に500W、50Hzの家庭
用電子レンジに使用した場合の各使用回数におけるマイ
クロ波照射時間と炉内温度との関係は図2に示すとおり
となる。即ち1〜3回目まではマイクロ波を照射してか
ら5分で炉内温度は900℃まで上がったが、4〜5回
目は5分で850℃まで、6〜8回目以降は5分で80
0℃までしか上がらなかった。このように4回目以降で
発熱体の劣化が起こり、そのため発熱能力が衰えてしま
うことがわかる。したがって、例えばこのような従来の
発熱体を用いた簡易炉を用いて予備実験を行ってマイク
ロ波照射時間と炉内温度との関係を確認した後、焼結体
の製造(焼結)を行おうとしても予備実験と温度雰囲気
が異なったものとなることがあり、所望の焼結体品質を
得られなかったり、再現性に優れた焼結を実施すること
ができなかった。
On the other hand, the above-described conventional heating element in which carbon and silicon carbide are mixed with iron is applied to the inner peripheral wall of a container made of a heat insulating material, and is similarly applied to a household microwave oven of 500 W and 50 Hz. FIG. 2 shows the relationship between the microwave irradiation time and the furnace temperature at each use count when used. In other words, the temperature in the furnace rose to 900 ° C. in 5 minutes from the irradiation of the microwave up to the first to third times, but to 850 ° C. in 5 minutes in the fourth to fifth times, and to 80 ° C. in 5 minutes after the sixth to eighth times.
It only rose to 0 ° C. As described above, it can be seen that the heating element deteriorates after the fourth time, so that the heat generating ability decreases. Therefore, for example, after conducting a preliminary experiment using a simple furnace using such a conventional heating element and confirming the relationship between the microwave irradiation time and the furnace temperature, manufacturing (sintering) of the sintered body was performed. Even if it is attempted, the temperature atmosphere may be different from that of the preliminary experiment, so that the desired sintered body quality could not be obtained or sintering with excellent reproducibility could not be performed.

【0011】粒径1〜15μmの炭化珪素粉末に対し、
粒径30〜100μmの炭化珪素粉末を1:4の割合で
混合した本発明の簡易炉を、同様に500W、50Hz
の家庭用電子レンジを使用した場合の各使用回数におけ
るマイクロ波照射時間と炉内温度との関係は図3に示す
とおりとなる。即ち1〜15回目までマイクロ波を照射
してから9分で全く同様に850℃まで上がり、非常に
安定した発熱能力を有していることがわかる。さらに、
炉内温度とマイクロ波照射時間の関係は図4に示すとお
りとなった。
For silicon carbide powder having a particle size of 1 to 15 μm,
A simple furnace of the present invention, in which silicon carbide powder having a particle size of 30 to 100 μm is mixed at a ratio of 1: 4, is similarly supplied at 500 W and 50 Hz
FIG. 3 shows the relationship between the microwave irradiation time and the in-furnace temperature at each use frequency when the household microwave oven is used. In other words, the temperature rises to 850 ° C. in exactly the same manner in 9 minutes after the first to fifteenth microwave irradiations, indicating that it has a very stable heat generation ability. further,
The relationship between the furnace temperature and the microwave irradiation time was as shown in FIG.

【0012】尚、本発明者は、軟化点が既知のガラス粉
末、または軟化点が既知のガラス粉末に、SiO2、Z
rO、アルミナ粉末等の耐火性の高い物質を混合してな
る混合ガラス粉末を主成分とする成形体の二種以上を組
み合わせてなる温度検知材を見出した(特願2000−
39253)。この温度検知材では、所定温度における
形状変化が速やかに行われ、しかも略球状への変化を極
めて容易に判別してその温度を検知できるものであり、
再現性に優れたものである。本発明においては、この温
度検知材を用いて温度を検知した。
The inventor of the present invention added SiO 2 , Z, to glass powder having a known softening point or glass powder having a known softening point.
A temperature detecting material comprising a combination of two or more types of compacts mainly composed of a mixed glass powder obtained by mixing a highly refractory material such as rO and alumina powder has been found (Japanese Patent Application No. 2000-2000).
39253). In this temperature detecting material, the shape change at a predetermined temperature is quickly performed, and furthermore, the change to a substantially spherical shape can be detected very easily to detect the temperature.
It is excellent in reproducibility. In the present invention, the temperature was detected using this temperature detecting material.

