JPH0336572B2 - - Google Patents

Info

Publication number
JPH0336572B2
JPH0336572B2 JP57072031A JP7203182A JPH0336572B2 JP H0336572 B2 JPH0336572 B2 JP H0336572B2 JP 57072031 A JP57072031 A JP 57072031A JP 7203182 A JP7203182 A JP 7203182A JP H0336572 B2 JPH0336572 B2 JP H0336572B2
Authority
JP
Japan
Prior art keywords
catalyst
supported
potassium
catalytic activity
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57072031A
Other languages
Japanese (ja)
Other versions
JPS58189035A (en
Inventor
Kazuko Yoshida
Shigenori Sakurai
Shinichi Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57072031A priority Critical patent/JPS58189035A/en
Publication of JPS58189035A publication Critical patent/JPS58189035A/en
Publication of JPH0336572B2 publication Critical patent/JPH0336572B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は自動車等の排気ガスの浄化に使用され
る排気ガス浄化用触媒に係る。 自動車等に於ては、従来より一般に、エンジン
より排出される排気ガス中のHC、CO、NOxの
如き有害成分を触媒によつて無害成分に変換する
ことが行なわれている。特に自動車用エンジンに
於ては、エンジンの始動から正常運転に至るまで
の温度範囲が広く、エンジンの始動時の低温域に
於てはエンジンより不完全燃焼ガスが排出される
ことがあるので、排気ガス浄化用触媒は低温域に
於ても触媒活性に優れているものでなければなら
ない。また排気ガス浄化用触媒は長期間の使用に
耐えるよう、その触媒活性を長期間に亙り維持し
得るものでなければならない。 しかし従来より排気ガス浄化用触媒として使用
されている触媒は、一般に、α−アルミナ、γ−
アルミナなどの粒子よりなるペレツト型触媒担
体、又はアルミナを被覆されたハニカム状コーデ
イエライト質モノリス触媒担体などに白金、パラ
ジウム、ロジウムの如き触媒活性を有する貴金属
を単独又はそれらの組合せにて担持させたものが
使用されており、これら従来の触媒は低温域に於
ける触媒活性が必ずしも充分なものではなく、ま
た触媒活性の維持の点に於ても必ずしも充分なも
のでもない。 また特開昭53−19986号公報にはランタン、セ
リウム、リチウム、及びストロンチウムの群から
選択された一種又は二種以上の金属と、白金と、
ロジウムと、ニツケルとよりなることを特徴とす
る排気ガス浄化用触媒が記載されている。この触
媒によれば、貴金属のみが担持された触媒に比し
てCO、HC、NOxの浄化率を向上させ、また触
媒の耐久性を向上させることができる。 しかしリチウムはカリウムやナトリウムの如き
他の一般的なアルカリ金属に比して高価な金属で
あり、また、本願発明者が行つた種々の実験的研
究により、補助触媒としての性能はリチウムやナ
トリウムよりもカリウムの方が大幅に優れてお
り、補助触媒としてカリウム及び鉄族元素を用い
ることにより、低温での触媒活性にも優れ、触媒
活性の持続性にも優れた触媒を得ることができる
ことが判明した。 本発明は、本願発明者等が行なつた種々の実験
的研究の結果得られた知見に基き、低温域に於け
る触媒活性にも優れ且触媒活性の持続性にも優れ
た低廉な排気ガス浄化用触媒を提供することを目
的としている。 かかる目的は、本発明によれば、触媒担体と、
該触媒担体に担持されたカリウム、鉄族元素、セ
リウム、及びロジウム、白金、パラジウムよりな
る群より選択された貴金属とよりなる排気ガス浄
化用触媒によつて達成される。 本発明によれば、補助触媒としてのカリウム及
び鉄族元素による助触媒作用により、貴金属の触
媒作用が増大されるので、高温域に於ける触媒活
性のみならず低温域に於ける触媒活性にも優れて
おり、しかもその触媒活性が長期間に亙り持続す
る触媒を得ることができる。また本発明による排
気ガス浄化用触媒に於ては、高価な貴金属の担持
量を増大させるのではなく、比較的低廉なカリウ
ム及び鉄族元素を用いることによつて触媒活性の
向上が図られるので、本発明によれば、貴金属の
担持量を増大させることによつて触媒活性の増大
を図る場合に比して、触媒を低廉に製造すること
ができる。 更にカリウムはアルカリ金属のうち最も低廉な
金属であり、また後述の実施例の説明より明らか
である如く、リチウムやナトリウムに比して低温
での触媒活性及び触媒活性の持続性の何れの点に
於ても優れているので、前述の特開昭53−19986
号公報に記載された触媒に比して低温に於ける触
媒活性及び触媒活性の持続性の何れの点に於ても
優れ且低廉な触媒を得ることができる。 尚本発明による排気ガス浄化用触媒に於ける触
媒担体はペレツト型触媒担体又はモノリス触媒担
体のいずれであつてもよく、また鉄族元素はニツ
ケル、コバルト、鉄又はそれらの組合せであつて
よく、貴金属はロジウム、白金、パラジウム、又
はそれらの組合せなどあつてよい。 以下に本発明を実施例について詳細に説明す
る。 実施例 1 比表面積50m2/gの球状アルミナ担体200mlに
酸化カリウムの担持量が0.05mol/−catとなる
よう炭酸カリウム水溶液を含浸させ、120℃にて
2時間乾燥した後、800℃にて2時間焼成した。
次いでこの焼成体にニツケルの担持量が
0.1mol/−catとなるよう硝酸ニツケル水溶液
を含浸させ、120℃にて2時間乾燥した後、800℃
にて2時間焼成した。次いでこの焼成体にセリウ
ムの担持量が0.2mol/−catとなるよう硝酸セ
リウム水溶液を含浸させ、120℃にて2時間乾燥
した後、600℃にて2時間焼成した。次いでこの
焼成体にロジウムの担持量が0.1g/−catとる
よう塩化ロジウム水溶液を含浸させ、120℃にて
2時間乾燥した後、500℃にて30分間焼成した。
更にこの焼成体に白金の担持量が0.8g/−cat
となるよう塩化白金酸水溶液を含浸させ、120℃
にて2時間乾燥した後、500℃にて30分間焼成し
た。 実施例 2 硝酸ニツケル水溶液の代りに硝酸コバルト水溶
液を用いた点を除き、上述の実施例1と同様の要
領にて触媒を調製した。 実施例 3 硝酸ニツケル水溶液の代りに硝酸第二鉄水溶液
を用いた点を除き、上述の実施例1の場合と同様
の要領にて触媒を調製した。 比較例 1 上述の実施例1に於て使用された球状アルミナ
担体と同一の球状アルミナ担体200mlに上述の実
施例1の場合と同様の要領にてセリウム、ロジウ
ム、及び白金のみを担持させた。 比較例 2〜5 上述の実施例1に於て使用された球状アルミナ
担体と同一の球状アルミナ担体200mlにそれぞれ
炭酸カリウム水溶液、硝酸ニツケル水溶液、硝酸
コバルト水溶液、硝酸第二鉄水溶液を用いて、上
述の実施例1の場合と同様の要領にてそれぞれ酸
化カリウム、ニツケル、コバルト、鉄のみを担持
させ、更に上述の実施例1の場合と同様の要領に
てセリウム、ロジウム、及び白金を担持させた。 比較例 6及び7 炭酸カリウム水溶液の代りにそれぞれ硝酸リチ
ウム水溶液、硝酸ナトリウム水溶液が使用され、
酸化カリウムの代りにそれぞれ酸化リチウム、酸
化ナトリウムが担持された点を除除き、上述の実
施例1と同様の要領にて触媒を調製した。 上述の如く製造された実施例1〜7及び比較例
1〜5の触媒を各成分の担持量を下記の表1に示
す。
