JP2000095528A - Refractory for molten glass feeder - Google Patents

Refractory for molten glass feeder

Info

Publication number
JP2000095528A
JP2000095528A JP10269492A JP26949298A JP2000095528A JP 2000095528 A JP2000095528 A JP 2000095528A JP 10269492 A JP10269492 A JP 10269492A JP 26949298 A JP26949298 A JP 26949298A JP 2000095528 A JP2000095528 A JP 2000095528A
Authority
JP
Japan
Prior art keywords
refractory
alumina
molten glass
silica
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10269492A
Other languages
Japanese (ja)
Inventor
Isao Imai
功 今井
Hiroyuki Mori
弘之 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP10269492A priority Critical patent/JP2000095528A/en
Publication of JP2000095528A publication Critical patent/JP2000095528A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain refractories that maintain thermal shock resistance and have enhanced anti-corrosion characteristics such as infiltration and reaction resistances by forming a thermally sprayed ceramic coating film on the surface of a substrate consisting of specified proportions of alumina and silica. SOLUTION: A substrate consisting of 55-85 wt.% alumina and 15-45 wt.% silica is used. Starting materials such as alumina powder and silica powder are mixed, blended with an organic binder, or the like, and kneaded with water and the resultant slurry is cast in a prescribed shape, dried and fired to obtain the substrate. A thermally sprayed ceramic coating film comprising alumina, mullite, zirconia, zircon or alumina-silica-zirconia is preferably formed on the substrate by gas plasma spraying or water plasma spraying. the coating film has >=50 μm thickness and <=15% porosity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス製造工業に
おいて使用される溶融ガラスフィ−ダ用耐火物に関し、
より詳細には、オリフィスリング、スパウト、プランジ
ャ−、スタ−ラ−、チュ−ブ等の溶融ガラスフィダ−構
成部材に用いられるガラスフィ−ダ用耐火物に関する。
The present invention relates to a refractory for a molten glass feeder used in the glass manufacturing industry.
More specifically, the present invention relates to a refractory for a glass feeder used for a constituent member of a molten glass feeder such as an orifice ring, a spout, a plunger, a stirrer, and a tube.

【0002】[0002]

【従来の技術】ガラス製造工業、特に板ガラス、瓶ガラ
ス、食器等大量に生産される汎用ガラス成形体の製造工
業においては、最近では、そのほとんどの製造工程が自
動化され、一般に、溶融槽より移送され均質攪拌工程を
経た溶融ガラスは、溶融ガラスフィ−ダを介して次処理
工程に供給される。この溶融ガラスフィ−ダは、例え
ば、図3に示したように、典型的には、溶融ガラス6を
一時的に滞留させるスパウト2と該スパウト2の底部排
出口に設けられたオリフィス3、溶融ガラス流量調節用
のプランジャ−5及び溶融ガラス温度調整用のチュ−ブ
4等の部材から構成されている。
2. Description of the Related Art In the glass manufacturing industry, particularly in the manufacturing industry of general-purpose glass molded articles produced in large quantities such as plate glass, bottle glass, tableware, etc., recently, most of the manufacturing steps have been automated and generally transferred from a melting tank. The molten glass that has been subjected to the homogenous stirring step is supplied to the next processing step via a molten glass feeder. For example, as shown in FIG. 3, the molten glass feeder typically includes a spout 2 for temporarily retaining molten glass 6, an orifice 3 provided at a bottom outlet of the spout 2, and a molten glass feeder. It is composed of members such as a plunger 5 for adjusting the flow rate and a tube 4 for adjusting the temperature of the molten glass.

【0003】次に、図3に示した溶融ガラスフィ−ダの
動作について説明する。まず、溶融槽より均質攪拌工程
(図示せず)を経由した溶融ガラスは、例えば、フォア
ハ−ス1から溶融ガラスフィ−ダのスパウト2内に流入
する。そして、前記スパウト2内に滞留した溶融ガラス
6は、チュ−ブ4の下のスパウト2との隙間を通り、ス
パウト2の底部排出口に設けられた所定口径のオリフィ
ス3から導出される。このとき昇降手段(図示せず)に
よって上下に移動するプランジャー5により、所定量の
ガラスゴブがオリフィス3より排出され、次工程の製ビ
ン装置に送られる。
Next, the operation of the molten glass feeder shown in FIG. 3 will be described. First, the molten glass that has passed through the homogenizing step (not shown) from the melting tank flows into the spout 2 of the molten glass feeder from, for example, the forehearth 1. The molten glass 6 retained in the spout 2 passes through a gap between the spout 2 and the spout 2 below the tube 4, and is led out from an orifice 3 having a predetermined diameter provided at a bottom outlet of the spout 2. At this time, a predetermined amount of the glass gob is discharged from the orifice 3 by the plunger 5 which is moved up and down by an elevating means (not shown), and is sent to the next-step bin manufacturing apparatus.