【0013】このような本発明の簡易炉は、家庭用、ク
ラフト、趣味等に好適に使用することができる。金属や
セラミックの焼結体を得るためには、発熱速度をコント
ロールすることが重要であり、使用した金属粉末或いは
セラミック粉末に応じた温度と時間とを制御しなければ
ならない。即ち金属粉末又はセラミック粉末の一種以上
からなる組成物を圧縮成形して所望の形状に成形しても
良いし、或いは可塑性を持たせるためにバインダーを混
合して粘土状の組成物とし、これを所望の形状に造形又
は物品に付着させても良いが、これを乾燥固化させた造
形体又は物品付着物を金属粉末又はセラミック粉末の融
点以下の温度にて加熱することにより、バインダーは燃
焼し、金属粉末又はセラミック粉末どうしの接触面が溶
融して接合する時間が必要であり、使用した金属粉末又
はセラミック粉末によってその温度と時間が異なるた
め、焼結にはそれに適した温度と時間とを制御する必要
がある。前述のように本発明の簡易炉は、二種類の炭化
珪素粉末の混合比を調整することより、極めて容易に温
度コントロールを可能にしたので、このような金属粉末
又はセラミック粉末の焼結体の作製に好適に利用するこ
とができ、焼結時の失敗を軽減し、原料コストやエネル
ギーコストの無駄を防ぐことができる。
Such a simple furnace of the present invention can be suitably used for home use, craft, hobbies, and the like. In order to obtain a sintered body of metal or ceramic, it is important to control the heat generation rate, and it is necessary to control the temperature and time according to the metal powder or ceramic powder used. That is, a composition comprising one or more of metal powder or ceramic powder may be compression-molded to a desired shape, or a clay-like composition may be obtained by mixing a binder to impart plasticity. The binder may be burned by heating the formed body or the article attached to the formed or dried article at a temperature equal to or lower than the melting point of the metal powder or the ceramic powder. It takes time for the contact surfaces between the metal powders or ceramic powders to melt and join, and the temperature and time differ depending on the metal powder or ceramic powder used, so control the temperature and time suitable for sintering. There is a need to. As described above, the simple furnace of the present invention can control the temperature very easily by adjusting the mixing ratio of the two types of silicon carbide powder. It can be suitably used for production, can reduce failures during sintering, and can prevent waste of raw material costs and energy costs.

【0014】使用する金属粉末、セラミック粉末につい
ては、例えば貴金属等の金属単体の粉末でも良いし、合
金粉末、金属酸化物粉末等粉末でも良く、何等限定する
ものではない。また、これらの金属粉末、セラミック粉
末を所望の形状に成形したり物品に付着させる方法とし
ても特に限定するものではなく、前述のように圧縮成形
しても良いし、バインダーを添加して粘土状として成形
しても良い。バインダーとしては、水溶性セルロース系
樹脂0.022〜3.0wt%と、デンプン0.02〜
3.0wt%又はフェニルプロパンを骨格とする構成単
位体が縮合してなる網状高分子0〜0.5wt%とを用
いることが望ましい。例えば陶磁器用の粘土を用いるよ
うにしても良く、釉薬等についても同様である。さら
に、所望の形状に造形した造形体或いは適宜物品に付着
させた物品付着物は、例えば50〜80℃で1時間程度
乾燥するが、この乾燥条件は一例に過ぎず、用いる手段
や方法、条件に関しては何等制限されるものではない。
The metal powder and the ceramic powder to be used may be, for example, a powder of a simple metal such as a noble metal, an alloy powder, a metal oxide powder or the like, and are not limited at all. Further, the method of forming these metal powders and ceramic powders into a desired shape or attaching them to an article is not particularly limited, and may be compression-molded as described above, or may be made by adding a binder and adding clay. It may be molded as. As a binder, water-soluble cellulose-based resin 0.022 to 3.0 wt%, starch 0.02 to
It is desirable to use 3.0% by weight or 0 to 0.5% by weight of a network polymer formed by condensation of a structural unit having a phenylpropane skeleton. For example, clay for ceramics may be used, and the same applies to glazes and the like. Furthermore, the shaped article molded into a desired shape or the article adhering material appropriately attached to the article is dried, for example, at 50 to 80 ° C. for about 1 hour. However, the drying conditions are merely examples, and the means, methods, and conditions to be used are used. Is not limited at all.