The present invention relates to an exhaust gas purifying catalyst used for purifying exhaust gas from automobiles and the like. BACKGROUND ART Conventionally, in automobiles and the like, harmful components such as HC, CO, and NOx in exhaust gas discharged from an engine have been generally converted into harmless components using a catalyst. Particularly in automobile engines, the temperature range from engine startup to normal operation is wide, and incomplete combustion gas may be emitted from the engine in the low temperature range when the engine is started. Exhaust gas purification catalysts must have excellent catalytic activity even at low temperatures. In addition, the exhaust gas purifying catalyst must be able to maintain its catalytic activity over a long period of time so that it can withstand long-term use. However, the catalysts conventionally used as exhaust gas purification catalysts are generally α-alumina, γ-
Precious metals with catalytic activity such as platinum, palladium, and rhodium are supported singly or in combination on a pellet-type catalyst carrier made of particles such as alumina, or a honeycomb-shaped cordierite monolithic catalyst carrier coated with alumina. These conventional catalysts do not necessarily have sufficient catalytic activity in a low temperature range, nor are they necessarily sufficient in maintaining catalytic activity. Furthermore, JP-A-53-19986 discloses that one or more metals selected from the group of lanthanum, cerium, lithium, and strontium, platinum,
An exhaust gas purifying catalyst characterized by being made of rhodium and nickel is described. According to this catalyst, it is possible to improve the purification rate of CO, HC, and NOx, and to improve the durability of the catalyst, compared to a catalyst in which only noble metals are supported. However, lithium is an expensive metal compared to other common alkali metals such as potassium and sodium, and various experimental studies conducted by the inventors have shown that its performance as a cocatalyst is better than that of lithium or sodium. However, it was found that by using potassium and iron group elements as auxiliary catalysts, it was possible to obtain a catalyst with excellent catalytic activity at low temperatures and excellent sustainability of catalytic activity. did. The present invention is based on the knowledge obtained as a result of various experimental studies conducted by the inventors of the present invention, and is based on the knowledge obtained as a result of various experimental studies conducted by the inventors of the present invention. The purpose is to provide purification catalysts. This purpose, according to the invention, is achieved by providing a catalyst support and
This is achieved by an exhaust gas purifying catalyst comprising potassium, an iron group element, cerium, and a noble metal selected from the group consisting of rhodium, platinum, and palladium supported on the catalyst carrier. According to the present invention, the catalytic action of noble metals is increased by the co-catalytic action of potassium and iron group elements as co-catalysts, so that the catalytic activity is not only increased in high temperature ranges but also in low temperature ranges. It is possible to obtain a catalyst that has excellent catalytic activity and maintains its catalytic activity for a long period of time. Furthermore, in the exhaust gas purification catalyst of the present invention, the catalytic activity is improved by using relatively inexpensive potassium and iron group elements instead of increasing the amount of expensive precious metals supported. According to the present invention, a catalyst can be produced at a lower cost than when the catalyst activity is increased by increasing the amount of noble metal supported. Furthermore, potassium is the cheapest metal among the alkali metals, and as is clear from the explanation of the examples below, it has lower catalytic activity and sustainability at low temperatures than lithium and sodium. Since it is also excellent in
