JPH02217367A - Composite ceramic formed product and its production - Google Patents

Composite ceramic formed product and its production

Info

Publication number
JPH02217367A
JPH02217367A JP1038372A JP3837289A JPH02217367A JP H02217367 A JPH02217367 A JP H02217367A JP 1038372 A JP1038372 A JP 1038372A JP 3837289 A JP3837289 A JP 3837289A JP H02217367 A JPH02217367 A JP H02217367A
Authority
JP
Japan
Prior art keywords
silicon carbide
whiskers
inorganic short
molded article
organosilicon polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1038372A
Other languages
Japanese (ja)
Inventor
Shiro Yamamoto
山本 至郎
Keizo Shimada
島田 恵造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1038372A priority Critical patent/JPH02217367A/en
Publication of JPH02217367A publication Critical patent/JPH02217367A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To enable industrial production of formed products which can stand sufficiently elevated temperature and whose temperature can be raised in a relatively rapid rate by firing a preform obtained from an inorganic short-cut fibers suspending organosilicon polymer solution in an organic solvent. CONSTITUTION:An organosilicon polymer is dissolved in an organic solvent and inorganic short-cut fibers are suspended in the solution. The suspension is cast on a support or poured into a mold. The preform from which at least a part of the solvent is removed is fired in an inert atmosphere to give a ceramic formed product for electric resistance heating elements which is mainly composed 20 to 90divided by t.% of silicon carbide in which inorganic short-cut fibers are uniformly dispersed. The inorganic short-cut fibers are, for example, silicon carbide whiskers, potassium titanate whiskers, silicon nitride whiskers or the like. The organosilicon polymer is particularly preferably a polycarbosilane styrene copolymer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は通電により高温に発熱する電気抵抗発熱体用の
複合セラミックス成形物及びその製造法に関するもので
ある。更に詳しくは、高温にも十分に耐えることができ
、かつ比較的急激に昇温できる電気抵抗発熱体を提供す
る複合セラミックス成形物(好ましくはセラミックスシ
ート)及び該成形物を工業的に製造する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite ceramic molded article for an electric resistance heating element that generates heat to a high temperature when energized, and a method for manufacturing the same. More specifically, a composite ceramic molded product (preferably a ceramic sheet) that provides an electrical resistance heating element that can sufficiently withstand high temperatures and can be heated relatively rapidly, and a method for industrially manufacturing the molded product. It is related to.

[従来の技術] 電気ヒーターとして、特に高温用の電気ヒータの発熱体
として、セラミックスが用いられているのは公知の事実
である。しかしながら、ヒラミックスは耐熱衝撃性が低
く、急速な温度変化があると破壊し易いという欠点があ
る。特に、大型で温度分布の発生しやすいものではこの
欠点が著しく、使用に際しては徐々に昇温することが前
提となり、超小型のものでも所定の温度に上げるのに数
分を要するのが普通である。特に高温で用いられるヒー
ターの場合には、セラミックスが高い耐熱性を有するに
もかかわらずこの問題は著しく、また、薄手のシート状
物でも耐熱衝撃性の問題は深刻である。したがって、セ
ラミックスヒータでは初期の使用条件と定常使用期間で
の使用条件は著しく異なっているのが普通である。例え
ば炭化ケイ素シリコンカーバイドはよく知られたヒータ
ー材料であるが、この炭化ケイ素からなるヒーターは急
熱すると極めて壊れ易い。このため、この種のヒーター
の用途は昇温の調節を行うのが比較的容易である産業用
にほぼ限られており、また薄いシート状の発熱体を有す
るヒーターは未だ提供されていない。
[Prior Art] It is a well-known fact that ceramics are used as a heating element for electric heaters, especially electric heaters for high temperatures. However, Hiramix has the disadvantage that it has low thermal shock resistance and is easily destroyed by rapid temperature changes. This drawback is particularly noticeable in large products that are prone to temperature distribution, and it is assumed that the temperature will be raised gradually during use, and it usually takes several minutes to raise the temperature to a specified level even for ultra-small products. be. Particularly in the case of heaters used at high temperatures, this problem is serious even though ceramics have high heat resistance, and even in thin sheet-like materials, the problem of thermal shock resistance is serious. Therefore, in a ceramic heater, the initial usage conditions and the usage conditions during the regular usage period are usually significantly different. For example, silicon carbide is a well-known heater material, but heaters made of silicon carbide are extremely susceptible to breakage when heated rapidly. For this reason, the use of this type of heater is almost limited to industrial use where it is relatively easy to adjust the temperature rise, and a heater having a thin sheet-like heating element has not yet been provided.

[発明が解決しようとする課題] 本発明は、従来のセラミックス発熱体にみられる上述の
如き欠点を解消し、比較的急速に昇温することが可能な
発熱体となるセラミックス成形物及び該成形物を工業的
に製造する方法を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned drawbacks of conventional ceramic heating elements, and provides a ceramic molded article that becomes a heating element that can raise the temperature relatively rapidly, and the molded ceramic material. The aim is to provide a method for manufacturing products industrially.