【0004】溶融ガラスフィ−ダを構成するこれらの部
材は、そのほとんどが耐火物から形成されている。一般
的には、これら部材は、アルミナ・ムライト、アルミナ
・ジルコン等の耐火物素材原料と有機バインダ−とを水
と共に混練してスラリー状とした後、石膏型を用いた鋳
込み法等の方法で所定形状に成形し、次いで、乾燥、焼
成することにより製造される。なお、これら各部材の製
造に際し、オリフィスリング、スパウト、プランジャ
ー、スターラー、チューブ等の各部材に夫々固有に要求
される強度特性、耐食性、耐熱衝撃性等の諸特性に応じ
て適宜組成調整される。
Most of these members constituting the molten glass feeder are formed of refractory. Generally, these members are formed by kneading a refractory raw material such as alumina / mullite or alumina / zircon and an organic binder together with water to form a slurry, and then casting the same using a gypsum mold. It is manufactured by molding into a predetermined shape, followed by drying and firing. In the production of each of these members, the composition is appropriately adjusted according to various characteristics such as strength characteristics, corrosion resistance, and thermal shock resistance required individually for each member such as an orifice ring, spout, plunger, stirrer, and tube. You.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな耐火物からなる溶融ガラスフィ−ダを構成する部材
は、接触する溶融ガラスの浸潤による剥離や、高温下で
の反応等による溶損のため使用中にかなりの減耗を生
じ、その使用が長期間に及ぶこともあって、従来、必ず
しもその耐用性が充分とはいえなかった。この耐火物の
耐用性を向上させるために、耐火物の組織を緻密にして
溶融ガラスの浸潤による剥離や反応による溶損を改善す
る試みもなされている。しかしながら、耐火物の組織を
単に緻密化すると、この種の耐火物に必要とされるもう
一つの要件である耐熱衝撃性が低下してしまい、表面に
ひび割れあるいは亀裂等が発生し易くなり、そのため実
用上満足に使用しうる耐火物とはなり得ないという新た
な不都合を招来するという課題があった。
However, the members constituting the molten glass feeder made of such a refractory are used due to peeling due to infiltration of the molten glass that comes into contact with the molten glass and melting due to a reaction at a high temperature. In the past, considerable wear occurred and its use lasted for a long period of time, so that its durability was not always sufficient in the past. In order to improve the durability of the refractory, attempts have been made to make the structure of the refractory dense so as to improve exfoliation due to infiltration of molten glass and erosion due to reaction. However, when the structure of the refractory is simply densified, thermal shock resistance, which is another requirement required for this type of refractory, is reduced, and cracks or cracks are easily generated on the surface. There has been a problem that a new inconvenience is caused that the refractory cannot be used satisfactorily in practical use.

【0006】上記のように、この種の耐火物の耐熱衝撃
特性と耐浸潤性、耐反応性等の耐食特性とは二律背反関
係にあり、両特性に共に優れた溶融ガラスフィ−ダ用耐
火物は、その出現が強く望まれていたにもかかわらず、
その実現は、従来非常に困難とされていた。
As described above, the thermal shock resistance of this type of refractory and the corrosion resistance such as infiltration resistance and reaction resistance have a trade-off relationship, and a refractory for a molten glass feeder excellent in both of these characteristics is required. , Despite the desire for its appearance,
Its realization has traditionally been very difficult.

【0007】本発明は、上記技術的課題を解決するため
になされたものであり、耐熱衝撃特性を従来品と同等又
はそれ以上に維持し、しかも、耐浸潤性及び耐反応性等
の耐食特性を向上させた溶融ガラスフィ−ダ用耐火物を
提供することを目的とするものである。
The present invention has been made to solve the above-mentioned technical problems, and has a thermal shock resistance equal to or higher than that of a conventional product, and has corrosion resistance such as infiltration resistance and reaction resistance. It is an object of the present invention to provide a refractory for a molten glass feeder having an improved refractory.

【0008】[0008]

【課題を解決するための手段】本発明にかかる溶融ガラ
スフィ−ダ用耐火物によれば、アルミナ55重量%〜8
5重量%、シリカ15重量%〜45重量%からなる基材
の表面に、セラミック溶射被膜が形成されていることを
特徴としている。ここで、前記セラミック溶射被膜がア
ルミナ、ムライト、ジルコニア、ジルコンのいずれか、
またはアルミナ・シリカ・ジルコニアからなることが望
ましく、また前記セラミック溶射被膜が、ガスプラズマ
溶射法または水プラズマ溶射法により形成された溶射被
膜であることが望ましい。また、前記セラミック溶射被
膜の膜厚が、50μm以上であることが望ましく、前記
セラミック溶射被膜層の気孔率が、15%以下であるこ
とが望ましい。
According to the refractory for a molten glass feeder according to the present invention, 55% by weight to 8% of alumina is used.
A ceramic sprayed coating is formed on the surface of a substrate composed of 5% by weight and 15% by weight to 45% by weight of silica. Here, the ceramic sprayed coating is any of alumina, mullite, zirconia, zircon,
Alternatively, the ceramic sprayed coating is preferably made of alumina, silica, and zirconia, and the ceramic sprayed coating is preferably a sprayed coating formed by a gas plasma spraying method or a water plasma spraying method. Further, the thickness of the ceramic sprayed coating is desirably 50 μm or more, and the porosity of the ceramic sprayed coating is desirably 15% or less.