【0015】そして、使用した金属粉末、セラミック粉
末に応じて設定される温度雰囲気にて造形体又は物品付
着物を焼成する。具体的には、前記本発明の簡易炉の炉
内温度が、予め上述の温度雰囲気になるような混合比、
時間等を確認或いは調整した後に、この中へ乾燥固化し
た造形体又は物品付着物を所定時間入れるようにすれば
良い。その際、本発明の簡易炉は、繰り返し使用するこ
とができ、再現性に優れた温度コントロールが可能であ
るから、予備実験と焼結体の製造(焼結)の際で異なる
温度雰囲気になることがなく、所望の焼結体品質を得る
ことができ、再現性に優れた焼結を実施することができ
る。い。或いは造形体又は物品付着物を前述の温度指示
材と共に簡易炉内に入れ、温度指示材の形状変化を目視
にて確認しながら、即ち炉内温度を検知しながら、時間
計測を開始し、所定時間の経過後にこれを取り出すよう
にしても良い。
[0015] Then, the shaped body or the article adhering matter is fired in a temperature atmosphere set according to the used metal powder and ceramic powder. Specifically, the temperature in the furnace of the simple furnace of the present invention is a mixing ratio such that the above-mentioned temperature atmosphere is obtained in advance,
After confirming or adjusting the time or the like, it is sufficient to put the dried and solidified shaped body or the attached matter on the article for a predetermined time. At that time, the simple furnace of the present invention can be used repeatedly and can control the temperature with excellent reproducibility, so that the temperature atmosphere is different between the preliminary experiment and the production (sintering) of the sintered body. Therefore, a desired quality of the sintered body can be obtained, and sintering with excellent reproducibility can be performed. No. Alternatively, the molded object or the article adhering matter is put into the simple furnace together with the above-mentioned temperature indicating material, and time measurement is started while visually confirming the shape change of the temperature indicating material, that is, detecting the furnace temperature, and This may be taken out after a lapse of time.

【0016】[0016]

【実施例】[実施例1]電子レンジ用簡易炉として、カ
オウール(イソライト工業(株)製断熱ボード)で筒の
天井と底を作って断熱材製の筒型容器(内径100mm
×外径130mm×長さ60mm)を形成し、側壁面に
径15mmの覗き穴を作り、この容器の内壁に粒径1〜
15μmの炭化珪素粉末に対し、粒径30〜100μm
の炭化珪素粉末を1:4で混合し、これらの合計量70
重量%に対してさらに水ガラス30重量%を混合したも
のを塗布し、電子レンジ内で加熱した。軟化点800℃
のホウ珪酸ガラス粉末(#150PASS)、ホウ珪酸ガラス粉末
とSiO2を5:2の割合で混合した軟化点850℃の
混合ガラス粉末、ホウ珪酸ガラス粉末とSiO2を5:
3の割合で混合した混合ガラス粉末に、それぞれバイン
ダーとしてメチルセルロースを10%程度添加し、底面
一辺が1cmで高さ3mmの三角柱を加圧成形し、温度
検知材とした。平均粒径20μmの純Ag粉末92wt
%、メチルセルロース0.8wt%、デンプン0.6w
t%、水6.6wt%からなる造形用粘土組成物を調製
した。そして、この造形用粘土組成物を長さ50mm×
幅10mm×厚み1.4mmに成形(造形)し、80℃
×20分の条件にて乾燥した。前記簡易炉の底部に、前
記粘土造形体を置くと共に、前記温度検知材を、三角形
の頂点が上になるよう立て、汎用の500W、50Hz
の家庭用電子レンジ内へ入れた。簡易炉に形成した覗き
穴から温度検知材の融け具合を観察しながらマイクロ波
を照射すると、10分後に軟化点800℃の成形体と軟
化点850℃の成形体とが軟化して球状となったことが
確認され、軟化点950℃の成形体は殆ど軟化すること
なく形状を維持していた。したがって、簡易炉内は、8
50〜950℃にまで上がっていたことが検知された。
また、粘土造形体は、収縮率8%、折り曲げ強度1.3
kgf/mm2、硬度35HMVとなり、折り曲げ、磨
き加工をするのに充分な焼結体となったことが確認され
た。尚、純Agの融点は950℃であって、また900
℃を越えると収縮率が12,3%になることが経験的に
わかっているので、簡易炉内は850〜900℃になっ
ていたことが推察される。
[Example 1] As a simple furnace for a microwave oven, the ceiling and the bottom of the cylinder were made with kao wool (insulation board manufactured by Isolite Industry Co., Ltd.), and a cylindrical container (100 mm inner diameter) made of a heat insulating material was formed.
× outer diameter 130 mm × length 60 mm), and a viewing hole 15 mm in diameter is made on the side wall surface.
For a silicon carbide powder of 15 μm, a particle size of 30 to 100 μm
Of silicon carbide powder at a ratio of 1: 4,
A mixture obtained by further mixing 30% by weight of water glass with respect to% by weight was applied and heated in a microwave oven. Softening point 800 ° C
Borosilicate glass powder (# 150PASS), borosilicate glass powder and the SiO 2 to 5: mixing glass powder mixed softening point 850 ° C. at a rate of 2, the borosilicate glass powder and SiO 2 5:
About 10% of methylcellulose was added as a binder to the mixed glass powder mixed at a ratio of 3 and a triangular prism having a bottom surface of 1 cm and a height of 3 mm was pressure-formed to obtain a temperature detecting material. 92 Ag pure Ag powder with an average particle size of 20 μm
%, Methylcellulose 0.8wt%, starch 0.6w
A shaping clay composition comprising t% and water 6.6 wt% was prepared. Then, this modeling clay composition is 50 mm long.
Formed (molded) to a width of 10 mm x a thickness of 1.4 mm, 80 ° C
It was dried under the condition of × 20 minutes. The clay model was placed on the bottom of the simple furnace, and the temperature detecting material was set up so that the apex of the triangle was at the top, and a general-purpose 500 W, 50 Hz
Into a home microwave oven. When microwaves are irradiated while observing the melting condition of the temperature detecting material from the peephole formed in the simple furnace, the molded body having a softening point of 800 ° C. and the molded body having a softening point of 850 ° C. become soft and spherical after 10 minutes. It was confirmed that the molded product having a softening point of 950 ° C. hardly softened and maintained its shape. Therefore, in the simple furnace, 8
It was detected that the temperature had risen to 50 to 950 ° C.
In addition, the clay molding has a shrinkage of 8% and a bending strength of 1.3.
It was confirmed that the sintered body was kgf / mm 2 and the hardness was 35 HMV, and the sintered body was sufficient for bending and polishing. The melting point of pure Ag is 950 ° C.
Since it is empirically known that the shrinkage rate becomes 12.3% when the temperature exceeds ℃, it is presumed that the temperature in the simple furnace was 850 to 900 ° C.