[課題を解決するための手段] 本発明者らは、上述の課題について鋭意研究の結果、炭
化ケイ素を主体とするセラミックスにおいては、発熱体
となるセラミックス中に無は短繊維の特定量をほぼ均一
に分散含有せしめることによって、発熱性を損うことな
く耐熱衝撃性を大幅に改善し得ることを見い出し、本発
明を完成した。
[Means for Solving the Problems] As a result of intensive research on the above-mentioned problems, the present inventors have found that in ceramics mainly composed of silicon carbide, a specific amount of short fibers is approximately The present invention was completed based on the discovery that by uniformly dispersing and containing it, thermal shock resistance can be significantly improved without impairing heat generation properties.

すなわち、本発明は、炭化ケイ素を主体とする電気抵抗
発熱体用のセラミックス成形物において、該成形物中に
20〜90重量%の割合で無機短繊維をほぼ均一に分散
含有せしめてなるものである。
That is, the present invention provides a ceramic molded article for an electric resistance heating element mainly composed of silicon carbide, in which inorganic short fibers are almost uniformly dispersed in the molded article at a ratio of 20 to 90% by weight. be.

近年、複合材料としてのセラミックスは、その組成を選
択することにより各種の新しい機能を備えさせることが
できることが判ってきた。セラミックスの組成を変える
もののうち、繊維を加えて補強したものは繊維強化セラ
ミックス(FibreReinforced Cera
mics = F RC)と呼ばれている。
In recent years, it has been found that ceramics as composite materials can be provided with various new functions by selecting their composition. Among ceramics that change their composition, those that are reinforced by adding fibers are called fiber-reinforced ceramics.
mics = FRC).

この素材は、もとのセラミックスに比べ、強度。This material is stronger than the original ceramic.

モジュラスの向上よりも靭性、耐熱衝撃性の向上が期待
できる。
Improvements in toughness and thermal shock resistance can be expected rather than improvements in modulus.

このような観点から、補強材としてセラミックス繊維例
えば炭化ケイ素繊維及び/又はその織物等を用いること
は既に検討されている。本発明者らもかかる補強材につ
いて検討したが、マトリックスであるセラミックスと補
強w4雑の熱膨張係数が広い範囲に汎り同一でないと使
用に際して壊れ易いことが判った。本発明者らはこの問
題を解決するに当って、補強材として短繊維、特にミル
ドファイバー又はウィスカーを用いることが好ましいこ
とを見出し、本発明に到達したものである。
From this point of view, the use of ceramic fibers such as silicon carbide fibers and/or fabrics thereof as reinforcing materials has already been considered. The present inventors have also studied such reinforcing materials, and found that if the coefficients of thermal expansion of the matrix ceramic and the reinforcing W4 material are not the same over a wide range, they are likely to break during use. In solving this problem, the present inventors have discovered that it is preferable to use short fibers, particularly milled fibers or whiskers, as the reinforcing material, and have arrived at the present invention.

本発明において用いられる短繊維は炭化ケイ素の焼結に
必要な温度に耐えるものであることが必要である。炭化
ケイ素粉末の通常の焼結温度は好ましくはi 、 ao
o℃以上、2,200℃以下とされる。
The short fibers used in the present invention need to be able to withstand the temperatures required for sintering silicon carbide. The usual sintering temperature of silicon carbide powder is preferably i, ao
The temperature should be 0°C or higher and 2,200°C or lower.

したがって、耐熱性の無機短繊維、例えば炭素ウィスカ
ー、炭化ケイ素ウィスカーが用いられ、焼結条件を工夫
することにより窒化ケイ素ウィスカ、チタン酸カリウム
ウィスカーの使用が可能になる。例えば、有機ケイ素ポ
リマーを原料又は焼結助剤として用いると、焼結温度は
1,200℃程度まで下げることができ、したがって炭
素ウィスカ、炭化ケイ素ウィスカー、窒化ケイ素ウィス
カは当然使用可能で、チタン酸カリウムウィスカーも使
用できる。
Therefore, heat-resistant inorganic short fibers such as carbon whiskers and silicon carbide whiskers are used, and by adjusting the sintering conditions, silicon nitride whiskers and potassium titanate whiskers can be used. For example, if organosilicon polymers are used as raw materials or sintering aids, the sintering temperature can be lowered to about 1,200°C, so carbon whiskers, silicon carbide whiskers, and silicon nitride whiskers can naturally be used, and titanate Potassium whiskers can also be used.

これらのウィスカーの大きさは、特に限定されないが、
細かすぎるものより、直径が1〜2μm程度、長さが1
0〜100μm程度のものが好ましい。
The size of these whiskers is not particularly limited, but
Rather than those that are too fine, the diameter is about 1 to 2 μm and the length is 1
A thickness of about 0 to 100 μm is preferable.