【0009】本発明は、上記したように、特定組成のア
ルミナ・シリカ系耐火物基材と特定溶射被膜との組合せ
に特徴を有する溶融ガラスフィ−ダ用耐火物の発明であ
る。即ち、アルミナ(Al )成分55乃至85
重量%、シリカ(SiO)成分15乃至45重量%か
らなる特定組成のアルミナ・シリカ系耐火物を基材と
し、該耐火物基材の表面に、好ましくはアルミナ、ムラ
イト、ジルコニア、ジルコンのいずれか、あるいはアル
ミナ・シリカ・ジルコニアからなる溶射膜形成用セラミ
ック材料を、ガスプラズマ法、水プラズマ法等の溶射方
法を用いて溶射し、該基材表面に所定厚さの被膜層を形
成させた溶融ガラスフィ−ダ部材用耐火物である点が構
成上の顕著な特徴である。
As described above, the present invention is directed to a refractory for a molten glass feeder, which is characterized by a combination of a specific composition of an alumina / silica-based refractory base material and a specific thermal spray coating. That is, alumina (Al 2 O 3 ) components 55 to 85
Alumina / silica refractory having a specific composition comprising 15 to 45% by weight of a silica (SiO 2 ) component as a base material, and preferably a surface of alumina, mullite, zirconia or zircon on the surface of the refractory base material. Alternatively, a ceramic material for forming a sprayed film made of alumina, silica, and zirconia was sprayed using a spraying method such as a gas plasma method or a water plasma method to form a coating layer having a predetermined thickness on the surface of the base material. The refractory for a molten glass feeder member is a remarkable feature in the structure.

【0010】上記特定組成のアルミナ・シリカ系耐火物
基材と特定溶射被膜との組合せにおいて、本発明で用い
るアルミナ・シリカ基材はアルミナ成分を55重量%以
上含有するものであるため、アルミナ(Al
)、ムライト(Al Si13)、ジルコニア
(ZrO )やジルコン(ZrSiO )等を構成成
分とする溶射膜形成物質との親和性が良い。また、熱膨
張率も溶射膜形成物質と比較的近似しているところから
形成被膜との密着性に優れ、強固な被膜形成が可能であ
るという特性を有する。
In the combination of the alumina / silica-based refractory substrate having the specific composition and the specific sprayed coating, the alumina / silica substrate used in the present invention contains 55% by weight or more of an alumina component. Al 2 O
3 ) Good affinity with thermal sprayed film forming substances containing mullite (Al 6 Si 2 O 13 ), zirconia (ZrO 2 ), zircon (ZrSiO 4 ), etc. Further, since the coefficient of thermal expansion is relatively similar to that of the material for forming a sprayed film, it has excellent adhesion to a formed film and has a characteristic that a strong film can be formed.

【0011】更に、該基材はアルミナを多く含有するた
め、それ自体高温下での溶融ガラスとの反応耐性に優
れ、溶融ガラスフィ−ダ部材としての使用時において、
例え、表面層である溶射被膜層を通過して少量の溶融ガ
ラスが基材内に浸潤してきてもそれにより激しく反応浸
食されることはなく、十分な耐性を示す。また、シリカ
成分が15乃至45重量%含まれているため、基材組織
がムライト組織を形成しているため、熱ショックに強く
耐熱衝撃性にも優れている。加えて、本発明のセラミッ
ク溶射被膜層形成材質は、溶融ガラスに対する高温耐反
応性、耐浸潤剥離性等の耐食性に優れているため、これ
を被覆した溶融ガラスフィ−ダ部材は溶融ガラスの浸潤
による剥離や反応により生ずる溶損に優れた耐性を示
す。
Further, since the base material contains a large amount of alumina, the base material itself has excellent resistance to reaction with molten glass at a high temperature, and when used as a molten glass feeder member,
For example, even if a small amount of molten glass infiltrates into the base material through the thermal spray coating layer, which is a surface layer, the molten glass does not violently react and thereby exhibit sufficient resistance. In addition, since the silica component is contained in an amount of 15 to 45% by weight, the base material structure forms a mullite structure, and thus is strong against heat shock and excellent in heat shock resistance. In addition, since the material for forming a ceramic sprayed coating layer of the present invention is excellent in corrosion resistance such as high-temperature reaction resistance to molten glass and resistance to infiltration and peeling, the molten glass feeder member coated therewith is formed by the infiltration of molten glass. It shows excellent resistance to erosion caused by peeling and reaction.

【0012】この溶射被膜層は、50μm以上の層厚さ
に形成されることが上記の耐用性効果を充分に奏する上
から好ましい。また、溶射被膜層は、溶融ガラス浸潤耐
性の観点から、気孔率が可及的に少ないものであること
が好ましく、15%以下が好ましい。
This thermal spray coating layer is preferably formed in a layer thickness of 50 μm or more from the viewpoint of sufficiently exerting the above-mentioned durability effect. Further, the thermal spray coating layer preferably has a porosity as small as possible from the viewpoint of molten glass infiltration resistance, and preferably 15% or less.

【0013】[0013]

