JPH0335917B2 - - Google Patents

Info

Publication number
JPH0335917B2
JPH0335917B2 JP57218766A JP21876682A JPH0335917B2 JP H0335917 B2 JPH0335917 B2 JP H0335917B2 JP 57218766 A JP57218766 A JP 57218766A JP 21876682 A JP21876682 A JP 21876682A JP H0335917 B2 JPH0335917 B2 JP H0335917B2
Authority
JP
Japan
Prior art keywords
sam
bacterial cells
purity
solution
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57218766A
Other languages
Japanese (ja)
Other versions
JPS59109190A (en
Inventor
Yoshinori Ookuma
Takanori Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP21876682A priority Critical patent/JPS59109190A/en
Priority to US06/560,119 priority patent/US4599309A/en
Publication of JPS59109190A publication Critical patent/JPS59109190A/en
Publication of JPH0335917B2 publication Critical patent/JPH0335917B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明はS−アデノシル−L−メチオニン(以
下、SAMと略称する)の抽出分離法に関し、さ
らに詳しくは、SAM生産能を有する菌体内から
夾雑物が少なく純度の高いSAMを効率良く抽出
分離する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for extracting and separating S-adenosyl-L-methionine (hereinafter abbreviated as SAM). This article relates to a method for efficiently extracting and separating SAM.

SAMは生体内において脂肪、蛋白質、糖類な
どの代謝に関与する重要な物質である。近時かか
るSAMに肝血症、過度脂血症、動脈硬化症、抑
うつ病、変性関節症、神経病痛覚、不眠症などに
対する治療効果のあることが見い出されており、
その大量生産が期待されている。
SAM is an important substance involved in the metabolism of fats, proteins, sugars, etc. in vivo. Recently, it has been discovered that SAM has therapeutic effects on hepatemia, hyperlipidemia, arteriosclerosis, depression, degenerative joint disease, neurological pain sensation, insomnia, etc.
Mass production is expected.

従来、SAM生産能を有する菌体内からSAMを
抽出分離する方法に関しては数多くの方法が知ら
れており、例えば、SAM含有菌体を過塩素酸、
塩酸、硫酸等の無機酸、蟻酸、トリクロル酢酸等
の有機酸、酢酸メチル、酢酸エチル等のエステル
類などの薬剤で処理して細胞壁を崩壊させ、存在
するSAMを溶液に取り出し、その後、イオン交
換樹脂、活性炭、キレート樹脂等で精製処理する
方法が挙げられる(特公昭52−35726号、特開昭
52−125194号、特開昭56−92899号など)。
Conventionally, many methods have been known for extracting and separating SAM from bacterial cells capable of producing SAM.
Cell walls are disrupted by treatment with drugs such as inorganic acids such as hydrochloric acid and sulfuric acid, organic acids such as formic acid and trichloroacetic acid, and esters such as methyl acetate and ethyl acetate, and the existing SAM is extracted into a solution, followed by ion exchange. Examples include purification methods using resins, activated carbon, chelate resins, etc. (Japanese Patent Publication No. 52-35726,
No. 52-125194, JP-A-56-92899, etc.).

しかし、これらの方法は菌体処理に薬剤を用い
ているためSAMの分解を生じやすく、かつ安全
衛生上の問題があるほか、SAMと夾雑物との分
離が不完全で医薬として使用しうるような高純度
のSAMを得にくく、その純度を向上させようと
すればSAMの回収率が低下するといつた問題が
あつた。
However, since these methods use chemicals to treat bacterial cells, they tend to cause decomposition of SAM, which poses health and safety issues, and the separation of SAM and impurities is incomplete, making it difficult to use them as medicines. There was a problem in that it was difficult to obtain SAM of high purity, and attempts to improve the purity would result in a decrease in the recovery rate of SAM.

そこで本発明者らは従来技術のかかる欠点を改
良すべく鋭意検討を進めた結果、SAM生産能を
有する菌体から高純度のSAMを抽出分離するに
あたり、菌体を予め二価銅イオン水溶液で処理し
た後、凍結融解することがきわめて効果的である
ことを見い出し本発明を完成するに至つた。
Therefore, the present inventors conducted intensive studies to improve this shortcoming of the conventional technology, and as a result, when extracting and separating high-purity SAM from bacterial cells capable of producing SAM, the bacterial cells were pretreated with an aqueous divalent copper ion solution. They found that freezing and thawing after treatment is extremely effective, leading to the completion of the present invention.