Compared to the catalyst described in the publication, it is possible to obtain a catalyst that is superior in both catalytic activity and sustainability of catalytic activity at low temperatures and is inexpensive. The catalyst carrier in the exhaust gas purifying catalyst according to the present invention may be either a pellet-type catalyst carrier or a monolith catalyst carrier, and the iron group element may be nickel, cobalt, iron, or a combination thereof. The precious metal may be rhodium, platinum, palladium, or a combination thereof. The present invention will be described in detail below with reference to Examples. Example 1 200 ml of a spherical alumina carrier with a specific surface area of 50 m 2 /g was impregnated with an aqueous potassium carbonate solution so that the supported amount of potassium oxide was 0.05 mol/-cat, dried at 120°C for 2 hours, and then dried at 800°C. It was baked for 2 hours.
Next, the amount of nickel supported on this fired body is
Impregnated with nickel nitrate aqueous solution to 0.1 mol/-cat, dried at 120℃ for 2 hours, and then heated to 800℃
It was baked for 2 hours. Next, this fired body was impregnated with an aqueous cerium nitrate solution so that the amount of cerium supported was 0.2 mol/-cat, dried at 120°C for 2 hours, and then fired at 600°C for 2 hours. Next, this fired body was impregnated with an aqueous rhodium chloride solution so that the amount of rhodium supported was 0.1 g/-cat, dried at 120°C for 2 hours, and then fired at 500°C for 30 minutes.
Furthermore, the amount of platinum supported on this fired body is 0.8g/-cat.
Impregnated with chloroplatinic acid aqueous solution and heated at 120℃
After drying at 500° C. for 2 hours, it was fired at 500° C. for 30 minutes. Example 2 A catalyst was prepared in the same manner as in Example 1 above, except that an aqueous cobalt nitrate solution was used instead of an aqueous nickel nitrate solution. Example 3 A catalyst was prepared in the same manner as in Example 1 above, except that an aqueous ferric nitrate solution was used instead of an aqueous nickel nitrate solution. Comparative Example 1 Only cerium, rhodium, and platinum were supported on 200 ml of the same spherical alumina carrier used in Example 1 described above in the same manner as in Example 1 described above. Comparative Examples 2 to 5 200 ml of the same spherical alumina carrier as used in Example 1 above was treated with an aqueous potassium carbonate solution, an aqueous nickel nitrate solution, an aqueous cobalt nitrate solution, and an aqueous ferric nitrate solution as described above. Only potassium oxide, nickel, cobalt, and iron were supported respectively in the same manner as in Example 1, and cerium, rhodium, and platinum were further supported in the same manner as in Example 1 above. . Comparative Examples 6 and 7 Lithium nitrate aqueous solution and sodium nitrate aqueous solution were used instead of potassium carbonate aqueous solution, respectively.
Catalysts were prepared in the same manner as in Example 1 above, except that lithium oxide and sodium oxide were supported instead of potassium oxide. Table 1 below shows the amount of each component supported in the catalysts of Examples 1 to 7 and Comparative Examples 1 to 5 produced as described above.

