JPH0340966A - Conductive ceramic formed article and its production - Google Patents

Conductive ceramic formed article and its production

Info

Publication number
JPH0340966A
JPH0340966A JP1173087A JP17308789A JPH0340966A JP H0340966 A JPH0340966 A JP H0340966A JP 1173087 A JP1173087 A JP 1173087A JP 17308789 A JP17308789 A JP 17308789A JP H0340966 A JPH0340966 A JP H0340966A
Authority
JP
Japan
Prior art keywords
ceramic
conductive ceramic
silicon carbide
phase
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1173087A
Other languages
Japanese (ja)
Inventor
Shiro Yamamoto
山本 至郎
Isao Takakura
功 高倉
Mikio Nishikawa
西川 幹雄
Keizo Shimada
島田 恵造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1173087A priority Critical patent/JPH0340966A/en
Publication of JPH0340966A publication Critical patent/JPH0340966A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a conductive ceramic formed article capable of being formed into an optional shape and which is not broken even when heated and cooled rapidly by filling a ceramic consisting essentially of silicon carbide into the pores of a thermal-shock-resistant porous ceramic having many pores communicating with the surface. CONSTITUTION:The porous ceramic is formed with a ceramic having >=400 deg.C thermal shock resistance such as silicon nitride, silicon carbide, Sialon, cordierite and zirconia and has many pores communicating with the surface. A conductive ceramic consisting essentially of silicon carbide is filled into the pores to form a phase communicating with the surface. Consequently, a conductive ceramic formed article is obtained and used as a ceramic heater, etc. The conductive ceramic is preferably obtained by calcining an organosilicon polymer (e.g. polysilane, polycarbosilane and polysilastyrene).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は新規な導電性セラミックス成形品及びその製造
方法に関する。更に詳細には、高温にも耐える強靭なセ
ラミックであって特に発熱体として有用な新規な導電性
セラミックス成形品及び該成形品を工業的に有利に製造
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel conductive ceramic molded article and a method for manufacturing the same. More specifically, the present invention relates to a novel conductive ceramic molded article that is a tough ceramic that can withstand high temperatures and is particularly useful as a heating element, and a method for producing the molded article industrially advantageously.

[従来の技術] 導電性セラミックスを電気ヒータとして、特に高温用の
電気ヒータの発熱体として用いることは周知である。し
かしながら、セラミックスヒータは通常、シリコンカー
バイドの焼成物にケイ素を含浸したものであり、その加
工性は不良で、任意の形状にはなし難いものである。又
、このものは高価であり、汎用用途には使い難く、がっ
、多くの用途で要求されるように別の絶縁物で保護した
ものとする際、保護用支持体として好適な安価な高温用
絶縁物であるアルミナとの熱m張係数が異なり、一体化
し難い問題がある。このため上記のものは限られた工業
用途等でしか用いられていないのが実情である。
[Prior Art] It is well known that conductive ceramics are used as heating elements in electric heaters, particularly in high-temperature electric heaters. However, ceramic heaters are usually made of fired silicon carbide impregnated with silicon, and their workability is poor, making it difficult to form them into arbitrary shapes. In addition, this material is expensive and difficult to use for general purposes, but when it is protected by another insulating material as required in many applications, it is an inexpensive high-temperature material suitable as a protective support. There is a problem that the thermal tensile coefficient is different from that of alumina, which is an insulating material, making it difficult to integrate them. For this reason, the actual situation is that the above-mentioned materials are used only in limited industrial applications.

本発明者らは、先に、この問題を解決するため、アルミ
ナとシリコンカーバイドを主とする導電性セラミックス
とを組合せた導電性セラミックス複合成形品を提案した
。この複合成形品は確かに種々の利点を有するが、電子
レンジの補助ヒータ等のように、−気に所定電圧を加え
、短時間で昇温したり、場合によっては水分等が飛着し
たりするヒータとして使用するときは、壊れ易く、耐久
性に問題がある。
In order to solve this problem, the present inventors previously proposed a conductive ceramic composite molded product that is a combination of alumina and a conductive ceramic mainly composed of silicon carbide. Although this composite molded product certainly has various advantages, it is not suitable for applications such as auxiliary heaters in microwave ovens, where a predetermined voltage is applied to the air and the temperature rises in a short period of time, and in some cases, moisture etc. may fly away. When used as a heater, it is easy to break and has poor durability.