すなわち本発明の目的は、安全かつ簡便な操作
でSAM含有菌体から高純度のSAMを効率よく分
離抽出する方法を提供することにあり、かかる本
発明の目的は、SAMを体内に蓄積した酵母菌体
を、二価銅イオン水溶液と接触させ、その後、水
中で凍結させたのち融解させて菌体外にSAMを
抽出分離することにより達成される。
That is, an object of the present invention is to provide a method for efficiently separating and extracting highly purified SAM from SAM-containing bacterial cells using a safe and simple operation. This is achieved by bringing the bacterial cells into contact with an aqueous solution of divalent copper ions, then freezing them in water and thawing them to extract and separate SAM from the bacterial cells.

本発明に用いられるSAM含有菌体の製造法は
特に限定されるものではなく、例えばSAM生産
能を有するサツカロマイセス(Saccharomyces)
属、キヤンデイダ(Candida)属などに属する酵
母をメチオニン含有培地で培養し、菌体内に
SAMを生成蓄積せしめる方法などが例示される。
The method for producing SAM-containing microbial cells used in the present invention is not particularly limited, and for example, Saccharomyces that has SAM-producing ability
Yeast belonging to the genus Candida, etc. are cultured in a methionine-containing medium, and
Examples include methods for generating and accumulating SAM.

かくして得られたSAM含有菌体培養液から菌
体を常法により集菌し、必要に応じて洗浄した
後、水に再度懸濁させる。使用する水の量は適宜
選択すればよいが、通常は湿菌量1重量部に対し
て1〜100重量部、望ましくは3〜10重量部用い
ることができる。水量が少なすぎるとSAMの菌
体外への抽出率が十分でなくなり、又多すぎると
水溶液中のSAM濃度が低下し、後の精製分離工
程にいたずらに負担をかける。
The cells are collected from the SAM-containing cell culture solution obtained in this manner by a conventional method, washed if necessary, and then resuspended in water. The amount of water used may be appropriately selected, but it is usually 1 to 100 parts by weight, preferably 3 to 10 parts by weight, per 1 part by weight of the wet bacteria. If the amount of water is too small, the extraction rate of SAM outside the bacterial cells will not be sufficient, and if it is too large, the SAM concentration in the aqueous solution will decrease, unnecessarily putting a burden on the subsequent purification and separation process.

使用する水は菌体を凍結しうるものであればと
くに制限されないが、抽出率の点で蒸留水を用い
ることが好ましい。しかし、本発明の効果を本質
的に損わない範囲内であれば親水性有機溶剤を併
用したり、食塩などの無機塩を溶解したものであ
つてもよい。
The water used is not particularly limited as long as it can freeze the bacterial cells, but from the viewpoint of extraction efficiency, it is preferable to use distilled water. However, a hydrophilic organic solvent may be used in combination or an inorganic salt such as common salt may be dissolved within a range that does not essentially impair the effects of the present invention.

次に懸濁液の凍結が行われる。凍結方法につい
てはその温度、時間等に特に制限はなく、懸濁液
が均一に凍結すればいかなる方法をとつても良
い。
The suspension is then frozen. There are no particular limitations on the temperature, time, etc. of the freezing method, and any method may be used as long as the suspension is uniformly frozen.

かくして得られた凍結物は次いで常法に従つて
融解される。融解温度は適宜選択すればよいが、
通常は0〜25℃の範囲が望ましく、あまり温度が
高すぎると、SAMが分解し収率が低下する。
The frozen product thus obtained is then thawed in a conventional manner. The melting temperature may be selected appropriately, but
Usually, a range of 0 to 25°C is desirable; if the temperature is too high, SAM will decompose and the yield will decrease.

得られた融解液から菌体残渣を常法(例えば遠
心分離法)に従つて除去することにより、後の精
製工程でSAMと挙動を一にする夾雑物の少ない
純度の良いSAM水溶液が得られる。
By removing bacterial cell residue from the resulting molten liquid using a conventional method (e.g., centrifugation), a highly pure SAM aqueous solution with few impurities that behaves the same as SAM in the subsequent purification process can be obtained. .