このような構成の炭化ケイ素(シリコンカーバイド)を
主としたセラミックスをマトリックスとする複合セラミ
ックス成形物は、通電による比較的急激な昇温、つまり
発熱体の急速スタートに耐えられる。このような複合セ
ラミックス成形物は、少なくとも重量率で20%以上9
0%未満の短繊維を含むことが必要である。短繊維がこ
れ以下の量では複合化の効果が劣り、所期の目的を十分
には達成し得ない。一方、これより多いと均一な抵抗発
熱体にならなかったり、場合によっては成形そのものが
困難な場合がある。短繊維の含有量は特に好ましくは3
0〜60%である。
A composite ceramic molded product having such a structure and having a matrix of ceramics mainly composed of silicon carbide can withstand a relatively rapid temperature increase due to energization, that is, a rapid start of the heating element. Such a composite ceramic molded article has a weight percentage of at least 20% or more9.
It is necessary to contain less than 0% short fibers. If the amount of short fibers is less than this, the compositing effect will be poor and the intended purpose will not be fully achieved. On the other hand, if the amount is more than this, it may not be possible to obtain a uniform resistance heating element, and in some cases, the molding itself may be difficult. The short fiber content is particularly preferably 3
It is 0-60%.

また、このような複合セラミックス成形物からなる発熱
体は、実用上はマトリックスのセラミックスと短繊維の
線膨張係数が広い温度範囲に汎って近似していないと境
界面で破壊してしまう場合がある。このような条件に適
するものに、炭素ウィスカー、窒化ケイ素ウィスカー、
炭化ケイ素ウィスカーとマトリックス導電発熱体として
の炭化ケイ素(シリコンカーバイド)との組み合わせが
あげられる。このような組み合わせは本発明に含まれる
もののうちでも、特に効果が著しい。
In addition, in practice, heating elements made of such composite ceramic moldings may break at the interface unless the linear expansion coefficients of the matrix ceramic and short fibers are similar over a wide temperature range. be. Carbon whiskers, silicon nitride whiskers,
Examples include a combination of silicon carbide whiskers and silicon carbide as a matrix conductive heating element. Such a combination is particularly effective among those included in the present invention.

このような発熱体用複合セラミックス成形物の具体的な
製造方法としては、炭化ケイ素粉末に焼結助剤を加えて
水に分散させ、別途水に分散させたウィスカー等の短!
l維と混合し、必要あれば?濾過し、成形してグリーン
シートとなし、不活性雰囲気中で加熱焼成してセラミッ
クスとする方法がある。この場合の焼成温度は、用いる
ウィスカーの種類にもよるが、少なくとも1 、300
℃、好ましくは1,800℃以上2,200℃以下とす
ることが必要である。焼結助剤としては有機ケイ素ポリ
マーを用いるのが好ましく、焼結助剤として有機ケイ素
ポリマーを用いる場合は、例えばこれをベンゼン。
A specific method for manufacturing such a composite ceramic molded product for a heating element includes adding a sintering aid to silicon carbide powder and dispersing it in water, and then separately dispersing it in water to form short particles such as whiskers.
Mix with l fiber, if necessary? There is a method of filtering it, molding it into a green sheet, and heating and firing it in an inert atmosphere to make ceramics. The firing temperature in this case depends on the type of whiskers used, but is at least 1,300 m
℃, preferably 1,800°C or more and 2,200°C or less. It is preferable to use an organosilicon polymer as the sintering aid, and when an organosilicon polymer is used as the sintering aid, benzene is used as the sintering aid.

アルキルベンゼン等の有機溶媒に溶かし、この溶液に炭
化ケイ素粉末を添加して混合し、乾燥後、粉砕し、ウィ
スカー等を加えて十分に混合し、熱プレスしてグリーン
シートとして加熱焼成することもできる。
It is also possible to dissolve it in an organic solvent such as alkylbenzene, add silicon carbide powder to this solution, mix it, dry it, crush it, add whiskers, etc., mix it thoroughly, heat press it, and heat and bake it as a green sheet. .

炭化ケイ素原料の少なくとも一部を有機ケイ素ポリマー
とする場合には、これを有機溶媒に溶かし、この溶液に
ウィスカー等の短1ltiと必要あれば炭化ケイ素粉末
を加え懸濁物にする。この懸濁物を支持体上に流延する
か又は鋳型等に流し込み、乾燥させ、取り外し加熱焼成
することもできる。
When at least a portion of the silicon carbide raw material is an organosilicon polymer, it is dissolved in an organic solvent, and short particles such as whiskers and, if necessary, silicon carbide powder are added to this solution to form a suspension. This suspension can also be cast onto a support or poured into a mold or the like, dried, removed and heated and fired.