【表】 以上の如く製造された各触媒について初期活性
としての浄化率及び30時間経過後の浄化率を測定
した。 初期活性測定 0.8%CO、2200ppm NOx、840ppm炭化水素
(C3H8)、0.8%O2、0.17%H2、約3%H2O、10%
CO2、残部N2なる組成のモデルガスに、モデル
ガス100%に対し0.8%のO2及び1.6%のCOを交互
に1Hzの周期にて添加した変動ガスを200〜350℃
にて加熱し、その変動ガスを空間速度SV=約
30000hr-1にて各触媒に導き、これによりNOxを
還元させ、またCO及び炭化水素(C3H3)を酸化
させ、HC、CO、及びNOxの浄化率を測定した。
この測定試験の結果より、HC、CO、NOxをそ
れぞれ50%低減するに必要とされる変動ガスの温
度を下記の表2に示す。 30分間経過後の浄化率測定 触媒床温度を約800℃に設定し、空間速度SV=
約60000hr-1に設定して、空燃比をほぼ16に制御
された排ガス中に各触媒を曝し、30時間経過した
時点に於けるHC、CO、及びNOxの浄化率を測
定した。この測定試験の結果より、HC、CO、
NOxをそれぞれ50%低減するに必要とされる排
気ガスの温度を下記の表2に示す。
[Table] For each catalyst produced as described above, the purification rate as initial activity and the purification rate after 30 hours were measured. Initial activity measurement 0.8% CO, 2200ppm NOx, 840ppm hydrocarbons (C 3 H 8 ), 0.8% O 2 , 0.17% H 2 , approximately 3% H 2 O, 10%
A variable gas in which 0.8% O 2 and 1.6% CO were added alternately at a frequency of 1 Hz to 100% model gas was heated at 200 to 350°C to a model gas with a composition of CO 2 and balance N 2 .
The fluctuating gas is heated at a space velocity of SV = approx.
The mixture was introduced into each catalyst at 30,000 hr -1 to reduce NOx and oxidize CO and hydrocarbons (C 3 H 3 ), and the purification rates of HC, CO, and NOx were measured.
Based on the results of this measurement test, the fluctuating gas temperatures required to reduce each of HC, CO, and NOx by 50% are shown in Table 2 below. Purification rate measurement after 30 minutes The catalyst bed temperature was set to approximately 800℃, and the space velocity SV =
Each catalyst was exposed to exhaust gas whose air-fuel ratio was controlled to approximately 16 with a setting of approximately 60,000 hr -1 , and the purification rates of HC, CO, and NOx were measured after 30 hours had elapsed. From the results of this measurement test, HC, CO,
Table 2 below shows the exhaust gas temperature required to reduce NOx by 50%.