[発明が解決しようとする課題] 本発明は、比較的任意の形状と、比較的急速に加熱若し
くは冷却しても壊れ難い特性を持つ導電性セラミックス
成形品及びその製造方法を提供しようとするものである
。このようなセラミックスが開発できれば、特殊な形状
や物性を要求する用途、並びに急熱したり飛散物が付着
する可能性のある用途、例えばインスタント食品の加熱
等に用いる家庭用品等、多くの分野で、使用可能なセラ
ミックスヒータを容易に提供できるようになると考えら
れる。
[Problems to be Solved by the Invention] The present invention seeks to provide a conductive ceramic molded product having a relatively arbitrary shape and a property of being resistant to breakage even when heated or cooled relatively quickly, and a method for manufacturing the same. It is. If such ceramics could be developed, they could be used in many fields, such as applications that require special shapes and physical properties, as well as applications where there is a possibility of rapid heating or the adhesion of flying debris, such as household products used to heat instant foods. It is thought that it will become possible to easily provide usable ceramic heaters.

[課題を解決するための手段] 本発明者らは、これらの課題の解決について鋭意研究の
結果、表面まで連通した多数の細孔を有する耐熱衝撃性
が400℃以上である多孔質セラミックスの細孔内部に
シリコンカーバイドを主としたセラミックスを充填する
ことにより解決できることを見出し、本発明に到達した
[Means for Solving the Problems] As a result of intensive research into solving these problems, the present inventors have developed a porous ceramic pore that has a large number of pores that communicate with the surface and has a thermal shock resistance of 400°C or higher. It was discovered that the problem could be solved by filling the inside of the hole with ceramics mainly composed of silicon carbide, and the present invention was achieved based on this finding.

すなわち、本発明は耐熱衝撃性が400℃以上であるセ
ラミックスにより構成され、かつ表面まで連通した多数
の細孔を有する多孔質セラミックスからなる第1の相と
、上記細孔内に充填されその少くとも一部が成形品表面
まで連続しておりシリコンカーバイドを主成分とするセ
ラミックスにより構成されている第2の相とからなるこ
とを特徴とする導電性セラミックス成形品である。
That is, the present invention comprises a first phase composed of a porous ceramic having a thermal shock resistance of 400° C. or higher and having a large number of pores communicating with the surface, and a first phase composed of a porous ceramic having a large number of pores communicating with the surface, and a first phase composed of a porous ceramic having a thermal shock resistance of 400° C. This is a conductive ceramic molded product characterized by comprising a second phase that is partially continuous to the surface of the molded product and is composed of a ceramic whose main component is silicon carbide.

なお、ここでいう「耐熱衝撃性Jと・は、セラミックス
を、予め加熱し、この高温のセラミックスを水に投入し
ても割れない温度差の上限で表わす。
The term "thermal shock resistance J" as used herein refers to the upper limit of the temperature difference at which ceramics are preheated and the high temperature ceramics do not break even if the ceramics are poured into water.

例えば200℃に熱したセラミックスを10℃未満の温
度の水に投入したときは割れるが、10℃の水に投入し
たときは割れない場合には、耐熱衝撃性は190℃であ
る。従って、耐熱衝撃性が400℃以上であるというこ
とは、上記の温度差が400℃又はそれより大であると
いうことであり、この温度範囲内では急熱の急冷に耐え
得ることを意味する。
For example, if a ceramic heated to 200°C cracks when placed in water at a temperature of less than 10°C, but does not break when placed in water at 10°C, the thermal shock resistance is 190°C. Therefore, the thermal shock resistance of 400° C. or higher means that the above temperature difference is 400° C. or larger, and it means that the material can withstand rapid heating and cooling within this temperature range.