この方法は、特に特殊な形状、例えば切り込みの入った
シートを製造する場合に有利である。シート状の発熱体
にあっては、被加熱物を均一に加熱するため該シートを
均一に発熱させることが必要であるが、このように均一
に発熱させる場合等には該シートは特定の切込みを有す
る形状であることが好ましい。このような発熱体用シー
トを効率よく得るためにはその形状にした原料中間体を
成形する方法が好ましく、後者の流延/注型法はこれを
容易に実施できる長所がある。
This method is particularly advantageous when producing sheets with special shapes, for example notches. In the case of a sheet-shaped heating element, it is necessary to generate heat uniformly in the sheet in order to uniformly heat the object to be heated. It is preferable that the shape has the following. In order to efficiently obtain such a heating element sheet, it is preferable to form a raw material intermediate into the shape, and the latter method, the casting/casting method, has the advantage of being easy to carry out.

ここで用いる炭化ケイ素の粉末は、高純度で微粉末であ
ることが好ましい。粉末の粒径は10μm以下、好まし
くは2μm以下、特に好ましくは0.2μm程度である
。有機ケイ素ポリマーはポリシラン、ポリカルボシラン
、ポリシラスチレン。
The silicon carbide powder used here is preferably a fine powder with high purity. The particle size of the powder is 10 μm or less, preferably 2 μm or less, particularly preferably about 0.2 μm. Organosilicon polymers are polysilane, polycarbosilane, and polysilastyrene.

ポリカルボシラスチレン共重合体等、焼成すると炭化ケ
イ素系のセラミックスになるポリマーが好ましく、特に
ポリカルボシラスチレン共重合体が好ましい。
Polymers that become silicon carbide-based ceramics when fired, such as polycarbosilastyrene copolymers, are preferred, and polycarbosilastyrene copolymers are particularly preferred.

かかる方法によれば、従来製造困難と思われていた厚さ
1mm以下の薄手のシートも容易に製造することができ
る。
According to this method, thin sheets with a thickness of 1 mm or less, which were conventionally thought to be difficult to manufacture, can be easily manufactured.

なお、本発明の成形物において、必要により、上記の成
形物の表層を該成形物の内層よりも比較的体積電気低効
率の高い層で覆うこともできる。
In the molded product of the present invention, if necessary, the surface layer of the molded product can be covered with a layer having a relatively higher volumetric electrical efficiency than the inner layer of the molded product.

[発明の効果] 本発明によれば、炭化ケイ素を主体とした、比較的急激
に温度を変えても壊れ龍い電気抵抗発熱体が提供される
。この複合材料セラミックス発熱体は、在来の同種のヒ
ーターよりも簡便に、家庭用から産業用に至る多岐に汎
る用途で使用し1qる。
[Effects of the Invention] According to the present invention, there is provided an electrical resistance heating element that is made mainly of silicon carbide and that does not break even when the temperature is changed relatively rapidly. This composite ceramic heating element is easier to use than conventional heaters of the same type, and can be used in a wide variety of applications from household to industrial use.

[実施例] 次に、本発明の実施例及び比較例をあげるが、本発明は
これにより限定されるものではない。なお、特に断りの
ないかぎり各例中の「部」は重量部である。
[Example] Next, Examples and Comparative Examples of the present invention will be given, but the present invention is not limited thereto. In addition, unless otherwise specified, "parts" in each example are parts by weight.

実施例1 ジクロルジメチルシランとジクロルメチルフエニルシラ
ンの等モルを使い、トルエンなかて金属ナトリウムを加
えて重合してポリシラスチレンを得た。このポリシラス
チレンを400℃で窒素雰囲気中で60分間処理し、軟
化点190〜200℃のポリカルボシラスチレン共重合
体を得た。
Example 1 Polysilastyrene was obtained by polymerizing equimolar amounts of dichlorodimethylsilane and dichloromethylphenylsilane with the addition of metallic sodium in toluene. This polysilastyrene was treated at 400°C for 60 minutes in a nitrogen atmosphere to obtain a polycarbosilastyrene copolymer with a softening point of 190 to 200°C.

上述のポリカルボシラスチレン共重合体100部を13
0部のトルエンに溶かし、東海カーボン■製の炭化ケイ
素ウィスカー「トーカマックス■」の塊状部を除去した
ちの100部と混合し、得られた懸濁液を支持体上に流
延し、乾燥(溶媒除去)してシートとした。得られたシ
ートをアルゴン中で1.500℃で焼成して複合セラミ
ックスシートを得た。このセラミックスシートは2分間
で赤熱するだけ電気を通すことを繰り返したが10回実
施しても破壊しなかった。
100 parts of the above polycarbosilastyrene copolymer to 13
Dissolved in 0 parts of toluene and mixed with 100 parts of Tokamax ■ silicon carbide whiskers manufactured by Tokai Carbon ■ from which lumps had been removed.The resulting suspension was cast onto a support and dried. (solvent removal) to form a sheet. The obtained sheet was fired at 1.500° C. in argon to obtain a composite ceramic sheet. This ceramic sheet was repeatedly passed through electricity until it became red hot for 2 minutes, but it did not break even after 10 times.