【表】 この表2に示された実施例1〜3の結果と比較
例1〜5の結果との比較より、主触媒としての貴
金属に加えて補助触媒としてのカリウム及び鉄族
元素を含有する触媒は、カリウム又は鉄族元素を
含有しない触媒に比して低温域に於ても優れた触
媒活性を有しており、また長期間に亙りその触媒
活性を維持し得るものであることが解る。かかる
結果を得たのは、酸化カリウムより鉄族元素に対
し、電子の供給が行なわれ、これにより酸化カリ
ウム及び鉄族元素が互いに共働してより高い助触
媒作用を果すことによるものと考えられる。 また表2に示された実施例1の結果と比較例6
及び7の結果との比較より、補助触媒としてカリ
ウムが使用される場合には、同じアルカリ金属で
あるリチウムやナトリウムが補助触媒として使用
される場合に比して、低温域に於ける触媒活性及
び触媒活性の持続性の何れの点でも大幅に優れた
触媒が得られることが解る。かかる結果を得たの
は、イオン半径の大小(カリウム、リチウム、ナ
トリウムのイオン半径はそれぞれ1.33Å、0.60
Å、1.02Å)により貴金属との相互作用に相違が
生じることによるものと考えられる。 尚上述の各実施例及び比較例に於てロジウム及
び白金の一方を同量のパラジウムに置換えた場合
にも表2に示された結果と同様の結果が得られ
た。また実施例2及び3に於て上述の比較例6及
び7と同様の元素の置換えが行われることにより
製造された触媒についても比較例6及び7と同様
の結果が得られた。 また上述の実施例に於ては、鉄族元素としての
ニツケル、コバルト、鉄はそれぞれ単独で使用さ
れているが、これらの鉄族元素は任意の組合せに
て使用されてもよく、またカリウム、鉄族元素、
貴金属が担持される順序も上述の実施例に於ける
順序に限らず、任意の順序にて担持されてもよ
い。 以上に於ては本発明を幾つかの実施例について
詳細に説明したが、本発明はこれらの実施例に限
定されるものではなく、本発明の範囲内にて種々
の実施例が可能であることは当業者にとつて明ら
かであろう。例えばカリウム及び鉄族元素の担持
量は、触媒の用途及びそれが処理すべき排気ガス
の組成などに応じて種々の値に修正されてよい。
[Table] From the comparison between the results of Examples 1 to 3 and the results of Comparative Examples 1 to 5 shown in Table 2, it was found that in addition to the noble metal as the main catalyst, potassium and iron group elements were included as the auxiliary catalyst. It can be seen that the catalyst has superior catalytic activity even at low temperatures compared to catalysts that do not contain potassium or iron group elements, and can maintain its catalytic activity over a long period of time. . This result is thought to be due to the fact that potassium oxide supplies electrons to iron group elements, and as a result, potassium oxide and iron group elements cooperate with each other to achieve a higher cocatalytic effect. It will be done. Also, the results of Example 1 and Comparative Example 6 shown in Table 2
Comparison with the results of 7 and 7 shows that when potassium is used as an auxiliary catalyst, the catalytic activity and It can be seen that a catalyst which is significantly superior in terms of sustainability of catalytic activity can be obtained. This result was obtained due to the large and small ionic radii (the ionic radii of potassium, lithium, and sodium are 1.33 Å and 0.60 Å, respectively).
This is thought to be due to differences in interaction with noble metals depending on the thickness (1.02 Å, 1.02 Å). In addition, in each of the above-mentioned Examples and Comparative Examples, results similar to those shown in Table 2 were obtained even when one of rhodium and platinum was replaced with the same amount of palladium. Further, the same results as in Comparative Examples 6 and 7 were obtained for the catalysts produced in Examples 2 and 3 by replacing the same elements as in Comparative Examples 6 and 7 above. Further, in the above-mentioned examples, nickel, cobalt, and iron as iron group elements are used alone, but these iron group elements may be used in any combination, and potassium, iron group elements,
The order in which the noble metals are supported is not limited to the order in the above embodiments, but may be supported in any order. Although the present invention has been described above in detail with reference to several embodiments, the present invention is not limited to these embodiments, and various embodiments are possible within the scope of the present invention. This will be clear to those skilled in the art. For example, the supported amounts of potassium and iron group elements may be modified to various values depending on the use of the catalyst and the composition of the exhaust gas to be treated by the catalyst.