【発明の実施の形態】本発明は、特定組成のアルミナ・
シリカ耐火物を基材とし、該基材の表面に、例えば、ア
ルミナ、ジルコニア等の所定厚さのセラミック溶射被膜
層を形成させた溶融ガラスフィ−ダ用耐火物に係る発明
である。本発明において、対象となる溶融ガラスフィ−
ダ用耐火物、すなわち溶融ガラスフィ−ダ部材として
は、必ずしも以下に述べるものに限定されるものではな
いが、例えば、オリフィスリング、スパウト、プランジ
ャー、スターラー、チューブ等の溶融ガラスフィ−ダを
構成する部材を挙げることができる。該部材を構成する
基材として、本発明においては、アルミナ(Al
)成分55乃至85重量%、シリカ(SiO )成
分15乃至45重量%、より好ましくは、アルミナ成分
65乃至80重量%、シリカ成分20乃至35重量%か
ら成るシリカ・アルミナ耐火物素材を用い、この素材を
目的とする部材の所定形状に成形し、焼成したものを用
いる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides an alumina
The present invention relates to a refractory for a molten glass feeder in which a silica refractory is used as a base material and a ceramic sprayed coating layer of a predetermined thickness such as alumina or zirconia is formed on the surface of the base material. In the present invention, the target molten glass filler
The refractory for the laser, that is, the molten glass feeder member is not necessarily limited to the one described below, but constitutes a molten glass feeder such as an orifice ring, a spout, a plunger, a stirrer, a tube, and the like. Members can be mentioned. In the present invention, alumina (Al 2 O) is used as a base material constituting the member.
3 ) A silica-alumina refractory material comprising 55 to 85% by weight of a component, 15 to 45% by weight of a silica (SiO 2 ) component, more preferably 65 to 80% by weight of an alumina component, and 20 to 35% by weight of a silica component. A material obtained by molding this material into a desired shape of a target member and firing the material is used.

【0014】より具体的には、例えば、アルミナ粉末、
シリカ粉末等の原料素材を上記の組成比で混合し、有機
バインダー等を所定量添加配合して水と共に混練し、ス
ラリー状とした後、石膏型等を用いた鋳込み成型法で所
定形状に成形し、乾燥後、焼成して所定形状の基材とす
る。
More specifically, for example, alumina powder,
Raw materials such as silica powder are mixed in the above composition ratio, a predetermined amount of an organic binder and the like are added and kneaded together with water to form a slurry, and then molded into a predetermined shape by a casting method using a gypsum mold or the like. Then, after drying, firing is performed to obtain a substrate having a predetermined shape.

【0015】本発明にかかるガラスフィ−ダ用耐火物
は、アルミナ成分とシリカ成分の組成が上記の範囲内に
あることが重要で、基材中のアルミナ成分が55重量%
を下回る場合、即ちシリカ成分が45重量%を越える場
合には、溶融ガラスと接触した際に溶融ガラス成分との
反応が著しくなる。その結果、得られた耐火物の使用時
において、表面の溶射被膜を通って僅かに浸潤する溶融
ガラスと激しく反応して溶損するため、ガラスフィ−ダ
用耐火物として充分な耐食性を維持できない。
In the refractory for a glass feeder according to the present invention, it is important that the composition of the alumina component and the silica component is within the above range, and the alumina component in the base material is 55% by weight.
If the amount is less than 45%, that is, if the silica component exceeds 45% by weight, the reaction with the molten glass component becomes remarkable when it comes into contact with the molten glass. As a result, when the obtained refractory is used, the refractory reacts violently with the molten glass slightly penetrating through the thermal spray coating on the surface and melts, so that sufficient corrosion resistance cannot be maintained as a refractory for a glass feeder.

【0016】一方、アルミナ成分が85重量%を越える
場合、即ちシリカ成分が15重量%を下回る場合は、得
られた耐火物の使用時において、熱ショック等により亀
裂が発生じやすく、ガラスフィ−ダ用耐火物としての充
分な耐熱衝撃性を維持できない。
On the other hand, when the alumina component exceeds 85% by weight, that is, when the silica component is less than 15% by weight, cracks are likely to occur due to heat shock or the like when the obtained refractory is used, and the glass feeder is used. It cannot maintain sufficient thermal shock resistance as a refractory for use.

【0017】本発明においては、この基材の表面を所定
厚さのセラミック溶射被膜で被覆する。被膜形成用材料
としては、必ずしも以下に述べるものに限定されるもの
ではないが、例えば、溶融ガラス等に対する高温耐食性
に優れたアルミナ、ムライト、ジルコニア、ジルコンの
いずれか、あるいはアルミナ・シリカ・ジルコニア等を
用いることが好ましい。溶射方法としては、これも必ず
しも以下に述べるものに限定されるものではないが、例
えばガス式炎溶射法、プラズマアーク溶射法、ガス爆発
式溶射法、線爆発溶射法等を用いることができる。ガス
プラズマ、水プラズマ等による各種プラズマ溶射法が好
適に用いられる。
In the present invention, the surface of the substrate is coated with a ceramic sprayed coating having a predetermined thickness. The material for forming a film is not necessarily limited to those described below. For example, any of alumina, mullite, zirconia, and zircon excellent in high-temperature corrosion resistance to molten glass or the like, or alumina, silica, zirconia, or the like It is preferable to use The thermal spraying method is not necessarily limited to the method described below. For example, a gas flame thermal spraying method, a plasma arc thermal spraying method, a gas explosive thermal spraying method, a linear explosive thermal spraying method, or the like can be used. Various plasma spraying methods using gas plasma, water plasma or the like are preferably used.

【0018】前記溶射被膜の膜厚は、50μm以上が好
ましく、300μm以上が特に好ましい。被膜厚さが5
0μmより薄い場合は、ピンホールの発生や膜の損耗や
剥離が生じやすく、溶融ガラスの浸潤やガラスとの反応
を完全に抑止することがやや困難となる。なお、溶射被
膜の気孔率は15%以下、より好ましくは10%以下に
することが、耐浸潤性と耐食性の観点からより好まし
い。
The thickness of the thermal spray coating is preferably at least 50 μm, particularly preferably at least 300 μm. The coating thickness is 5
When the thickness is less than 0 μm, pinholes are generated, the film is easily worn or peeled, and it is somewhat difficult to completely prevent infiltration of molten glass and reaction with glass. The porosity of the thermal spray coating is preferably 15% or less, more preferably 10% or less, from the viewpoint of infiltration resistance and corrosion resistance.