電子レンジの補助し−タ等、短時間で急速昇温する場合
には、このヒータの発熱体セラミックスの使用温度、例
えば800℃が所要の′#熱街撃性に相当する。本発明
者らの検討結果では、本発明における多孔質セラミック
スの所要耐熱衝撃性は、これより低く、400℃以上で
あれば実用上使用に耐えることが判った。この理由は、
後述する第2の相を構成するシリコンカーバイドを主成
分とする導電性セラミックスは、比較的低温ではその電
気抵抗特性が温度に対してパ負”であり、本発明に係る
複合セラミックスの場合、当初は過大な電流は流れず、
熱容量と伝熱速度の問題と相まって、破壊し難いものと
考えられる。このような耐熱衝撃性400℃以上のセラ
ミックスは各種あり、具体例としては窒化ケイ素、シリ
コンカーバイドく炭化ケイ素)、サイアロン、コージラ
イト、二部のジルコニア等があげられ、これらは一般に
導電性の小さいものである。
When the temperature of an auxiliary heater for a microwave oven increases rapidly in a short period of time, the operating temperature of the heating element ceramic of the heater, for example 800° C., corresponds to the required thermal shock resistance. According to the study results of the present inventors, the required thermal shock resistance of the porous ceramic in the present invention is lower than this, and it was found that it can withstand practical use at 400° C. or higher. The reason for this is
Conductive ceramics mainly composed of silicon carbide, which constitutes the second phase described below, have electrical resistance characteristics that are negative with respect to temperature at relatively low temperatures, and in the case of the composite ceramic according to the present invention, initially Excessive current does not flow,
Coupled with the problems of heat capacity and heat transfer rate, it is considered difficult to destroy. There are various types of ceramics with thermal shock resistance of 400°C or higher, including silicon nitride, silicon carbide, sialon, cordierite, and zirconia, which generally have low conductivity. It is something.

第1の相を構成する多孔質セラミックスは、上述の如き
セラミックスよりなり、かつ、互いに連通した多数の細
孔〈いわゆる連続気泡〉を有し、その細孔の少くとも一
部が表面までつながっているものがよく、内部に独立し
た細孔〈独立気泡〉のみを有するものは好ましくない。
The porous ceramic constituting the first phase is made of the ceramic described above and has a large number of pores (so-called open cells) that communicate with each other, and at least some of the pores are connected to the surface. It is preferable to have pores in the interior, and it is not preferable to have only independent pores (closed cells) inside.

一方、第2の相を構成するシリコンカーバイド(炭化ケ
イ素)を主成分とする導電性セラミックスは、有機ケイ
素ポリマーを焼成して得られるものが好ましく、かかる
セラミックスはシリコンカーバイドのほかに少量の炭素
を含むため適度の導電性、例えば体積固有抵抗にして1
02〜10−1ΩcI+程度の導電性を有する。
On the other hand, the conductive ceramic mainly composed of silicon carbide constituting the second phase is preferably obtained by firing an organosilicon polymer, and such a ceramic contains a small amount of carbon in addition to silicon carbide. Because it contains a moderate electrical conductivity, for example, volume resistivity is 1
It has a conductivity of about 02 to 10-1 ΩcI+.

本発明のセラミックス成形品は、基体となる多孔質セラ
ミックスの細孔内にシリコンカーバイドを主成分とする
導電性セラミックスが充填した状態にしたものであり、
全体として導電性を有するものである。
The ceramic molded article of the present invention is one in which the pores of a porous ceramic serving as a base are filled with a conductive ceramic whose main component is silicon carbide,
It has electrical conductivity as a whole.

多孔質セラミックスの細孔内にシリコンカーバイドを主
たる成分とした導電性セラミックスを充填させると、こ
の導電性セラミックス相が直線ではなく複雑な曲がりを
持った形状になるので、多孔質セラミックスとの間に多
少の膨脂・収縮の違いがあっても吸収されてしまう。又
、全体としては柔軟性を示すので、多少の膨脂係数の違
いは吸収でき、保護絶縁材料としての他のセラミックス
、例えば耐熱性アルミナと積層するにしても問題を生じ
ない。
When the pores of porous ceramics are filled with conductive ceramics whose main component is silicon carbide, the conductive ceramic phase takes on a complicated curved shape rather than a straight line. Even if there is a slight difference in fat expansion or contraction, it will be absorbed. In addition, since it exhibits flexibility as a whole, it can absorb some differences in fat expansion coefficient, and no problem occurs even when laminated with other ceramics as a protective insulating material, such as heat-resistant alumina.

本発明の複合セラミックス成形品を得るには、まず、多
孔質セラミックス成形品を製造する。例えば予め任意の
形状に成形して焼成し多孔質セラミックス成形品を得る
か、多孔質セラミックスを任意の形状に底型して多孔質
成形品を得る。次いでこの多孔質セラミックス成形品に
、溶媒に溶がした有機ケイ素ポリマーを含浸させ、乾燥
させる。
To obtain the composite ceramic molded article of the present invention, first, a porous ceramic molded article is manufactured. For example, a porous ceramic molded product can be obtained by pre-forming into an arbitrary shape and firing, or a porous molded product can be obtained by molding a porous ceramic into an arbitrary shape. Next, this porous ceramic molded article is impregnated with an organosilicon polymer dissolved in a solvent and dried.