実施例2 実施例1で用いたポリカルボシラスチレン共重合体10
0部を130部のトルエンに溶かし、東海カーボン■製
の炭化ケイ素ウィスカー[トーカマックス■J 100
部とイビデン(IIarウルトラファイン■J 200
部とを混合し、1qられた懸濁液を流延し、乾燥してシ
ートとした。得られたシートを窒素気流中で1 、30
0℃で焼成して複合セラミックスシートを(qだ。
Example 2 Polycarbosilastyrene copolymer 10 used in Example 1
Dissolve 0 part in 130 parts of toluene and add silicon carbide whiskers [Tokamax J 100] manufactured by Tokai Carbon ■.
Department and IBIDEN (IIar Ultra Fine J 200
1q of the suspension was cast and dried to form a sheet. The obtained sheet was placed in a nitrogen stream for 1,30
Fired at 0℃ to make a composite ceramic sheet (q.

このセラミックスシートは電気抵抗1Ωcmであり、赤
熱するまで2分程度で電気を通すことを繰り返したが1
0回実施しても破壊しなかった。
This ceramic sheet has an electrical resistance of 1 Ωcm, and it was repeatedly passed through electricity for about 2 minutes until it became red hot.
It did not break even if it was performed 0 times.

実施例3 実施例1で用いたポリカルボシラスチレン共重合体10
0部をキシレン130部に溶かし、市販の炭化ケイ素ウ
ィスカー[東海カーボン■製[トウカマックス■J]5
0部を加えて混合し、乾燥させて粉砕した。この粉末を
4t/cm2 、240℃で熱圧して、厚さ0.7Il
llIlのシートとした。
Example 3 Polycarbosilastyrene copolymer 10 used in Example 1
Dissolve 0 parts in 130 parts of xylene and add commercially available silicon carbide whiskers [manufactured by Tokai Carbon ■ [Tokamax ■ J] 5
0 parts were added, mixed, dried and ground. This powder was hot-pressed at 4t/cm2 and 240℃ to a thickness of 0.7Il.
It was made into a sheet of llIl.

このシートを大気中で210℃まで昇温して不融化し、
窒素気流中で50℃/hrで昇温し1,300’Cで焼
成した。
This sheet is heated to 210°C in the atmosphere to make it infusible,
The temperature was raised at 50° C./hr in a nitrogen stream, and the material was fired at 1,300° C.

得られた複合セラミックスシートの電気抵抗は10cm
程度で、赤熱するまで2分程度で電気を通すことを繰り
返したが10回実施しても破壊しなかった。
The electrical resistance of the obtained composite ceramic sheet is 10 cm
I repeatedly passed electricity through it for about 2 minutes until it became red hot, but it did not break even after 10 attempts.

実施例4 実施例1で用いたポリカルボシラスチレン共重合体10
0部をトルエン130部に溶かし、これにチタン酸カリ
ウムウィスカー[大球化学■製[ティス・〔■Jllo
o部を分散ざぜ、1qられた懸濁液をガラス上に流延し
、乾燥剥離させた。1nられた成形物を窒素気流中で5
0℃/hr割合で1,250″Cまで昇温し焼成した。
Example 4 Polycarbosilastyrene copolymer 10 used in Example 1
Dissolve 0 parts in 130 parts of toluene and add potassium titanate whiskers [manufactured by Daikyu Kagaku ■] to this.
O parts were dispersed, 1q of the suspension was cast on glass, and dried and peeled off. The molded product was heated for 5 minutes in a nitrogen stream.
The temperature was raised to 1,250″C at a rate of 0°C/hr for firing.

1qられたサンプル(セラミックスシート)は多少の破
損があったが、壊れていない部分は導電性があり、繰り
返し通電、赤熱できた。
The 1q sample (ceramic sheet) had some damage, but the unbroken parts were conductive and could glow red hot after being repeatedly energized.

実施例5 ジクロルジメチルシランを用いてトルエン中、金属ナト
リウムを加えて重合してポリシランを得た。このポリシ
ランを450℃で窒素雰囲気中で30時間処理し、ポリ
カルボシラン重合体を1qだ。この重合体の軟化点は2
20℃である。
Example 5 Polysilane was obtained by polymerizing dichlorodimethylsilane in toluene with the addition of metallic sodium. This polysilane was treated at 450° C. for 30 hours in a nitrogen atmosphere to yield 1 q of polycarbosilane polymer. The softening point of this polymer is 2
The temperature is 20°C.