【0019】[0019]

【実施例】「実施例1」アルミナ(Al )成分
80重量%、シリカ(SiO )成分20重量%の組
成を有し、見掛け気孔率が21.5%の耐火物基材を用
意し、これを図1に示したような、一辺が65mmの立
方体の一面に直径35mm、深さ35mmの円柱形孔を
穿った坩堝形状基材7に加工した。この坩堝形状の基材
の円柱形孔の内面とその孔が設けられた面に、ガスプラ
ズマ装置を用いてアルミナを溶射し、該溶射面に膜厚3
00μm、気孔率3.0%のアルミナ溶射被膜8を形成
させた。この溶射被膜8を形成した坩堝形状耐火物7の
円柱状孔内に、瓶ガラスを粉砕した後16乃至32メッ
シュに整粒したもの20gを投入し、1200℃で48
時間加熱した。
EXAMPLES Example 1 A refractory base material having a composition of 80% by weight of alumina (Al 2 O 3 ) component and 20% by weight of silica (SiO 2 ) component and having an apparent porosity of 21.5% was used. This was prepared and processed into a crucible-shaped substrate 7 having a cylindrical hole having a diameter of 35 mm and a depth of 35 mm formed on one side of a cube having a side of 65 mm as shown in FIG. Alumina is sprayed on the inner surface of the cylindrical hole of the crucible-shaped substrate and the surface provided with the hole using a gas plasma apparatus, and the sprayed surface is coated with a film having a thickness of 3 mm.
An alumina sprayed coating 8 having a thickness of 00 μm and a porosity of 3.0% was formed. Into the cylindrical hole of the crucible-shaped refractory 7 on which the thermal spray coating 8 is formed, 20 g of crushed bottle glass and sized to 16 to 32 mesh are put.
Heated for hours.

【0020】坩堝状耐火物を冷却した後、該耐火物を切
断し、孔内の溶融ガラスの耐火物への浸潤量と溶損量を
測定した(耐食性評価試験:図1、図2参照)。ここ
で、溶損量は図2に示すように坩堝形状耐火物7の円柱
状孔底面における溶損量を、また浸潤量は図2に示すよ
うに坩堝形状耐火物7の円柱状孔底面における浸潤量を
測定した。
After the crucible-shaped refractory was cooled, the refractory was cut, and the amount of molten glass in the hole into the refractory and the amount of erosion were measured (corrosion resistance evaluation test: see FIGS. 1 and 2). . Here, the amount of erosion is the amount of erosion at the bottom of the columnar hole of the crucible-shaped refractory 7 as shown in FIG. 2, and the amount of infiltration is the amount of erosion at the bottom of the columnar hole of the refractory 7 as shown in FIG. The amount of infiltration was measured.

【0021】また別に、上記基材と同じ材質からなるJ
IS並形状(長さ230mm、幅114mm、厚さ65
mm)の全表面に、300μmの厚さにアルミナを溶射
したサンプルを準備した。これを1200℃に加熱した
電気炉内に、長さ方向の半分を挿入して15分間保持し
た後、炉より取り出して15分間放冷する操作を、サン
プル板に亀裂が発生するまで繰り返し実施し、亀裂発生
までの繰り返し回数を調べることによりその耐熱衝撃性
を評価した(耐熱衝撃性評価試験)。これらの評価結果
を併せて表1に示す。
Separately, J made of the same material as the above base material
IS average shape (length 230mm, width 114mm, thickness 65
mm), a sample in which alumina was sprayed to a thickness of 300 μm on the entire surface of the sample was prepared. This operation was performed by inserting half of the length in an electric furnace heated to 1200 ° C., holding for 15 minutes, and then taking out from the furnace and allowing to cool for 15 minutes until the cracks occurred in the sample plate. The thermal shock resistance was evaluated by examining the number of repetitions until crack generation (thermal shock resistance evaluation test). Table 1 also shows these evaluation results.

【0022】「実施例2乃至実施例6」それぞれ表1に
示した組成、見掛け気孔率の基材を用いて実施例1と同
様の坩堝形状基材及びJIS並形状基材を作製し、これ
等の表面を、それぞれ表1に示した溶射材料を用いて実
施例1と同様に溶射し、坩堝状耐火物及びサンプル板に
それぞれ表1に示した厚さの溶射被膜を形成させた。そ
して、これらの坩堝状耐火物及びサンプル板を実施例1
と同様に処理して耐食性評価試験と耐衝撃性評価試験を
行った。その結果を表1に示す。
[Examples 2 to 6] Using the base materials having the compositions and apparent porosity shown in Table 1 respectively, crucible-shaped base materials and JIS regular-shaped base materials similar to those in Example 1 were prepared. And the like were sprayed in the same manner as in Example 1 using the sprayed materials shown in Table 1, respectively, to form a sprayed coating having the thickness shown in Table 1 on the crucible refractory and the sample plate. Then, these crucible refractories and sample plates were prepared in Example 1.
And a corrosion resistance evaluation test and an impact resistance evaluation test were performed. Table 1 shows the results.