好ましい有機ケイ素ポリマーとしては、例えばポリシラ
ン、ポリカルボシラン、ポリシラスチレン、ポリカルボ
シラスチレン共重合体等が挙げられる。
Preferred organosilicon polymers include, for example, polysilane, polycarbosilane, polysilastyrene, polycarbosilastyrene copolymer, and the like.

これらのポリマーは安価な溶媒、例えばアルキルベンゼ
ン、具体的にはベンゼン、トルエン、キシレン等に溶か
して含浸させられる。なかでも、ポリカルボシラン、ポ
リカルボシラスチレン共重合体(PC3S)は特に導電
性の高いセラミックスになるので好ましく、後者のpc
ssが最適である。
These polymers are dissolved and impregnated in inexpensive solvents such as alkylbenzenes, specifically benzene, toluene, xylene, and the like. Among these, polycarbosilane and polycarbosilastyrene copolymer (PC3S) are preferable because they produce ceramics with particularly high conductivity.
ss is optimal.

予め作るセラミックスは多孔質であって、孔のサイズが
適当であり、かつ、気孔率も適度のものが好ましい。孔
のサイズは1〜100μmに中心サイズがあるものが好
ましく、小さすぎると含浸が困難であったり、再焼成が
難しかったりする。大きすぎれば導電相が剥げ易く、導
電セラミックスとしての均一性が得難くなる。気孔率は
5〜50%、特に10〜40%が好ましく、小さすぎる
と導電セラミックスの導電性をあげ難く、大きすぎると
壊れ易いことが多い。
Preferably, the ceramic prepared in advance is porous and has appropriate pore size and appropriate porosity. The pores preferably have a center size of 1 to 100 μm; if the pores are too small, impregnation or re-firing may be difficult. If it is too large, the conductive phase tends to peel off, making it difficult to obtain uniformity as a conductive ceramic. The porosity is preferably 5 to 50%, particularly 10 to 40%; if it is too small, it is difficult to improve the conductivity of the conductive ceramic, and if it is too large, it is often prone to breakage.

多孔質の形態は、面状、棒状、ブロック状等が挙げられ
る。熱論、特殊な形状、例えば均一に電気を通すために
、本発明者らは先に提案した特願昭63−29209号
によるもの等でもよい。
Porous forms include planar, rod-like, block-like, and the like. In order to conduct heat uniformly, a special shape may be used, such as the one proposed by the present inventors in Japanese Patent Application No. 63-29209.

[発明の効果] 本発明によれば、比較的任意の形状の急速通電可能な、
実質的に耐熱衝撃性の優れた、ヒータの発熱体として好
適な導電性セラミックス成形品が提供される。この導電
性セラミックスは各種の好ましい性質を備え、任意の形
状のものが得易く、安価であり、又他のセラミックス系
保護絶縁物と一体化できるので、家庭用品等広い用途で
用いることができる。
[Effects of the Invention] According to the present invention, a device having a relatively arbitrary shape that can be rapidly energized;
Provided is a conductive ceramic molded product that has substantially excellent thermal shock resistance and is suitable as a heating element for a heater. This conductive ceramic has various desirable properties, can be easily obtained in any shape, is inexpensive, and can be integrated with other ceramic-based protective insulators, so it can be used in a wide range of applications such as household products.

[実施例] 次に、本発明の実施例及び比較例を挙げるが、本発明は
これにより限定されるものではない。尚、特に断りのな
い限り、各例中の「部」は重量部である。
[Example] Next, Examples and Comparative Examples of the present invention will be given, but the present invention is not limited thereto. In addition, unless otherwise specified, "parts" in each example are parts by weight.

実施例1 市販の炭化ケイ素(三井東圧製; MSC−2’i11
00部、炭素粉末2部、カルボメトキシセルロース13
部及び少量の水を加えたサンプルをプレス圧800Kg
/cdで成形した。得られたサンプルを窒素気流中で、
1.300℃で焼成した。焼成物は多孔質セラミックス
で、脆く、その体積抵抗率は103Ωcmであった。
Example 1 Commercially available silicon carbide (manufactured by Mitsui Toatsu; MSC-2'i11
00 parts, carbon powder 2 parts, carbomethoxycellulose 13
sample with a small amount of water added to it at a pressure of 800 kg.
/cd. The obtained sample was placed in a nitrogen stream.
1. Calcined at 300°C. The fired product was porous ceramic, brittle, and had a volume resistivity of 10 3 Ωcm.