このポリカルボシランを窒素気流中で600℃まで加熱
し、仮焼した。存られた試料30部とポリカルボシラン
70部をキシレンに溶かした。この溶液に市販のシリコ
ンカーバイド粉末[イビデン■製[ウルトラファイン■
J]100部及び市販の窒化ケイ素ウィスカー100部
[宇部興産■製5N−WI3 ]を加えて混合し、混合
液を金型に仕込んで乾燥させ、平坦なシートとした。
This polycarbosilane was heated to 600° C. in a nitrogen stream and calcined. 30 parts of the remaining sample and 70 parts of polycarbosilane were dissolved in xylene. Add commercially available silicon carbide powder [manufactured by IBIDEN ■ [Ultra Fine ■] to this solution.
J] and 100 parts of commercially available silicon nitride whiskers [5N-WI3 manufactured by Ube Industries Ltd.] were added and mixed, and the mixed solution was charged into a mold and dried to form a flat sheet.

得られたシートを高温槽で加熱不融化した。大気雰囲気
で、逐次、徐々に温度を上げて最終的に230℃で3時
間保持した。全加熱時間は15時間である。
The obtained sheet was heated in a high temperature bath to make it infusible. The temperature was gradually raised one after another in an air atmosphere and finally held at 230°C for 3 hours. Total heating time is 15 hours.

冷却後jqられたシートを取り出し、焼成炉で、窒素雰
囲気中で、焼成した。すなわら、シートを窒素置換した
焼成炉にいれ、窒素を流しながら徐々に温度を上げ、最
終的に1,300℃まで昇温し、焼成した。全昇温時間
は36時間、1,300℃になった時点で降温を開始し
、12時間で室温に戻した。
After cooling, the jqed sheet was taken out and fired in a firing furnace in a nitrogen atmosphere. That is, the sheet was placed in a firing furnace purged with nitrogen, and the temperature was gradually raised while nitrogen was flowing, and finally the temperature was raised to 1,300° C. and fired. The total heating time was 36 hours, and when the temperature reached 1,300°C, the temperature started to decrease, and the temperature was returned to room temperature in 12 hours.

この得られたサンプルは導電性があり、繰り返して電気
を流して均一に赤熱できた。
The resulting sample was electrically conductive and could be uniformly heated to red by repeatedly passing electricity through it.

実施例6 実施例1と同じポリカルボシラスチレン共重合体100
部を130部のトルエンに溶かし、市販の窒化ケイ素ウ
ィスカー[宇部興産■製5N−WB ] 100部と混
合し、1qられた液を支持体上に流延してシートとした
。得られたシートを大気中で逐次210℃まで昇温して
不融化し、不活性気体中で50℃/h「の割合で1,3
00℃まで昇温し、6時間で常温に戻し焼成した。1q
られた生成物の厚さは150μm。
Example 6 Polycarbosilastyrene copolymer 100 same as Example 1
1 part was dissolved in 130 parts of toluene, mixed with 100 parts of commercially available silicon nitride whiskers (5N-WB manufactured by Ube Industries, Ltd.), and 1 q of the solution was cast onto a support to form a sheet. The obtained sheet was successively heated to 210°C in the atmosphere to make it infusible, and then heated in an inert gas at a rate of 50°C/h for 1,3
The temperature was raised to 00°C, and after 6 hours, the temperature was returned to room temperature and fired. 1q
The thickness of the product obtained was 150 μm.

電気抵抗は30cmであった。Electrical resistance was 30 cm.

このサンプルに電気を通して5分間で1,100℃まで
昇温し、冷却することを繰り返したが、7回でも目立っ
た“ひびパは入らなかった。
This sample was repeatedly heated to 1,100°C by passing electricity through it for 5 minutes and then cooled down, but no noticeable cracks appeared even after 7 times.

比較例1 実施例1と同じポリマーを溶融してスリットから230
℃で押し出し、厚さ180μm程度のシート状成形物を
191これを大気中で210℃まで逐次昇温し、不融化
した。この不融化物を不活性雰囲気中で50℃/hrの
割合で1,300℃まで昇温し、6時間で常温に戻し焼
成した。得られた生成物の厚さは150μm、電気抵抗
は0.80CIIIであった。このサンプルに電気を通
して5分間でi、ioo℃まで昇温し、冷却することを
繰り返したところ、5回で“ひびパが入った。
Comparative Example 1 The same polymer as in Example 1 was melted and 230
A sheet-like molded product having a thickness of about 180 μm was extruded at 191° C., and the temperature was successively raised to 210° C. in the atmosphere to make it infusible. This infusible material was heated to 1,300° C. at a rate of 50° C./hr in an inert atmosphere, and returned to room temperature in 6 hours for firing. The thickness of the obtained product was 150 μm, and the electrical resistance was 0.80 CIII. When this sample was repeatedly heated to i,ioo°C by passing electricity through it for 5 minutes and then cooled down, a crack appeared five times.