【0023】「比較例1」基材に溶射被膜を形成させな
い以外は、実施例1と同じ組成、見掛け気孔率の基材を
用いて実施例1と同様の坩堝形状耐火物及びサンプル板
を作製し、実施例1と同様に耐食性評価試験と耐衝撃性
評価試験を行った。 その結果を表2に示す。「比較例2」アルミナ(Al
)成分90重量%、シリカ(SiO )成分1
0重量%の組成を有し、見掛け気孔率が20.3%の基
材を用いた以外は、実施例1と同様に溶射被膜を形成し
た坩堝形状耐火物及びサンプル板を作製し、実施例1と
同様に耐食性評価試験と耐衝撃性評価試験を行った。そ
の結果を表2に示す。 「比較例3」アルミナ(Al )成分50重量
%、シリカ(SiO )成分50重量%の組成を有
し、見掛け気孔率が19.3%の耐火物基材を用いた以
外は、実施例1と同様に溶射被膜を形成した坩堝形状耐
火物及びサンプル板を作製し、実施例1と同様に耐食性
評価試験と耐衝撃性評価試験を行った。その結果を表2
に示す。
Comparative Example 1 A crucible-shaped refractory and a sample plate similar to those in Example 1 were prepared using a substrate having the same composition and apparent porosity as in Example 1 except that the thermal spray coating was not formed on the substrate. Then, a corrosion resistance evaluation test and an impact resistance evaluation test were performed in the same manner as in Example 1. Table 2 shows the results. “Comparative Example 2” Alumina (Al 2
O 3 ) component 90% by weight, silica (SiO 2 ) component 1
A crucible-shaped refractory and a sample plate were formed in the same manner as in Example 1 except that a base material having a composition of 0% by weight and an apparent porosity of 20.3% was used. In the same manner as in Example 1, a corrosion resistance evaluation test and an impact resistance evaluation test were performed. Table 2 shows the results. Comparative Example 3 Except for using a refractory base material having a composition of 50% by weight of an alumina (Al 2 O 3 ) component and 50% by weight of a silica (SiO 2 ) component and having an apparent porosity of 19.3%. A crucible-shaped refractory and a sample plate on which a thermal spray coating was formed were produced in the same manner as in Example 1, and a corrosion resistance evaluation test and an impact resistance evaluation test were performed as in Example 1. Table 2 shows the results.
Shown in

【0024】「参考例1乃至参考例3」形成した溶射被
膜の膜厚が30μmと薄い以外は、実施例1と同じ組
成、見掛け気孔率の基材を用いて実施例1と同様の坩堝
形状耐火物及びサンプル板を作製し、実施例1と同様に
耐食性評価試験と耐衝撃性評価試験を行った(参考例
1)。同様に、溶射被膜の膜厚が30μmと薄い以外
は、実施例4と同じ組成、見掛け気孔率の基材を用いて
実施例4と同様の坩堝形状耐火物及びサンプル板を作製
し、実施例4と同様に耐食性評価試験と耐衝撃性評価試
験を行った(参考例2)。また、溶射膜を形成しない市
販のアルミナ・シリカ・ジルコン質基材を用いて作製し
た実施例1と同様の坩堝形状耐火物及びサンプル板を、
実施例1と同様にして耐食性評価試験と耐衝撃性評価試
験を行った(参考例3)。それぞれの評価結果を併せて
表2に示す。
Reference Examples 1 to 3 A crucible shape similar to that of Example 1 was obtained using a substrate having the same composition and apparent porosity as that of Example 1 except that the thickness of the sprayed coating formed was as thin as 30 μm. A refractory and a sample plate were prepared, and a corrosion resistance evaluation test and an impact resistance evaluation test were performed in the same manner as in Example 1 (Reference Example 1). Similarly, a crucible-shaped refractory and a sample plate similar to those in Example 4 were prepared using a substrate having the same composition and apparent porosity as in Example 4 except that the thickness of the thermal spray coating was as thin as 30 μm. In the same manner as in Example 4, a corrosion resistance evaluation test and an impact resistance evaluation test were performed (Reference Example 2). Further, a crucible-shaped refractory and a sample plate similar to those in Example 1 manufactured using a commercially available alumina-silica-zircon base material that does not form a sprayed film,
A corrosion resistance evaluation test and an impact resistance evaluation test were performed in the same manner as in Example 1 (Reference Example 3). Table 2 shows the evaluation results.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】なお、上記表1、2中、ASZはアルミナ
・シリカ・ジルコニア、Gはガスプラズマ、Wは水プラ
ズマを示す。
In Tables 1 and 2, ASZ indicates alumina / silica / zirconia, G indicates gas plasma, and W indicates water plasma.

【0028】以上の本発明の実施例、比較例を参照する
ことにより明らかなように、本発明の溶融ガラスフィ−
ダ用耐火物より成る坩堝形状耐火物は、溶融ガラスを1
200℃で48時間収容滞留させた後の溶損量(溶損し
た壁面厚み:mm)がいずれも0で、浸潤量(溶融ガラ
スが浸潤した壁面厚み:mm)は最大でも1.0mmで
ある(実施例1乃至6参照)。また、耐熱衝撃性を表す
亀裂発生までの繰り返し加熱回数(1200℃加熱〜常
温冷却サイクルの回数)も10回以上である(実施例1
乃至6参照)。
As is clear from the above Examples and Comparative Examples of the present invention, the molten glass filler of the present invention is shown.
Crucible-shaped refractory made of refractory for
The amount of erosion (wall thickness of eroded wall: mm) after being stored and retained at 200 ° C. for 48 hours is 0, and the amount of infiltration (wall thickness of infiltrated molten glass: mm) is 1.0 mm at the maximum. (See Examples 1 to 6). Further, the number of times of repeated heating until the occurrence of cracks indicating thermal shock resistance (number of times of 1200 ° C. heating to ordinary temperature cooling cycle) is 10 or more (Example 1).
To 6).