Claims (1)

【特許請求の範囲】[Claims] 1 触媒担体と、該触媒担体に担持されたカリウ
ム、鉄族元素、セリウム、及びロジウム、白金、
パラジウムよりなる群より選択された貴金属とよ
りなる排気ガス浄化用触媒。
1 a catalyst carrier, potassium, iron group elements, cerium, rhodium, platinum, supported on the catalyst carrier;
An exhaust gas purifying catalyst comprising a noble metal selected from the group consisting of palladium.
JP57072031A 1982-04-28 1982-04-28 Catalyst for purifying exhaust gas Granted JPS58189035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57072031A JPS58189035A (en) 1982-04-28 1982-04-28 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57072031A JPS58189035A (en) 1982-04-28 1982-04-28 Catalyst for purifying exhaust gas

Publications (2)

Publication Number Publication Date
JPS58189035A JPS58189035A (en) 1983-11-04
JPH0336572B2 true JPH0336572B2 (en) 1991-05-31

Family

ID=13477630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57072031A Granted JPS58189035A (en) 1982-04-28 1982-04-28 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS58189035A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319986A (en) * 1976-08-08 1978-02-23 Nippon Soken Exhaust gas scrubbing catalysts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319986A (en) * 1976-08-08 1978-02-23 Nippon Soken Exhaust gas scrubbing catalysts

Also Published As

Publication number Publication date
JPS58189035A (en) 1983-11-04

Similar Documents

Publication Publication Date Title
JPH05184876A (en) Catalyst for purifying exhaust gas
JPH08281107A (en) Catalyst for purifying exhaust gas
JPH09215922A (en) Catalyst for purifying exhaust gas
JP3798727B2 (en) Exhaust gas purification catalyst
JP2003190790A (en) Catalyst for purifying exhaust gas and system therefor
JPH08117600A (en) Catalyst for purifying exhaust gas and preparation of catalyst
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JPH06378A (en) Catalyst for purification of exhaust gas
JPH09926A (en) Catalyst for purification of exhaust gas
JP3335755B2 (en) Exhaust gas purification catalyst
JPH10128114A (en) Catalyst for purifying exhaust gas
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JPH10249199A (en) Catalyst for purifying exhaust gas
JP3505739B2 (en) Exhaust gas purification catalyst
JPH08323205A (en) Exhaust gas purifying catalyst and its production
JPH0523593A (en) Exhaust emission control system
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
JP3272015B2 (en) Exhaust gas purification catalyst
JPH10216514A (en) Catalyst for exhaust gas purification
JPH0336572B2 (en)
JPH05237384A (en) Catalyst for purifying exhaust gas
JPS61209045A (en) Catalyst for purifying exhaust gas
JP3338889B2 (en) Exhaust gas purification device
JP3189453B2 (en) Exhaust gas purification catalyst
JPH0361492B2 (en)