次に、ポリカルボシラスチレンを次のようにして製造し
た。すなわち、ジクロルジメチルシランとジクロルメチ
ルフェニルシランの等モルを使い、トルエン中で金属ナ
トリウムを加えて重合してポリシラスチレンを得た。こ
のポリシラスチレンを400℃で窒素雰囲気中で処理し
、軟化点、190〜200℃のポリカルボシラスチレン
共重合体を得た。
Next, polycarbosilastyrene was produced as follows. That is, using equimolar amounts of dichlorodimethylsilane and dichloromethylphenylsilane, metal sodium was added and polymerized in toluene to obtain polysilastyrene. This polysilastyrene was treated at 400°C in a nitrogen atmosphere to obtain a polycarbosilastyrene copolymer having a softening point of 190 to 200°C.

この共重合体100部をトルエン1.000部に溶かし
、上記のセラミックスに含浸させた。−昼夜浸し、乾燥
させ、再度含浸させ、乾燥させることを繰り返した。最
終的に乾燥後の重量が焼成直後のセラミックス100部
に対して127部となった。
100 parts of this copolymer was dissolved in 1.000 parts of toluene and impregnated into the above ceramic. - Repeated soaking, drying, soaking again, and drying day and night. The final weight after drying was 127 parts based on 100 parts of the ceramic immediately after firing.

このサンプルを最高温度1.300℃で、述べ時間32
時間(室温から600℃までを緩やかに昇温し、以後昇
温速度を上げ1,300℃とし、室温に戻した)で、窒
素気流中で焼成した。得られたセラミックスは重量12
3部であり、体積固有抵抗は2.3Ωcmであった。こ
の複合セラミックスに電気を通して、表面温度1.00
0℃以上に発熱させることができた。
This sample was heated to a maximum temperature of 1.300°C for 32 hours.
The product was fired in a nitrogen stream for several hours (the temperature was gradually raised from room temperature to 600°C, then the temperature increase rate was increased to 1,300°C, and then returned to room temperature). The resulting ceramic weighs 12
3 parts, and the volume resistivity was 2.3 Ωcm. When electricity is passed through this composite ceramic, the surface temperature becomes 1.00.
It was possible to generate heat above 0°C.

次に、厚さ50μのアルミナ(三菱鉱業セメント製;ア
ルコキシド法によると言われる)を入手し、上記のサン
プルにガラスを接着剤として貼合せ、絶縁物被覆導電セ
ラミックスに出来た。接着は試作サンプルとアルミナ薄
葉の間に、薄葉のガラスを挟んで、アルゴン気流中で1
,200’Cまで昇温し、溶融接着させた。この積層物
は長期にわたり良好な接着状態を維持し耐久性に優れた
ものであった。
Next, alumina (manufactured by Mitsubishi Mining Cement; said to be made by the alkoxide method) with a thickness of 50 μm was obtained, and glass was bonded to the above sample as an adhesive to form an insulator-coated conductive ceramic. For adhesion, a thin sheet of glass was sandwiched between the prototype sample and a thin sheet of alumina, and the process was carried out for one hour in an argon stream.
, 200'C to melt and bond. This laminate maintained good adhesion over a long period of time and had excellent durability.

実施例2 流動点241 ’Cのポリカルボシラン(パーメチルポ
リシランの転位物)をキシレンに溶かし、窒化ケイ素粉
末(昭和電工製、 DENSI−N) 50部、及び、
チタン酸カリウムウィスカー(大塚化学製;「ティスモ
」〉25部を分散させ、流延、乾燥させた。
Example 2 Polycarbosilane (rearranged permethylpolysilane) with a pour point of 241'C was dissolved in xylene, and 50 parts of silicon nitride powder (manufactured by Showa Denko, DENSI-N) and
25 parts of potassium titanate whiskers (manufactured by Otsuka Chemical; "Tismo") were dispersed, cast, and dried.

更にこれを270℃、1  ton/−で熱圧し、グリ
ーンシートとした。
This was further hot-pressed at 270°C and 1 ton/- to form a green sheet.