【0029】これに対し、本発明の溶射被膜層が設けら
れていないアルミナ・シリカ耐火物基材からなる坩堝形
状耐火物(比較例1)では、溶損量は3.0mm、浸潤
量は11.5mmといずれも本発明の実施例に比較して
大きい。また、例え、本発明の溶射被膜層が設けられた
坩堝形状耐火物であっても、基材耐火物組成が本発明で
規定した範囲外のものは、溶損量や浸潤量が大きいか
(比較例3、アルミナ成分:50重量%、溶損量3.0
mm、浸潤量12.0mm)、または耐熱衝撃性に劣る
(比較例2、アルミナ成分:90重量%、亀裂発生まで
の回数8回)。
On the other hand, in the crucible-shaped refractory made of the alumina / silica refractory substrate having no thermal spray coating layer according to the present invention (Comparative Example 1), the amount of erosion is 3.0 mm and the amount of infiltration is 11 .5 mm, both of which are larger than the examples of the present invention. Further, even if the refractory in the form of a crucible provided with the thermal spray coating layer of the present invention has a base material refractory composition outside the range specified in the present invention, the amount of erosion or infiltration is large ( Comparative Example 3, alumina component: 50% by weight, erosion amount: 3.0
mm, infiltration amount 12.0 mm) or poor thermal shock resistance (Comparative Example 2, alumina component: 90% by weight, number of times until crack generation 8 times).

【0030】このように、本発明の溶融ガラスフィ−ダ
用耐火物の上記した優れた諸特性は、本発明で規定した
特定組成範囲のアルミナ・シリカ系耐火物基材とセラミ
ック溶射被膜とを組合せた場合にのみ発現し、特に、そ
の効果は、基材組成に対し極めて臨界的である。
As described above, the above-mentioned excellent properties of the refractory for a molten glass feeder of the present invention are attained by combining an alumina-silica refractory base material having a specific composition range specified by the present invention with a ceramic sprayed coating. And its effects are particularly critical to the substrate composition.

【0031】[0031]

【発明の効果】本発明で規定した上記特定組成のアルミ
ナ・シリカ耐火物を基材とし、該基材の表面にアルミ
ナ、ジルコニア等の所定厚さのセラミック溶射被膜層を
形成させた本発明の溶融ガラスフィ−ダ用耐火物は、そ
の特定構成により、従来向上させることが非常に困難と
されていた、耐熱衝撃特性と、耐浸潤性及び耐反応性等
の耐食特性とを共に向上させることができる。
According to the present invention, there is provided a ceramic-sprayed coating layer of a predetermined thickness such as alumina, zirconia or the like formed on the surface of an alumina-silica refractory having the above specific composition as defined in the present invention. Due to its specific constitution, the refractory for molten glass feeder can improve both the thermal shock resistance and the corrosion resistance such as infiltration resistance and reaction resistance, which have been very difficult to improve conventionally. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の実施例、比較例で用いた坩堝
形状耐火物の略図である。
FIG. 1 is a schematic view of a crucible-shaped refractory used in Examples and Comparative Examples of the present invention.

【図2】図2は、図1のサンプルの耐食性評価試験後の
溶損量、浸潤量測定位置を説明するための概略図であ
る。
FIG. 2 is a schematic diagram for explaining a measurement position of a erosion amount and an infiltration amount after a corrosion resistance evaluation test of the sample of FIG. 1;

【図3】図3は、溶融ガラスフィ−ダの一般構成を説明
するための概略図である。
FIG. 3 is a schematic diagram for explaining a general configuration of a molten glass feeder.

【符号の説明】[Explanation of symbols]

1 フォアハ−ス(導入用樋) 2 スパウト 3 オリフィス 4 チュ−ブ 5 プランジャ− 6 溶融ガラス 7 坩堝形状耐火物 8 溶射被膜 8 坩堝形状耐火物 A 溶損量(測定位置) B 浸潤量(測定位置) REFERENCE SIGNS LIST 1 Foreheart (introduction gutter) 2 Spout 3 Orifice 4 Tube 5 Plunger 6 Molten glass 7 Crucible-shaped refractory 8 Thermal spray coating 8 Crucible-shaped refractory A Melting amount (measuring position) B Infiltration amount (measuring position) )