一般にSAM含有菌体は、菌体内の液胞にSAM
を特異的に濃縮する傾向があり、上記凍結及び融
解の方法をとることによつて細胞壁を完全に破壊
することなく細胞質膜及び液胞膜が破れ、結果的
には細胞質内に含まれる各種蛋白質や核酸類の溶
出を大幅に低下させる結果、純度の高いSAM水
溶液が得られるものと推定できる。かくして得ら
れたSAM水溶液を常法によりイオン交換樹脂、
活性炭処理等を行なうと、純度のよいSAMが単
離できる。
In general, SAM-containing bacterial cells contain SAM in the vacuole within the bacterial body.
By using the above-mentioned freezing and thawing method, the cytoplasmic membrane and vacuolar membrane are ruptured without completely destroying the cell wall, and as a result, various proteins contained within the cytoplasm are concentrated. It can be assumed that as a result of significantly reducing the elution of nucleic acids and nucleic acids, a highly pure SAM aqueous solution can be obtained. The SAM aqueous solution thus obtained was treated with an ion exchange resin,
SAM with good purity can be isolated by treatment with activated carbon.

また本発明においては菌体の凍結に先立つて、
菌体を二価銅イオン水溶液と接触させることによ
り、細胞質中の低分子化合物を選択的に排出す
る。その結果としてSAM純度は大幅に向上する。
銅イオン水溶液による処理は、通常、水または緩
衝液中に菌体を懸濁させたのち、銅イオン水溶液
を加えて放置するかまたは撹拌することによつて
行われる。このときのPHは、通常5〜8、好まし
くは5.5〜7であり、懸濁液中の菌体含量は湿菌
重量基準で通常1〜50重量%、好ましくは5〜30
重量%であり、接触温度及び接触時間は通常0〜
50℃で10分〜3時間、好ましくは20〜40℃で30分
〜2時間である。
In addition, in the present invention, prior to freezing the bacterial cells,
By bringing the bacterial cells into contact with an aqueous divalent copper ion solution, low molecular weight compounds in the cytoplasm are selectively excreted. As a result, SAM purity is significantly improved.
Treatment with an aqueous copper ion solution is usually carried out by suspending the bacterial cells in water or a buffer solution, adding the aqueous copper ion solution, and leaving the solution to stand or stirring. The pH at this time is usually 5 to 8, preferably 5.5 to 7, and the bacterial cell content in the suspension is usually 1 to 50% by weight, preferably 5 to 30% by weight, based on the wet bacterial weight.
% by weight, and the contact temperature and contact time are usually 0 to 0.
The temperature is 50°C for 10 minutes to 3 hours, preferably 20 to 40°C for 30 minutes to 2 hours.

用いられる銅イオンの供給源は水溶性の銅イオ
ン化合物であればいずれでもよく、その具体例と
して、例えば塩化第二銅、臭化第二銅、硫酸第二
銅、酢酸第二銅などが挙げられる。かかる銅イオ
ンの添加量は、通常、懸濁液中の銅イオン濃度で
5μM以上、好ましくは10〜500μMである。
The source of copper ions used may be any water-soluble copper ion compound, and specific examples thereof include cupric chloride, cupric bromide, cupric sulfate, cupric acetate, etc. It will be done. The amount of copper ions added is usually determined by the copper ion concentration in the suspension.
It is 5 μM or more, preferably 10 to 500 μM.

かくして本発明によれば、簡単な操作できわめ
て効率良く、高純度のSAM水溶液を取得するこ
とが出来る。
Thus, according to the present invention, a highly purified SAM aqueous solution can be obtained very efficiently with simple operations.

以下に実施例を挙げて本発明をさらに具体的に
説明する。
The present invention will be explained in more detail with reference to Examples below.