これを窒素気流中で1.200℃で焼成した。得られた
多孔質セラミックスシートは強度15Kg/−であった
。計算上の空隙は1−2.3/3.2 =28%である
This was fired at 1.200°C in a nitrogen stream. The obtained porous ceramic sheet had a strength of 15 kg/-. The calculated void is 1-2.3/3.2 = 28%.

上記のポリカルボシラン(バーメチルポリシランの転位
物)をキシレンに溶かして5%溶液とし、この溶液中に
上記のセラミックスの重量100部のものを浸してポリ
カルボシランを含浸させた。−昼夜浸し、乾燥し、再度
含浸させ、乾燥した。
The above polycarbosilane (rearranged product of barmethylpolysilane) was dissolved in xylene to form a 5% solution, and 100 parts of the above ceramic was immersed in this solution to impregnate it with the polycarbosilane. - Soaked day and night, dried, impregnated again and dried.

このサンプルを実施例1と同様に、最高温度1、300
℃で焼成した。得られた複合セラミックスは、重量10
9部、体積固有抵抗OjΩcmであった9実施例3 トルエンに実施例1で用いたポリカルボシラスチレン共
重合体25部を溶かし、窒化ケイ素粉末(昭和電工製、
 DENSI−N) 50部、及び、窒化ケイ素ウィス
カー(宇部興産製、 5N−WB) 25部を分散させ
、流延、乾燥させた。更に、これを270℃、1  t
on/co?″′C熱圧し、グリーンシートとした。引
続き、これを窒素気流中で1.500℃で焼成した。
This sample was heated to a maximum temperature of 1,300 in the same manner as in Example 1.
Calcined at ℃. The obtained composite ceramic has a weight of 10
Example 3 25 parts of the polycarbosilastyrene copolymer used in Example 1 was dissolved in toluene, and silicon nitride powder (manufactured by Showa Denko,
DENSI-N) and 25 parts of silicon nitride whiskers (manufactured by Ube Industries, Ltd., 5N-WB) were dispersed, cast, and dried. Furthermore, this was heated at 270°C for 1 t.
on/co? The green sheet was heated and pressed at 1.500°C in a nitrogen stream.

得られた多孔質セラミックスシートは強度20Kg/d
、体積抵抗率10’Ωcmであった。計算上の空隙は1
−2.3/3.2 =28%である。
The obtained porous ceramic sheet has a strength of 20 kg/d.
, and the volume resistivity was 10'Ωcm. The calculated gap is 1
-2.3/3.2 = 28%.

実施例1で用いたポリカルボシラスチレン共重合体溶液
をこの多孔質セラミックスに含浸させ、実施例1と同様
に、含浸、乾燥を繰り返した。
This porous ceramic was impregnated with the polycarbosilastyrene copolymer solution used in Example 1, and impregnation and drying were repeated in the same manner as in Example 1.

得られたサンプルの重量は元のサンプル100部に対し
て117部となった。このサンプルを、窒素気流中で、
最高1.300°Cで焼成した。得られた複合セラミッ
クスの重量は109部、体積固有抵抗は0.5Ωcmで
あった。この複合セラミックスのシートは、電気を通す
ことにより赤熱でき、繰り返し急速昇温しても破壊しな
かった。
The weight of the resulting sample was 117 parts based on 100 parts of the original sample. This sample was washed in a nitrogen stream.
Baked at a maximum temperature of 1.300°C. The weight of the obtained composite ceramic was 109 parts, and the volume resistivity was 0.5 Ωcm. This composite ceramic sheet became red hot when electricity was passed through it, and did not break even after repeated rapid heating.

Claims (4)