【0017】[実施例2]実施例1にて使用した簡易炉
をそのまま使用した。また、実施例1と同じ温度検知材
を用いた。さらに、実施例1と同じ銀粘土組成物を、指
輪、ペンダントトップなどのアクセサリーに成形した。
そして、前記実施例1と同様に、簡易炉の底部に粘土造
形体(アクセサリー)を置くと共に、温度検知材を三角
形の頂点が上になるよう立て、汎用の500W、50H
zの家庭用電子レンジ内へ入れた。簡易炉に形成した覗
き穴から温度検知材の融け具合を観察しながらマイクロ
波を照射すると、10分後に軟化点800℃の成形体と
軟化点850℃の成形体とが軟化して球状となったこと
が確認され、軟化点950℃の成形体は殆ど軟化するこ
となく形状を維持していた。したがって、簡易炉内は、
実施例1と全く同様に850〜950℃にまで上がって
いたことが検知された。また、粘土造形体は、実施例1
と全く同様に収縮率8%、折り曲げ強度1.3kgf/
mm2、硬度35HMVとなり、折り曲げ、磨き加工を
するのに充分な焼結体となったことが確認された。同様
な操作をさらに繰り返しても全く同様になり、簡易炉の
劣化が生じないことが確認された。
Example 2 The simple furnace used in Example 1 was used as it was. Further, the same temperature detecting material as in Example 1 was used. Further, the same silver clay composition as in Example 1 was molded into accessories such as rings and pendant tops.
Then, similarly to the first embodiment, a clay model (accessory) is placed on the bottom of the simple furnace, and the temperature detecting material is set up so that the apex of the triangle is at the top, and a general-purpose 500 W, 50 H
z into a home microwave oven. When microwaves are irradiated while observing the melting condition of the temperature detecting material from the peephole formed in the simple furnace, the molded body having a softening point of 800 ° C. and the molded body having a softening point of 850 ° C. become soft and spherical after 10 minutes. It was confirmed that the molded product having a softening point of 950 ° C. hardly softened and maintained its shape. Therefore, in the simple furnace,
It was detected that the temperature had risen to 850 to 950 ° C. in exactly the same manner as in Example 1. In addition, the clay molded body was obtained in Example 1
The shrinkage is 8% and the bending strength is 1.3kgf /
mm 2 and a hardness of 35 HMV, and it was confirmed that the sintered body was sufficient for bending and polishing. Even if the same operation was further repeated, the result was exactly the same, and it was confirmed that the simple furnace did not deteriorate.