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ55重量%〜85重量%、シリ
カ15重量%〜45重量%からなる基材の表面に、セラ
ミック溶射被膜が形成されていることを特徴とする溶融
ガラスフィ−ダ用耐火物。
1. A refractory for a molten glass feeder, characterized in that a ceramic sprayed coating is formed on the surface of a substrate comprising 55% to 85% by weight of alumina and 15% to 45% by weight of silica. .
【請求項2】 前記セラミック溶射被膜がアルミナ、ム
ライト、ジルコニア、ジルコンのいずれか、またはアル
ミナ・シリカ・ジルコニアからなることを特徴とする請
求項1に記載された溶融ガラスフィ−ダ用耐火物。
2. The refractory for a molten glass feeder according to claim 1, wherein the ceramic sprayed coating is made of one of alumina, mullite, zirconia, and zircon, or alumina / silica / zirconia.
【請求項3】 前記セラミック溶射被膜が、ガスプラズ
マ溶射法または水プラズマ溶射法により形成された溶射
被膜であることを特徴とする請求項2に記載された溶融
ガラスフィ−ダ用耐火物。
3. The refractory for a molten glass feeder according to claim 2, wherein the ceramic sprayed coating is a sprayed coating formed by a gas plasma spraying method or a water plasma spraying method.
【請求項4】 前記セラミック溶射被膜の膜厚が、50
μm以上であることを特徴とする請求項1乃至請求項3
のいずれかに記載された溶融ガラスフィ−ダ用耐火物。
4. The ceramic sprayed coating having a thickness of 50
4. The method according to claim 1, wherein the thickness is not less than μm.
A refractory for a molten glass feeder according to any one of the above.
【請求項5】 前記セラミック溶射被膜層の気孔率が、
15%以下であることを特徴とする請求項1乃至請求項
4のいずれかに記載の溶融ガラスフィ−ダ用耐火物。
5. The porosity of the ceramic sprayed coating layer is as follows:
The refractory for a molten glass feeder according to any one of claims 1 to 4, wherein the content is 15% or less.
JP10269492A 1998-09-24 1998-09-24 Refractory for molten glass feeder Pending JP2000095528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10269492A JP2000095528A (en) 1998-09-24 1998-09-24 Refractory for molten glass feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10269492A JP2000095528A (en) 1998-09-24 1998-09-24 Refractory for molten glass feeder

Publications (1)

Publication Number Publication Date
JP2000095528A true JP2000095528A (en) 2000-04-04

Family

ID=17473199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10269492A Pending JP2000095528A (en) 1998-09-24 1998-09-24 Refractory for molten glass feeder

Country Status (1)

Country Link
JP (1) JP2000095528A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723674B2 (en) 2000-09-22 2004-04-20 Inframat Corporation Multi-component ceramic compositions and method of manufacture thereof
JP2012512121A (en) * 2008-12-15 2012-05-31 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Molten crucible for use in crucible pulling method for quartz glass
WO2012133107A1 (en) * 2011-03-28 2012-10-04 旭硝子株式会社 Molten glass holding refractory, glass manufacturing apparatus using molten glass holding refractory and method for manufacturing glass using glass manufacturing apparatus
WO2016196355A1 (en) * 2015-06-01 2016-12-08 Saint-Gobain Ceramics & Plastics, Inc. Refractory articles and methods for forming same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723674B2 (en) 2000-09-22 2004-04-20 Inframat Corporation Multi-component ceramic compositions and method of manufacture thereof
JP2012512121A (en) * 2008-12-15 2012-05-31 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Molten crucible for use in crucible pulling method for quartz glass
WO2012133107A1 (en) * 2011-03-28 2012-10-04 旭硝子株式会社 Molten glass holding refractory, glass manufacturing apparatus using molten glass holding refractory and method for manufacturing glass using glass manufacturing apparatus
WO2016196355A1 (en) * 2015-06-01 2016-12-08 Saint-Gobain Ceramics & Plastics, Inc. Refractory articles and methods for forming same
US9758434B2 (en) 2015-06-01 2017-09-12 Saint-Gobain Ceramics & Plastics, Inc. Refractory articles and methods for forming same
US10093580B2 (en) 2015-06-01 2018-10-09 Saint-Gobain Ceramics & Plastics, Inc. Refractory articles and methods for forming same

Similar Documents

Publication Publication Date Title
US4920084A (en) Forming refractory masses and composition of matter for use in forming such refractory masses
CN100567412C (en) Prevent coated material of carbon deposition of coke oven and preparation method thereof
CN102976771A (en) High temperature resistant lightweight heat insulation castables
JPS5919067B2 (en) High durability casting nozzle
JP5110540B2 (en) FeO resistant coating material
JPS62265151A (en) Forming material
JP2008081360A (en) Monolithic refractory molding material and monolithic refractory molded product
JP5110539B2 (en) FeO resistant coating material
AU712600B2 (en) Nozzle for use in continuous casting of steel
JP2000095528A (en) Refractory for molten glass feeder
US20040241446A1 (en) Thermally insulating coating material, for refractory containing carbon
JP2003040672A (en) Refractory used for fireproof member for continuous steel casting
JP3343297B2 (en) Fired refractory brick for lining
CN108585746A (en) A kind of continuous casting steel long nozzle endoporus thermal insulation coatings and preparation method thereof and construction method
TWI733332B (en) High alumina fusion casting refractory and manufacturing method thereof
KR100491123B1 (en) High intensity castable refractories with good adiabatic and high thermal shock resistance
JP5342790B2 (en) Heat resistant ceramics
JP2005008454A (en) Refractory for molten glass and method for producing the same
WO2024047881A1 (en) Magnesia-alumina castable and refractory block
JP2001284039A (en) Manufacturing method of simple furnace and sintered body
JP5501170B2 (en) Molded and fired refractory material
JPH07109129A (en) Fire brick for lining float bath
JP4475724B2 (en) Method for manufacturing amorphous refractory having a close-packed structure excellent in strength and spall resistance
JP2001253765A (en) Magnesia-alumina-titania-based brick
JP2005008453A (en) Refractory for molten glass and method for producing the same