【特許請求の範囲】[Claims] (1)耐熱衝撃性が400℃以上であるセラミックスに
より構成されかつ表面まで連通した多数の細孔を有する
多孔質セラミックスからなる第1の相と、上記細孔内に
充填されその少くとも一部が成形品表面まで連続してお
りかつシリコンカーバイドを主成分とする導電性セラミ
ックスにより構成されている第2の相とからなることを
特徴とする導電性セラミックス成形品。
(1) A first phase composed of a porous ceramic composed of a ceramic having a thermal shock resistance of 400°C or more and having a large number of pores communicating to the surface, and at least a part of the pores filled with the first phase. 1. A conductive ceramic molded product characterized in that the second phase is continuous to the surface of the molded product and is composed of a conductive ceramic whose main component is silicon carbide.
(2)第1の相を構成する耐熱衝撃性が400℃以上で
あるセラミックスが窒化ケイ素、シリコンカーバイド、
サイアロン、コージライト、ジルコニアからなる群から
選ばれた少くとも1種の非導電性セラミックスであり、
第2の相が有機ケイ素ポリマーを焼成したシリコンカー
バイドを主成分とする導電性セラミックスである請求項
(1)に記載の導電性セラミックス成形品。
(2) The ceramic that constitutes the first phase and has a thermal shock resistance of 400°C or higher is silicon nitride, silicon carbide,
At least one type of non-conductive ceramic selected from the group consisting of sialon, cordierite, and zirconia,
The conductive ceramic molded article according to claim 1, wherein the second phase is a conductive ceramic whose main component is silicon carbide obtained by firing an organosilicon polymer.
(3)予め焼成して得た耐熱衝撃性が400℃以上の多
孔質セラミックスに、有機ケイ素ポリマーの溶液を含浸
させ、乾燥後、該成形品を再度焼成することを特徴とす
る導電性セラミックス成形品の製造方法。
(3) Conductive ceramic molding characterized by impregnating a porous ceramic with a thermal shock resistance of 400°C or higher obtained by firing in advance with a solution of an organosilicon polymer, and firing the molded product again after drying. method of manufacturing the product.
(4)有機ケイ素ポリマーがポリシラン、ポリカルボシ
ラン、ポリシラスチレン、ポリカルボシラスチレン共重
合体よりなる群から選ばれた少くとも1種の溶剤可溶性
有機ケイ素ポリマーである請求項(3)に記載の製造方
法。
(4) The organosilicon polymer is at least one solvent-soluble organosilicon polymer selected from the group consisting of polysilane, polycarbosilane, polysilastyrene, and polycarbosilastyrene copolymer. manufacturing method.
JP1173087A 1989-07-06 1989-07-06 Conductive ceramic formed article and its production Pending JPH0340966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1173087A JPH0340966A (en) 1989-07-06 1989-07-06 Conductive ceramic formed article and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1173087A JPH0340966A (en) 1989-07-06 1989-07-06 Conductive ceramic formed article and its production

Publications (1)

Publication Number Publication Date
JPH0340966A true JPH0340966A (en) 1991-02-21

Family

ID=15953963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1173087A Pending JPH0340966A (en) 1989-07-06 1989-07-06 Conductive ceramic formed article and its production

Country Status (1)

Country Link
JP (1) JPH0340966A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278668A (en) * 2000-03-29 2001-10-10 Chubu Electric Power Co Inc Method for manufacturing ceramic composite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278668A (en) * 2000-03-29 2001-10-10 Chubu Electric Power Co Inc Method for manufacturing ceramic composite

Similar Documents

Publication Publication Date Title
RU55241U1 (en) HEATING ELEMENT
JPH0340966A (en) Conductive ceramic formed article and its production
JPH0337155A (en) Electrically conductive ceramic composite material and its production
JPS62219486A (en) Panel heating element
JP4783489B2 (en) Silver sintered body manufacturing method and simple furnace
JP2685370B2 (en) Ceramics heater
JP3774299B2 (en) Inorganic fibrous refractory insulation and method for producing the same
JP2955127B2 (en) Ceramic heater
JPH0360465A (en) Combined ceramic product
JPH08153572A (en) Far infrared radiation heater
JPH02217367A (en) Composite ceramic formed product and its production
JPH01298068A (en) Production of ceramic formed body
JPS5817355Y2 (en) Ceramic hatsnet tie
KR100549464B1 (en) A Ceramic Heater Plate And Product Method
JPH02267167A (en) Composite ceramic sheet-like molded product and production thereof
JPS6028194A (en) Ceramic heater
Kalyon et al. Processability of organometallic polymer precursors for nonoxide ceramic applications
JP3353043B2 (en) Manufacturing method of low order titanium oxide ceramics
JPH01130488A (en) Flat heating element
JPH0515751Y2 (en)
JPH0282484A (en) Flat heating element
JP3001941B2 (en) Manufacturing method of aluminum nitride sintered body
JPH0234562A (en) Production of conductive silicon carbide sheet
Jiang et al. Oxidation Behaviour and High Temperature Strength of Hot-Pressed SiC With Various Sintering Aids
JPH09227254A (en) Production of alumina coated sintered compact