【0018】[実施例3]実施例1にて使用した簡易炉
をそのまま使用した。また、実施例1と同じ温度検知材
を用いた。但し、銀粘土組成物は使用せずに、市販の楽
焼き粘土にて、石膏型でぐい飲みを成形(造形)し、乾
燥した。そして、前記実施例1と同様に、簡易炉の底部
に粘土造形体(ぐい飲み)を置くと共に、温度検知材を
三角形の頂点が上になるよう立て、汎用の500W、5
0Hzの家庭用電子レンジ内へ入れた。簡易炉に形成し
た覗き穴から温度検知材の融け具合を観察しながらマイ
クロ波を照射すると、10分後に軟化点800℃の成形
体と軟化点850℃の成形体とが軟化して球状となった
ことが確認され、軟化点950℃の成形体は殆ど軟化す
ることなく形状を維持していた。したがって、簡易炉内
は、実施例1と全く同様に850〜950℃にまで上が
っていたことが検知された。また、粘土造形体は、実用
性を有する硬度を持ったぐい飲み(焼結体)となったこ
とが確認された。
Example 3 The simple furnace used in Example 1 was used as it was. Further, the same temperature detecting material as in Example 1 was used. However, without using the silver clay composition, a drinking cup was molded (molded) with a plaster mold using commercially available easy-baked clay and dried. Then, in the same manner as in the first embodiment, a clay shaped body (drink) is placed at the bottom of the simple furnace, and the temperature detecting material is set up so that the apex of the triangle is at the top, and a general-purpose 500 W, 5 W
Placed in a 0 Hz home microwave oven. When microwaves are irradiated while observing the melting condition of the temperature detecting material from the peephole formed in the simple furnace, the molded body having a softening point of 800 ° C. and the molded body having a softening point of 850 ° C. become soft and spherical after 10 minutes. It was confirmed that the molded product having a softening point of 950 ° C. hardly softened and maintained its shape. Therefore, it was detected that the temperature inside the simple furnace had risen to 850 to 950 ° C. in the same manner as in Example 1. In addition, it was confirmed that the clay shaped body became a drink (sintered body) having practical hardness.

【0019】[実施例4]断熱材製の容器の内壁に、粒
径1〜15μmの炭化珪素粉末に対し、粒径30〜10
0μmの炭化珪素粉末を2:1で混合し、さらに水ガラ
スと混合したものを塗布した以外は、実施例1と全く同
様にして簡易炉を作製した。また、実施例1と同じ温度
検知材を用いた。但し、銀粘土組成物は使用せずに、ホ
ウ珪酸ガラス粉末と有機系バインダー、カオリンと水等
を混合してなるセラミック粘土にて、石膏型でぐい飲み
を成形(造形)し、乾燥した。そして、前記実施例1と
同様に、簡易炉の底部に粘土造形体(ぐい飲み)を置く
と共に、温度検知材を三角形の頂点が上になるよう立
て、汎用の500W、50Hzの家庭用電子レンジ内へ
入れた。簡易炉に形成した覗き穴から温度検知材の融け
具合を観察しながらマイクロ波を照射すると、10分後
及び15分後では軟化点800℃の成形体も軟化するこ
となく形状を維持していたが、20分後に軟化点800
℃の成形体と軟化点850℃の成形体とが軟化して球状
となったことが確認され、軟化点950℃の成形体は殆
ど軟化することなく形状を維持していた。したがって、
簡易炉内は、850〜950℃にまで上がっていたこと
が検知された。また、粘土造形体は、実用性を有する硬
度を持ったぐい飲み(セラミック焼結体)となったこと
が確認された。
Example 4 On the inner wall of a heat insulating material container, silicon carbide powder having a particle size of 1 to 15 μm
A simple furnace was manufactured in exactly the same manner as in Example 1 except that 0 μm silicon carbide powder was mixed at a ratio of 2: 1 and further mixed with water glass was applied. Further, the same temperature detecting material as in Example 1 was used. However, without using the silver clay composition, a cup was formed with a gypsum mold using a ceramic clay obtained by mixing borosilicate glass powder and an organic binder, kaolin and water, and dried. Then, in the same manner as in the first embodiment, a clay shaped body (drink) is placed on the bottom of the simple furnace, and the temperature detecting material is set up so that the apex of the triangle is at the top, so that it is placed in a general-purpose household microwave oven of 500 W and 50 Hz. Put in. When microwave irradiation was performed while observing the melting condition of the temperature detecting material from the peephole formed in the simple furnace, the molded body having a softening point of 800 ° C. was maintained without softening after 10 minutes and 15 minutes. Has a softening point of 800 after 20 minutes.
It was confirmed that the molded body having a softening point of 950 ° C. and the molded body having a softening point of 850 ° C. were softened to have a spherical shape, and the molded body having a softening point of 950 ° C. maintained its shape almost without softening. Therefore,
It was detected that the temperature inside the simple furnace had risen to 850 to 950 ° C. In addition, it was confirmed that the clay molded body became a drink (ceramic sintered body) having practical hardness.