実施例7 実施例1と同じポリカルボシラスチレン共重合体100
部をトルエン130部に溶かして、これに前記の炭化ケ
イ素粉末300部、実施例1の窒化ケイ素ウィスカー1
00部を分散させた。これを流延し、乾燥して得られた
シートを、大気中で210℃まで昇温しで不融化し、不
活性雰囲気中1,300℃で焼成した。焼成物は厚さ0
.7mmで、電気抵抗40cmであった。このサンプル
を実施例1と同様にして電気導通、昇温試験を行った。
Example 7 Same polycarbosilastyrene copolymer 100 as Example 1
300 parts of the silicon carbide powder and 1 part of the silicon nitride whiskers of Example 1 were dissolved in 130 parts of toluene.
00 parts were dispersed. The sheet obtained by casting and drying this was infusible by raising the temperature to 210° C. in the air, and was fired at 1,300° C. in an inert atmosphere. The thickness of the fired product is 0
.. 7 mm, and the electrical resistance was 40 cm. This sample was subjected to electrical continuity and temperature rise tests in the same manner as in Example 1.

6回目でも“ひび″の発生が認められなかった。No "cracks" were observed even after the 6th test.

比較例2 炭化ケイ素粉末(三井東圧製N5C−20) 80部に
実施例1で用いたポリカルボシラスチレン共重合体20
部、カルボキシメチルセルロース(CMC)10部を加
えてプレスしてシートとなし、該シートをN2中で1,
300℃で焼成した。1qられたセラミックスシートは
厚さ1mm、体積固有抵抗3Ωcmであった。このサン
プルを実施例6と同様にして電気導通、昇温試験を行っ
たが、6回目で“ひび′の発生が認められた。
Comparative Example 2 80 parts of silicon carbide powder (Mitsui Toatsu N5C-20) and 20 parts of the polycarbosilastyrene copolymer used in Example 1
and 10 parts of carboxymethyl cellulose (CMC) were added and pressed to form a sheet, and the sheet was diluted with 1.
It was fired at 300°C. The 1q ceramic sheet had a thickness of 1 mm and a volume resistivity of 3 Ωcm. This sample was subjected to electrical continuity and temperature rising tests in the same manner as in Example 6, but the occurrence of "cracks" was observed in the sixth test.

比較例3 実施例1で用いたポリカルボシラスチレン共重合体10
0部を200部のトルエンに溶解し、実施例6で用いた
窒化ケイ素ウィスカー900部を加えてシート状になし
、実施例1と同じ条件で焼成してセラミックスシートを
19だ。しかし、このものは実用性のあるセラミックス
ヒーターにはならなかった。
Comparative Example 3 Polycarbosilastyrene copolymer 10 used in Example 1
0 part was dissolved in 200 parts of toluene, 900 parts of the silicon nitride whiskers used in Example 6 were added to form a sheet, and the ceramic sheet was fired under the same conditions as Example 1 to form a ceramic sheet. However, this product did not become a practical ceramic heater.

実施例8 市販のシリコンカーバイドの粉末[昭和電工■製: r
DENsIc ULTRAFINEJ A−23] 1
00部、カルボキシメチルセルロース(CMC)25部
、炭素粉末1部に少量の水を加え、スラリー状にした。
Example 8 Commercially available silicon carbide powder [manufactured by Showa Denko: r
DENsIc ULTRAFINEJ A-23] 1
A small amount of water was added to 00 parts of carboxymethylcellulose (CMC), 25 parts of carboxymethyl cellulose (CMC), and 1 part of carbon powder to form a slurry.

実施例6で用いた窒化ケイ素ウィスカー50部。50 parts of silicon nitride whiskers used in Example 6.

CMCl0部に少量の水を加えスラリー状にした。A small amount of water was added to 0 parts of CMCl to form a slurry.

両者を混合し、)濾過し、)戸体の上りシートを作った
。十分に乾燥させた金型に入れ、ホットプレスで成形し
た。圧力は2,000 KMcm2 、 m度は1 、
800℃である。得られた試料の電気抵抗は4X102
Ωcmであった。このものに通電をくり返したが“ひび
″の発生は見られなかった。
Both were mixed, a) filtered, and a sheet for the door body was made. It was placed in a thoroughly dried mold and molded using a hot press. The pressure is 2,000 KMccm2, m degrees is 1,
The temperature is 800°C. The electrical resistance of the obtained sample was 4X102
It was Ωcm. Although this product was repeatedly energized, no "cracks" were observed.