比較例 1 シユレンク(Schlenk.F.)らの培地〔ジヤーナ
ル・オブ・バイオロジカル・ケミストリー(J.
Biol.Chem.)229巻、1037頁(1957)参照〕でサ
ツカロマイセス(Saccharomyces.Cerevisiae)
IFO2044を培養して得られたSAM含有菌体10g
(湿量)を蒸留水で2回洗浄する。その後菌体を
50gの蒸留水に十分に懸濁させた後、−20℃で5
時間放置して凍結させる。次に凍結物を20℃の水
で間接的に加温することにより、完全に融解させ
る。融解した液を遠心分離にかけ菌体残渣を除
き、SAMの含有量及びOD260物質中のSAMの相
対純度を測定したところ、SAM含有量1.72g、
SAM相対純度42.8%の値が得られた。
Comparative Example 1 Medium of Schlenk.F. et al. [Journal of Biological Chemistry (J.
Biol.Chem.) vol. 229, p. 1037 (1957)]
10g of SAM-containing bacterial cells obtained by culturing IFO2044
(Wet amount) is washed twice with distilled water. After that, the bacterial body
After thoroughly suspending in 50g of distilled water, store at -20℃ for 5 minutes.
Leave for some time to freeze. The frozen product is then heated indirectly with water at 20°C to completely thaw it. The molten liquid was centrifuged to remove bacterial cell residue, and the SAM content and relative purity of SAM in the OD 260 substance were measured, and the SAM content was 1.72 g.
A value of 42.8% SAM relative purity was obtained.

なお、SAMの純度は試験液の一部をとり、二
次元ペーパークロマトグラフイーで展開後、
SAMのスポツトを検出し、紫外線検出器で試験
液のSAM濃度を検出し、試験液のOD260の測定
から次式により算出した。
The purity of SAM is determined by taking a portion of the test solution and developing it with two-dimensional paper chromatography.
A spot of SAM was detected, the SAM concentration of the test solution was detected using an ultraviolet detector, and it was calculated from the measurement of OD 260 of the test solution using the following formula.

SAM純度(%)=SAM OD260/OD260×100 比較例 2 比較例1で用いた菌体と同一のSAM含有菌体
10g(湿量)を1.5N過塩素酸50mlに懸濁し、室
温で1時間、振とう抽出を行つた。次いで、遠心
分離により菌体残渣を除去した抽出液に、炭酸水
素カリウムを加えてPH5.0に調整し、生じた過塩
素酸カリウムの沈澱を吸引過により除去し、実
施例1と同様な方法でSAMの含有量及び相対純
度を測定したところ、SAM含有量1.73g、SAM
相対純度15.6%であつた。
SAM purity (%) = SAM OD 260 / OD 260 × 100 Comparative example 2 SAM-containing bacterial cells identical to those used in Comparative example 1
10 g (wet weight) was suspended in 50 ml of 1.5N perchloric acid and extracted with shaking at room temperature for 1 hour. Next, potassium hydrogen carbonate was added to the extract from which bacterial cell residue had been removed by centrifugation to adjust the pH to 5.0, and the resulting precipitate of potassium perchlorate was removed by suction, using the same method as in Example 1. When the content and relative purity of SAM were measured, the SAM content was 1.73g, SAM
The relative purity was 15.6%.

実施例 1 比較例1で用いたものと同じSAM含有菌体10
g(湿量)を蒸留水で2回洗浄したのち、PH6.4
に調整したトリス(ヒドロキシメチル)アミノエ
タン−2−〔N−モルホリノ〕エタンスルホン酸
緩衝液100部(緩衝液濃度10ミリモーラー)に懸
濁させた。
Example 1 10 SAM-containing bacteria used in Comparative Example 1
After washing g (wet amount) twice with distilled water, the pH was 6.4.
The mixture was suspended in 100 parts of tris(hydroxymethyl)aminoethane-2-[N-morpholino]ethanesulfonic acid buffer (buffer concentration: 10 mmolar).

次いで塩化第二銅を0.1ミリモーラーになるよ
うに加えて30℃で1時間ゆるやかに撹拌し、低分
子の夾雑物を菌体外に排出したのち、集菌し、蒸
留水で2回洗浄した。その後、実施例1と同様に
して凍結融解し、得られた懸濁液から遠心分離で
不溶性物質を除き、上澄み液に含まれるSAMの
含有量及び純度を測定したところ、SAM含有量
1.70g、SAM相対純度90.9%であつた。
Next, cupric chloride was added to the solution to a concentration of 0.1 millimolar, and the mixture was gently stirred at 30° C. for 1 hour to expel low-molecular impurities from the cells, and then the cells were collected and washed twice with distilled water. Thereafter, it was frozen and thawed in the same manner as in Example 1, and the resulting suspension was centrifuged to remove insoluble substances, and the content and purity of SAM contained in the supernatant was measured.
1.70 g, SAM relative purity 90.9%.