【0020】以上本発明の実施例を示したが、本発明は
前記実施例に限定されるものではなく、特許請求の範囲
に記載の構成を変更しない限りどのようにでも実施する
ことができる。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be implemented in any manner without changing the configuration described in the claims.

【0021】[0021]

【発明の効果】以上説明したように本発明の簡易炉は、
従来の電気炉やガス炉のように設備費や稼動費がかかる
ものではなく、家庭用電子レンジを用いて安定に且つ再
現性に優れた温度コントロールを可能にしたものであ
る。また、本発明の簡易炉は、速やかに且つ安定に発熱
速度をコントロールすることができ、繰り返して使用し
ても酸化、劣化等を生ずることがない。
As described above, the simple furnace of the present invention
Unlike conventional electric furnaces and gas furnaces, equipment costs and operating costs are not high, and a temperature control that is stable and excellent in reproducibility is enabled by using a household microwave oven. Further, the simple furnace of the present invention can quickly and stably control the heat generation rate, and does not cause oxidation, deterioration and the like even when used repeatedly.

【0022】本発明の金属、セラミック焼結体の製造方
法は、前記簡易炉を用いて金属やセラミックなどの焼結
体を製造するものであって、焼結条件を設定することが
容易であり、焼結時の失敗を軽減し、原料コストやエネ
ルギーコストの無駄を防ぐことができる。
The method for producing a sintered metal or ceramic body of the present invention is for producing a sintered body such as a metal or ceramic using the simple furnace, and it is easy to set sintering conditions. In addition, it is possible to reduce the failure at the time of sintering and prevent waste of raw material cost and energy cost.

【0023】特に簡易炉内に、焼結用の造形体などと共
に温度検知材を入れて焼結する場合には、略球状への変
化を判別して温度検知を行いつつ焼結を実施できる。
In particular, when a temperature detecting material is put into a simple furnace together with a shaped body for sintering and sintering, sintering can be performed while detecting the temperature by determining a change to a substantially spherical shape.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における粒径1〜15μmの炭化珪素粉
末と粒径30〜100μmの炭化珪素粉末との配合比
と、850℃に達するまでに要するマイクロ波照射時間
との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the mixing ratio of silicon carbide powder having a particle size of 1 to 15 μm and silicon carbide powder having a particle size of 30 to 100 μm and the microwave irradiation time required to reach 850 ° C. is there.

【図2】従来のカーボンと炭化珪素に鉄を配合した発熱
体を用いた炉を家庭用電子レンジに使用した場合の各使
用回数におけるマイクロ波照射時間と炉内温度との関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the microwave irradiation time and the furnace temperature at each use frequency when a conventional furnace using a heating element in which iron is blended with carbon and silicon carbide is used in a household microwave oven. is there.

【図3】本発明の粒径1〜15μmの炭化珪素粉末に対
し、粒径30〜100μmの炭化珪素粉末を1:4の割
合で混合した簡易炉を家庭用電子レンジに使用した場合
の各使用回数におけるマイクロ波照射時間と炉内温度と
の関係を示すグラフである。
FIG. 3 shows a case where a simple furnace in which a silicon carbide powder having a particle size of 30 to 100 μm is mixed at a ratio of 1: 4 with a silicon carbide powder having a particle size of 1 to 15 μm according to the present invention is used in a household microwave oven. It is a graph which shows the relationship between the microwave irradiation time and the furnace temperature in the frequency | count of use.