Claims (6)

【特許請求の範囲】[Claims] (1)炭化ケイ素を主体とする電気抵抗発熱体用のセラ
ミックス成形物において、該成形物中に20〜90重量
%の割合で無機短繊維をほぼ均一に分散含有しているこ
とを特徴とする複合セラミックス成形物。
(1) A ceramic molded article for an electric resistance heating element mainly composed of silicon carbide, characterized in that inorganic short fibers are almost uniformly dispersed in the molded article at a ratio of 20 to 90% by weight. Composite ceramic molded product.
(2)無機短繊維が、炭化ケイ素ウィスカー,チタン酸
カリウムウィスカー又は窒化ケイ素ウィスカーである請
求項(1)に記載の複合セラミックス成形物。
(2) The composite ceramic molded article according to claim 1, wherein the inorganic short fibers are silicon carbide whiskers, potassium titanate whiskers, or silicon nitride whiskers.
(3)成形物が厚さ1mm以下のシート状ぶつである請
求項(1)に記載の複合セラミックス成形物。
(3) The composite ceramic molded article according to claim (1), wherein the molded article is a sheet-like piece having a thickness of 1 mm or less.
(4)有機ケイ素ポリマーを有機溶媒に溶解し、この溶
液に無機短繊維を懸濁させた液を支持体上に流延するか
又は型に注入した後、有機溶媒の少なくとも一部を除去
して得られた予備成形物を取り出して、不活性雰囲気中
で焼成することを特徴とする電気抵抗発熱体用の複合セ
ラミックス成形物の製造法。
(4) After dissolving the organosilicon polymer in an organic solvent and suspending the inorganic short fibers in this solution, the solution is cast onto a support or poured into a mold, and at least a portion of the organic solvent is removed. 1. A method for producing a composite ceramic molded article for an electric resistance heating element, the method comprising taking out a preform obtained by the process and firing it in an inert atmosphere.
(5)有機ケイ素ポリマーを有機溶媒に溶解した溶液に
、無機短繊維とともに炭化ケイ素粉末を懸濁させる請求
項(4)に記載の製造法。
(5) The manufacturing method according to claim (4), wherein silicon carbide powder is suspended together with inorganic short fibers in a solution in which an organosilicon polymer is dissolved in an organic solvent.
(6)有機ケイ素ポリマーとして、ポリシラン,ポリシ
ラスチレン,ポリカルボシラスチレン共重合体、ポリカ
ルボシラン又はこれらの混合物を使用する請求項(4)
又は(5)に記載の製造法。
(6) Claim (4) in which polysilane, polysilastyrene, polycarbosilastyrene copolymer, polycarbosilane, or a mixture thereof is used as the organosilicon polymer.
Or the manufacturing method described in (5).
JP1038372A 1989-02-20 1989-02-20 Composite ceramic formed product and its production Pending JPH02217367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1038372A JPH02217367A (en) 1989-02-20 1989-02-20 Composite ceramic formed product and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1038372A JPH02217367A (en) 1989-02-20 1989-02-20 Composite ceramic formed product and its production

Publications (1)

Publication Number Publication Date
JPH02217367A true JPH02217367A (en) 1990-08-30

Family

ID=12523454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1038372A Pending JPH02217367A (en) 1989-02-20 1989-02-20 Composite ceramic formed product and its production

Country Status (1)

Country Link
JP (1) JPH02217367A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019536638A (en) * 2016-12-06 2019-12-19 ソプライン ゲーエムベーハー Method for manufacturing a mold or core and mold or core tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019536638A (en) * 2016-12-06 2019-12-19 ソプライン ゲーエムベーハー Method for manufacturing a mold or core and mold or core tool

Similar Documents

Publication Publication Date Title
US4904424A (en) Ceramic alloys from colloidal metal alloy suspensions
CN105801163A (en) Silicon carbide foamed ceramic obtained through low-temperature and solid-phase sintering and preparation method thereof
JP4484004B2 (en) Method for producing ceramic matrix composite member
JP2535768B2 (en) High heat resistant composite material
JPH0572341B2 (en)
JPH02217367A (en) Composite ceramic formed product and its production
KR101735456B1 (en) Electrically conductive siliconoxycarbide ceramics, and method for preparing thereof
JPS6035316B2 (en) SiC-Si↓3N↓4-based sintered composite ceramics
Semen et al. Structural ceramics derived from a preceramic polymer
JP2001220259A (en) Alumina-mullite porous refractory sheet and method for producing the same
JPH10152378A (en) Ceramic-base composite material and its production
CN106116614A (en) The preparation method of re-crystallized silicon carbide roller rod
JPH02208261A (en) Short-cut fiber-reinforced ceramic composite formed product and its production
JP3094147B2 (en) Firing jig
JP3774299B2 (en) Inorganic fibrous refractory insulation and method for producing the same
JPH02199076A (en) Production of porous ceramic material
Kalyon et al. Processability of organometallic polymer precursors for nonoxide ceramic applications
KR100310050B1 (en) method for forming canbon brick with fire resistance and corrosion resestance
JPH0255266A (en) Flexible ceramic sheet and production thereof
JPH10120472A (en) Inorganic fiber-reinforced ceramic composite material
JPH10194823A (en) Magnesium oxide composite ceramics and its production
JP2001284039A (en) Manufacturing method of simple furnace and sintered body
JPH02267167A (en) Composite ceramic sheet-like molded product and production thereof
JP2614800B2 (en) Inorganic fiber refractory brick
JPH01294509A (en) Production of carbonaceous material having >=100 thermal shock fracture resistance