Claims (1)

【特許請求の範囲】[Claims] 1 S−アデノシル−L−メチオニンを体内に蓄
積した酵母菌体を予め二価銅イオン水溶液と接触
させ、その後、水中で凍結したのち融解すること
を特徴とするS−アデノシル−L−メチオニンの
抽出分離方法。
1. Extraction of S-adenosyl-L-methionine, which is characterized in that yeast cells that have accumulated S-adenosyl-L-methionine in their bodies are brought into contact with an aqueous divalent copper ion solution in advance, and then frozen in water and then thawed. Separation method.
JP21876682A 1982-12-14 1982-12-14 Extractive separation of s-adenosyl-l-methionine Granted JPS59109190A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21876682A JPS59109190A (en) 1982-12-14 1982-12-14 Extractive separation of s-adenosyl-l-methionine
US06/560,119 US4599309A (en) 1982-12-14 1983-12-12 Post cultivation treatment of yeast cells to facilitate product recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21876682A JPS59109190A (en) 1982-12-14 1982-12-14 Extractive separation of s-adenosyl-l-methionine

Publications (2)

Publication Number Publication Date
JPS59109190A JPS59109190A (en) 1984-06-23
JPH0335917B2 true JPH0335917B2 (en) 1991-05-29

Family

ID=16725059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21876682A Granted JPS59109190A (en) 1982-12-14 1982-12-14 Extractive separation of s-adenosyl-l-methionine

Country Status (1)

Country Link
JP (1) JPS59109190A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235726A (en) * 1975-09-16 1977-03-18 Nippon Steel Corp Process for welding electric seam steel pipe
JPS52125194A (en) * 1976-04-09 1977-10-20 Yamasa Shoyu Co Ltd Stabilized s-adenosyl-l-methionine composition
JPS5692899A (en) * 1979-12-04 1981-07-27 Kanegafuchi Chem Ind Co Ltd Composition containing s-adenosyl-l-methionine, and its preparation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413357A (en) * 1987-07-08 1989-01-18 Canon Kk Recording device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235726A (en) * 1975-09-16 1977-03-18 Nippon Steel Corp Process for welding electric seam steel pipe
JPS52125194A (en) * 1976-04-09 1977-10-20 Yamasa Shoyu Co Ltd Stabilized s-adenosyl-l-methionine composition
JPS5692899A (en) * 1979-12-04 1981-07-27 Kanegafuchi Chem Ind Co Ltd Composition containing s-adenosyl-l-methionine, and its preparation

Also Published As

Publication number Publication date
JPS59109190A (en) 1984-06-23

Similar Documents

Publication Publication Date Title
EP0031285B1 (en) Immuno-stimulating preparations based on ribosomal rna of klebsiella pneumoniae and process for the preparation of these rna
EP0013851A1 (en) Purified bacterial proteoglycans, process for their preparation and vaccine containing them
Kluyver et al. The production of homogentisic acid out of phenylacetic acid by Aspergillus niger
JPH0335917B2 (en)
US5149829A (en) Method of preparing dry, concentrated salts of ascorbate 2-polyphosphate
US4599309A (en) Post cultivation treatment of yeast cells to facilitate product recovery
US3875138A (en) Process for recovering glucagon
JPH07113024B2 (en) Method for purifying pyrroloquinoline quinone
KR20000029709A (en) Solvent extraction of 3-hydroxymethylcephalosporins
JP4051504B2 (en) Dibenzofuran derivatives
JPS59109171A (en) Treatment of yeast cell
JPS639838B2 (en)
SU1227701A1 (en) Method of bacterial leaching of sulfide ores and concentrates
US2683680A (en) Method of recovering vitamin b12 activity
FR2495935A1 (en) Muco:polysaccharide fractions derived from heparin - with selective inhibitory action against factor Xa but low anticoagulant activity
JPH0771507B2 (en) Extraction of granulocyte / macrophage / colony stimulating factor from bacteria
JPS6251990A (en) Treatment of microbial cell
JPH0433439B2 (en)
JPH0260318B2 (en)
JP3025067B2 (en) Method for producing glyoxalase I
JPH0153037B2 (en)
CA1043775A (en) Process for recovering glucagon
JP3826202B2 (en) Process for producing cycloprodigiosin and its salts
JPS6255837B2 (en)
JPS62292A (en) Production of l-rhamnose