【図4】本発明の粒径1〜15μmの炭化珪素粉末に対
し、粒径30〜100μmの炭化珪素粉末を1:4の割
合で混合した簡易炉を家庭用電子レンジに使用した場合
のマイクロ波照射時間と炉内温度との関係を示すグラフ
である。
FIG. 4 shows a microstructure obtained when a simple furnace in which a silicon carbide powder having a particle size of 30 to 100 μm is mixed at a ratio of 1: 4 with a silicon carbide powder having a particle size of 1 to 15 μm is used in a household microwave oven. It is a graph which shows the relationship between wave irradiation time and furnace temperature.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 家庭用電子レンジ内に配置する簡易炉で
あって、断熱材で構成された容器の内周壁面部に、粒径
1〜15μmの炭化珪素粉末と粒径30〜100μmの
炭化珪素粉末と耐熱性造膜材とを混合したものを塗布し
てなることを特徴とする簡易炉。
1. A simple furnace placed in a household microwave oven, wherein silicon carbide powder having a particle size of 1 to 15 μm and carbonization having a particle size of 30 to 100 μm are formed on an inner peripheral wall of a container made of a heat insulating material. A simple furnace characterized by applying a mixture of silicon powder and a heat-resistant film-forming material.
【請求項2】 金属粉末又はセラミック粉末の一種以上
を含有する組成物を所望の形状に造形又は物品に付着さ
せ、乾燥固化させた造形体又は物品付着物を、請求項1
に記載の簡易炉内に入れ、この簡易炉を家庭用電子レン
ジ内に所定時間配置して焼成することを特徴とする焼結
体の製造方法。
2. A shaped article or article adhering to a composition or article containing at least one of a metal powder and a ceramic powder in a desired shape and dried and solidified.
A method for producing a sintered body, characterized in that the simple furnace is placed in a household microwave oven for a predetermined period of time and fired.
【請求項3】 乾燥固化させた造形体又は物品付着物と
共に、軟化点、溶融点が既知のガラス粉末を成形した成
形体、又は軟化点、溶融点が既知のガラス粉末にSiO
2、ZrO、アルミナ粉末等の耐火性の高い物質を混合
した混合ガラス粉末を成形した成形体から選ばれる二種
以上を組み合わせて成り、各成形体は、それぞれ軟化、
溶融する温度が異なり、それぞれの温度で軟化して略球
状となるような形状に成形されている温度検知材を簡易
炉に入れ、温度検知材を構成する各成形体の形状変化に
よって炉内温度を検知しつつ所定の焼成条件にて急速加
熱して焼成することを特徴とする請求項2に記載の焼結
体の製造方法。
3. A molded product obtained by molding a glass powder having a known softening point and melting point, or a glass powder having a known softening point and melting point, together with a dried and solidified shaped body or an attached matter on an article.
2 , ZrO, formed by combining two or more types selected from molded bodies formed by mixing a glass powder mixed with a highly refractory substance such as alumina powder, each molded body is softened,
The melting temperature is different and the temperature detecting material that is molded into a shape that becomes soft and substantially spherical at each temperature is put into a simple furnace, and the temperature inside the furnace is changed by the shape change of each molded body that constitutes the temperature detecting material. 3. The method for producing a sintered body according to claim 2, wherein the sintering is performed by rapidly heating under predetermined sintering conditions while detecting the sintering.
JP2000093211A 2000-03-30 2000-03-30 Silver sintered body manufacturing method and simple furnace Expired - Fee Related JP4783489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000093211A JP4783489B2 (en) 2000-03-30 2000-03-30 Silver sintered body manufacturing method and simple furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000093211A JP4783489B2 (en) 2000-03-30 2000-03-30 Silver sintered body manufacturing method and simple furnace

Publications (2)

Publication Number Publication Date
JP2001284039A true JP2001284039A (en) 2001-10-12
JP4783489B2 JP4783489B2 (en) 2011-09-28

Family

ID=18608429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000093211A Expired - Fee Related JP4783489B2 (en) 2000-03-30 2000-03-30 Silver sintered body manufacturing method and simple furnace

Country Status (1)

Country Link
JP (1) JP4783489B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008132A1 (en) * 2001-07-17 2003-01-30 Mitsubishi Materials Corporation Method and device for sintering silver clay
JP2006024502A (en) * 2004-07-09 2006-01-26 Nippon Steel Corp Microwave exothermic body and its manufacturing method
WO2016021173A1 (en) * 2014-08-03 2016-02-11 学校法人中部大学 Microwave composite heating furnace
WO2020034647A1 (en) * 2018-08-14 2020-02-20 广东美的厨房电器制造有限公司 Heat insulation material and cooking device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200676A (en) * 1986-02-27 1987-09-04 松原 譲 Heating by microwave
JPH02275777A (en) * 1989-04-17 1990-11-09 Sumitomo Cement Co Ltd Ceramic material such as porcelain, its production and calcination furnace
JPH0794270A (en) * 1993-09-22 1995-04-07 Ngk Insulators Ltd Electromagnetic wave heating cooking device
JPH07306099A (en) * 1994-05-11 1995-11-21 Ishikawajima Harima Heavy Ind Co Ltd Temperature monitor for monitoring and testing inside reactor pressure vessel
JPH07318262A (en) * 1994-05-26 1995-12-08 Tokai Konetsu Kogyo Co Ltd Microwave baking furnace, and baking kiln
JP2001228031A (en) * 2000-02-17 2001-08-24 Aida Kagaku Kogyo Kk Temperature detection material, temperature detection method, and method of manufacturing noble metal product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200676A (en) * 1986-02-27 1987-09-04 松原 譲 Heating by microwave
JPH02275777A (en) * 1989-04-17 1990-11-09 Sumitomo Cement Co Ltd Ceramic material such as porcelain, its production and calcination furnace
JPH0794270A (en) * 1993-09-22 1995-04-07 Ngk Insulators Ltd Electromagnetic wave heating cooking device
JPH07306099A (en) * 1994-05-11 1995-11-21 Ishikawajima Harima Heavy Ind Co Ltd Temperature monitor for monitoring and testing inside reactor pressure vessel
JPH07318262A (en) * 1994-05-26 1995-12-08 Tokai Konetsu Kogyo Co Ltd Microwave baking furnace, and baking kiln
JP2001228031A (en) * 2000-02-17 2001-08-24 Aida Kagaku Kogyo Kk Temperature detection material, temperature detection method, and method of manufacturing noble metal product

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008132A1 (en) * 2001-07-17 2003-01-30 Mitsubishi Materials Corporation Method and device for sintering silver clay
US7387762B2 (en) 2001-07-17 2008-06-17 Mitsubishi Materials Corporation Apparatus for sintering silver clay
JP2006024502A (en) * 2004-07-09 2006-01-26 Nippon Steel Corp Microwave exothermic body and its manufacturing method
JP4551143B2 (en) * 2004-07-09 2010-09-22 新日本製鐵株式会社 Microwave heating element and method for manufacturing the same
WO2016021173A1 (en) * 2014-08-03 2016-02-11 学校法人中部大学 Microwave composite heating furnace
JPWO2016021173A1 (en) * 2014-08-03 2017-07-06 プラディープ メタルズ リミテッド Microwave combined heating furnace
CN107429973A (en) * 2014-08-03 2017-12-01 普拉迪普金属有限公司 Microwave composite heating stove
AU2015300579B2 (en) * 2014-08-03 2020-12-10 Chubu University Educational Foundation Microwave composite heating furnace
WO2020034647A1 (en) * 2018-08-14 2020-02-20 广东美的厨房电器制造有限公司 Heat insulation material and cooking device

Also Published As

Publication number Publication date
JP4783489B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP2014228239A (en) Heat treatment vessel
CN110451982A (en) A kind of preparation method for the coat of silicon carbide of saggar and the saggar
JPH08283073A (en) Kiln tool
CN110002887A (en) The refractory material and preparation method thereof of ash attack under the conditions of a kind of high temperature resistant
JP2001284039A (en) Manufacturing method of simple furnace and sintered body
JPS5913470B2 (en) Silica brick manufacturing method
CN107881391A (en) A kind of zirconium oxide base metal-ceramic material and preparation method thereof
JP5036110B2 (en) Lightweight ceramic sintered body
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP2001220259A (en) Alumina-mullite porous refractory sheet and method for producing the same
JPS589782B2 (en) Refractory products and manufacturing methods
CN107881357A (en) A kind of preparation method of zirconium oxide base metal-ceramic material
CN106145954A (en) The preparation method of re-crystallized silicon carbide refractory slab
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
CN106116614A (en) The preparation method of re-crystallized silicon carbide roller rod
JP4430782B2 (en) CHROMIA-ZIRCONIA SINTERED BODY AND PROCESS FOR PRODUCING THE SAME
JP2001228031A (en) Temperature detection material, temperature detection method, and method of manufacturing noble metal product
JP5002087B2 (en) CHROMIA SINTERED BODY AND ITS MANUFACTURING METHOD
JP2001220260A (en) Alumina-based porous refractory sheet and method for producing the same
JP2000095528A (en) Refractory for molten glass feeder
JP2002316870A (en) Member for heat treatment consisting of zirconia sintered compact
KR20040016493A (en) High intensity castable refractories with good adiabatic and high thermal shock resistance
JPH07187758A (en) Alumina ceramics and its production
JPH01286974A (en) Electrically energizable ceramic structure and production thereof
JPH03150276A (en) Multilayered ceramic material and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4783489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees