JPH0433439B2 - - Google Patents

Info

Publication number
JPH0433439B2
JPH0433439B2 JP2966082A JP2966082A JPH0433439B2 JP H0433439 B2 JPH0433439 B2 JP H0433439B2 JP 2966082 A JP2966082 A JP 2966082A JP 2966082 A JP2966082 A JP 2966082A JP H0433439 B2 JPH0433439 B2 JP H0433439B2
Authority
JP
Japan
Prior art keywords
sam
adenosylmethionine
cells
weight
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2966082A
Other languages
Japanese (ja)
Other versions
JPS58146291A (en
Inventor
Shozo Shiozaki
Hideaki Yamada
Yoshiki Tani
Akira Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2966082A priority Critical patent/JPS58146291A/en
Priority to GB08303031A priority patent/GB2116172B/en
Priority to US06/463,990 priority patent/US4562149A/en
Priority to AR292061A priority patent/AR230457A1/en
Priority to ES519652A priority patent/ES519652A0/en
Priority to IT19490/83A priority patent/IT1193668B/en
Priority to DE19833304468 priority patent/DE3304468A1/en
Priority to BR8300654A priority patent/BR8300654A/en
Priority to CH762/83A priority patent/CH658868A5/en
Publication of JPS58146291A publication Critical patent/JPS58146291A/en
Publication of JPH0433439B2 publication Critical patent/JPH0433439B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は醗酵法によるS−アデノシルメチオニ
ンの製造方法に関し、更に詳しくは、メチオニン
含有液体培地中でサツカロマイセス属に属する微
生物を培養することにより高純度のS−アデノシ
ルメチオニンを高収率かつ経済的に製造する方法
に関する。 S−アデノシルメチオニン(以下、SAMと略
称する)は生体内において脂肪、蛋白質、糖類な
どの代謝に関与する重要な生理活性物質である。
而して近時かかるSAMに肝血症、過度脂血症、
動脈硬化症、抑うつ病および精神病型の精神病発
現、変性関節症神経病痛覚、不眠症などに対する
治療効果のあることが見い出されており、その大
量生産が期待されている。 従来、SAMの工業的製造方法としてはサツカ
ロマイセス属酵母をメチオニン含有液体培地で培
養し、該微生物菌体中に蓄積したSAMを抽出、
精製する方法が知られている〔例えばジヤーナ
ル・オブ・バイオロジカル・ケミストリー(J.
Biol.Chem)229,1037頁(1957)〕。しかし、か
かる方法で得られる菌体内のSAM含量は、たか
だか3%位であり、その菌体抽出液中にはSAM
と分離し難いアデニン関連物質やニンヒドリン反
応陽性物質を多く含んでいるため、精製が非常に
困難であつた。特にアデニン、S−アデノシルホ
モシステインやメチルチオアデノシン(以下、
MTAと略称する)との分離が難しく、かかる欠
点が克服すべくいくつかのSAM精製法が知られ
ているが、(例えば特公昭−46−13680号、同46−
21079号、同53−20998号、特開昭56−145299号な
ど)、いずれの方法も高純度、高回収率かつ経済
的にSAMを得るには不充分であつた。 また、キヤンデイダ属、ピキア属、ハンゼヌラ
属、ロドトルラ属などに属する酵母を培養し、菌
体内や培養液中にSAMを生成蓄積せしめる方法
も公知であるが(例えば特公昭52−17118号)、か
かる方法においても菌体内SAMの精製は困難で
あり、また培地中には種々の代謝産物やSAMの
分解物がSAMと共存しているため培地からの
SAMの回収はより困難であつた。 そこで本発明者らは醗酵法によるSAMの工業
的製造法に関し鋭意検討を加えた結果、菌体内の
SAM含量を従来技術では達成しえなかつた一定
値以上にすると、菌体内に存在するSAMと分離
し難い不純物の量が相対的に極めて少なくなり、
かかる微生物菌体を用いることにより精製が極め
て容易になり、高純度のSAMが高回収率かつ経
済的に製造できることを見い出し本発明を完成す
るに到つた。 かくして本発明によれば、SAM生産能を有す
る微生物をメチオニン含有液体培地で培養し乾燥
菌体基準で10重量%以上のSAMとSAM蓄積量に
対して、0.1重量%以下のMTAを菌体内に蓄積せ
しめたのち、菌体を培地から分離し、次いで菌体
からSAMを安定な形で収得することを特徴とす
るSAMの製造方法が提供される。 本発明において用いられる微生物はサツカロマ
イセス属に属し、SAM産生能を有し、かつメチ
オニン含有液体培地中で菌体内に乾燥菌体基準で
SAMを10重量%以上、MTAをSAM蓄積量に対
して0.1重量%以下蓄積しうるものである。その
具体例としてサツカロマイセス・セレビジエ
IFO2342,サツカロマイセス・セレビジエ
IFO2343,サツカロマイセス・セレビジエ
IFO2345,サツカロマイセス・セレビジエ
IFO2346,サツカロマイセス・セレビジエ
IFO2347,協会9号酵母などが例示される。また
これら菌株の天然及び人工変異菌も前記の性質を
具備するものであるかぎり、同様に使用すること
ができる。 本発明においては、かかる微生物を用いて菌体
内SAM含量が10重量%以上、好ましくは12重量
%以上になるまで培養を行うことが必須の要件で
ある。この際、SAM含量が10重量%未満である
と、MTA等のアデニン関連物質やニンヒドリン
反応陽性物質の含有量が相対的に多く、そのため
SAMの精製を効率的に実施することができない。 SAM含量を10重量%以上にするための培養条
件はMTA含量がSAM含量に対して0.1重量%以
下であれば特に制限されるものではないが、メチ
オニン、炭素源、窒素源、無機塩及び有機微量栄
養源を含有する液体培地中で好気的条件下で行う
ことが好ましい。 メチオニンは通常0.2g/dl以上の割合で添加
される。メチオニンの添加方法は一度に全量を添
加する方法、分割して順次添加する方法のいずれ
でもよいが、メチオニンの添加量が多い場合に前
者の方法を採用するとSAMの菌体内蓄積量が低
下する傾向をを示すので、このようなときには後
者の方法を採用するのが適切である。 炭素源としては、グルコース、シユクロース、
フラクトースなどの糖類;エタノール、グリセリ
ンなどのアルコール類;更にはこれらを含有する
澱粉加水分解液、糖蜜、大豆ホエー、果汁廃液、
魚加工廃液、醗酵廃液、パルプ廃液なども使用で
きる。また窒素源としては、尿素、コハク酸アン
モニウム、クエン酸アンモニウム、乳酸アンモニ
ウムなどが好ましい。無機塩としては燐酸カリウ
ム、燐酸ナトリウム、燐酸カルシウム、燐酸リチ
ウムなどの燐酸塩、塩化カリウムなどのカリウム
塩、塩化ナトリウム、炭酸ナトリウムなどのナト
リウム塩、硫酸マグネシウム、塩化マグネシウム
などのマグネシウム塩、硫酸マンガン、塩化マン
ガンなどのマンガン塩、硫酸鉄、塩化鉄などの鉄
塩、亜鉛塩、銅塩、コバルト塩などの通常の無機
塩が必要に応じて適宜使用することができる。有
機微量栄養源としてはビタミン、アミノ酸、これ
らを含有する酵母エキス、肉エキス、麦芽エキ
ス、コーンステイーブリカー、カザミノ酸、大豆
粉、大豆加水分解物、ペプトン、トリプトン、カ
ゼイン分解液などが必要に応じて使用できる。 培養は好気的条件下で行うのが好ましく、通
常、培地のPHを3〜8、好ましくは3.5〜7に制
御しつつ、15℃〜45℃、好ましくは20℃〜35℃の
範囲で2日から10日間、培養することにより微生
物菌体中にSAMが生成蓄積される。 本発明においては、培養後、培地から菌体を分
離し、次いで菌体からのSAMの抽出及び精製が
行われる。これらの工程で用いられる方法はとく
に限定されるものではなく、公知の方法を用いれ
ばよい。すなわち培地から菌体を分離するにあた
つては、例えば遠心分離による方法、過による
方法などが例示され、また菌体からSAMを収得
するにあたつては、過塩素酸、塩酸、硫酸、ギ
酸、酢酸、ギ酸エステル、酢酸エステル、エタノ
ールなどのごとき抽出剤によりSAMを抽出後、
常法に従つて抽出液中のSAMを精製することに
よつて高純度の安定化されたSAMが得られる。 SAMの精製方法は特に限定されるものではな
く、例えば活性炭、強酸性カチオン交換樹脂、弱
酸性カチオン交換樹脂、キレート樹脂などを用い
るクロマトグラフイー法、ライネツケ塩、ピクリ
ン酸、リンタングステン酸、ピクロロン酸などを
用いてSAMを沈澱させて精製する方法、アセト
ン、エタノールなどの有機溶媒を用いてSAMを
析出させる方法などがあり、必要に応じて適宜組
み合わせて行うことができる。この際、SAMを
安定化して収得するために、硫酸、パラトルエン
スルホン酸、スルホサリチル酸などのごとき酸を
加えてSAMの塩または複塩の形で回収するのが
一般的である。 以下に実施例を挙げて本発明をさらに具体的に
説明する。 実施例 1 グルコース5g/dl、ポリペプトン0.5g/dl、
KH2PO40.4g/dl、K2HPO40.4g/dl、
MgSO4・7H2O0.02g/dl、酵母エキス0.2g/
dl、寒天2g/dlからなる寒天斜面培地(PH6.0)
に2日間生育させたサツカロマイセス・セレビジ
エIFO2346の1白金耳を、シユクロース10g/
dl、酵母エキス1g/dl、KH2PO40.4g/dl、
MgSO4・7H2O0.01g/dl、L−メチオニン1.0
g/dl、ZnSO4・7H2O0.25mg/dl、MnSO44〜
6H2O1.25mg/dlからなりPH6.0に調整、加熱滅菌
した培地10mlに植菌し、28℃で4日間振盪した。 遠心分離にて集菌し、生理食塩水で洗浄した
後、菌体を1.5N過塩素酵に懸濁し、室温で1時
間、振盪しSAMを抽出した。抽出液をペーパー
クロマトグラフイー、高速液体クロマトグラフイ
ーで分析し、SAM、アデニン(以下、Adと略)、
S−アデノシルホモシステイン(以下、SAHと
略)、メチルチオアデノシンの分析を行い、結果
を第1表に示した。
The present invention relates to a method for producing S-adenosylmethionine by a fermentation method, and more specifically, a method for producing S-adenosylmethionine of high purity in high yield and economically by culturing microorganisms belonging to the genus Satucharomyces in a liquid medium containing methionine. It relates to a method of manufacturing. S-adenosylmethionine (hereinafter abbreviated as SAM) is an important physiologically active substance involved in the metabolism of fats, proteins, sugars, etc. in vivo.
Recently, SAM has been associated with hepatemia, hyperlipidemia,
It has been found to have therapeutic effects on arteriosclerosis, depression and psychosis, degenerative arthropathy, neurological pain sensation, insomnia, etc., and mass production is expected. Conventionally, as an industrial method for producing SAM, yeast of the genus Satucharomyces is cultured in a methionine-containing liquid medium, and the SAM accumulated in the microbial cells is extracted.
Purification methods are known [for example, in the Journal of Biological Chemistry (J.
Biol.Chem) 229, p. 1037 (1957)]. However, the SAM content in the bacterial cells obtained by this method is about 3% at most, and the SAM content in the bacterial cell extract is
It was extremely difficult to purify because it contains many adenine-related substances and ninhydrin-reactive substances that are difficult to separate. Especially adenine, S-adenosylhomocysteine and methylthioadenosine (hereinafter referred to as
It is difficult to separate SAM (abbreviated as MTA), and several SAM purification methods are known to overcome this drawback.
No. 21079, No. 53-20998, JP-A-56-145299, etc.), all of these methods were insufficient to economically obtain SAM with high purity and high recovery rate. In addition, there are also known methods of culturing yeast belonging to the genus Candeida, Pichia, Hansenula, Rhodotorula, etc., and producing and accumulating SAM in the bacterial cells or in the culture solution (for example, Japanese Patent Publication No. 52-17118). It is difficult to purify intracellular SAM using this method, and since various metabolites and SAM decomposition products coexist with SAM in the culture medium, it is difficult to purify SAM from the culture medium.
Recovery of SAM was more difficult. Therefore, the present inventors conducted intensive studies on the industrial production method of SAM using the fermentation method, and found that
When the SAM content exceeds a certain value that could not be achieved with conventional technology, the amount of impurities that are difficult to separate from SAM existing within the bacterial cells becomes relatively extremely small.
The present inventors have found that purification is extremely easy by using such microbial cells, and that highly purified SAM can be produced economically with high recovery rate, and have completed the present invention. Thus, according to the present invention, a microorganism capable of producing SAM is cultured in a methionine-containing liquid medium, and 10% by weight or more of SAM on a dry bacterial cell basis and 0.1% by weight or less of MTA are added to the bacterial cells relative to the accumulated amount of SAM. Provided is a method for producing SAM, which is characterized in that after accumulation, the bacterial cells are separated from the culture medium, and then SAM is obtained from the bacterial cells in a stable form. The microorganism used in the present invention belongs to the genus Satucharomyces, has the ability to produce SAM, and has a dry cell basis in the cell body in a methionine-containing liquid medium.
It is capable of accumulating 10% by weight or more of SAM and 0.1% by weight or less of MTA based on the accumulated amount of SAM. A specific example is Satucharomyces cerevisiae.
IFO2342, Satucharomyces cerevisiae
IFO2343, Satucharomyces cerevisiae
IFO2345, Satucharomyces cerevisiae
IFO2346, Satucharomyces cerevisiae
Examples include IFO2347 and Kyokai No. 9 yeast. Natural and artificial mutants of these strains can also be used in the same manner as long as they have the above-mentioned properties. In the present invention, it is essential to culture the microorganism until the intracellular SAM content reaches 10% by weight or more, preferably 12% by weight or more. At this time, if the SAM content is less than 10% by weight, the content of adenine-related substances such as MTA and ninhydrin reaction-positive substances is relatively high, and therefore
Purification of SAM cannot be carried out efficiently. The culture conditions for increasing the SAM content to 10% by weight or more are not particularly limited as long as the MTA content is 0.1% by weight or less based on the SAM content, but include methionine, carbon source, nitrogen source, inorganic salts, and organic Preferably, it is carried out under aerobic conditions in a liquid medium containing micronutrient sources. Methionine is usually added at a rate of 0.2 g/dl or more. Methionine can be added in either the entire amount at once or divided into parts and added sequentially, but if the former method is used when a large amount of methionine is added, the amount of SAM accumulated in the cells tends to decrease. In such cases, it is appropriate to adopt the latter method. Carbon sources include glucose, sucrose,
Sugars such as fructose; Alcohols such as ethanol and glycerin; Furthermore, starch hydrolyzate containing these, molasses, soybean whey, fruit juice waste liquid,
Fish processing waste liquid, fermentation waste liquid, pulp waste liquid, etc. can also be used. Preferable nitrogen sources include urea, ammonium succinate, ammonium citrate, and ammonium lactate. Inorganic salts include phosphates such as potassium phosphate, sodium phosphate, calcium phosphate, and lithium phosphate; potassium salts such as potassium chloride; sodium salts such as sodium chloride and sodium carbonate; magnesium salts such as magnesium sulfate and magnesium chloride; manganese sulfate; Common inorganic salts such as manganese salts such as manganese chloride, iron salts such as iron sulfate and iron chloride, zinc salts, copper salts, and cobalt salts can be used as appropriate. Organic micronutrient sources include vitamins, amino acids, yeast extract containing these, meat extract, malt extract, corn staple liquor, casamino acids, soybean flour, soybean hydrolyzate, peptone, tryptone, casein decomposition solution, etc. as required. It can be used as Cultivation is preferably carried out under aerobic conditions, usually at a temperature of 15°C to 45°C, preferably 20°C to 35°C, while controlling the pH of the medium to 3 to 8, preferably 3.5 to 7. By culturing for 10 days, SAM is produced and accumulated in the microbial cells. In the present invention, after culturing, the bacterial cells are separated from the medium, and then SAM is extracted and purified from the bacterial cells. The methods used in these steps are not particularly limited, and any known method may be used. In other words, when separating bacterial cells from a culture medium, methods such as centrifugal separation and filtration are exemplified, and when obtaining SAM from bacterial cells, perchloric acid, hydrochloric acid, sulfuric acid, After extracting SAM with extractants such as formic acid, acetic acid, formate ester, acetate ester, ethanol, etc.
Highly purified stabilized SAM can be obtained by purifying the SAM in the extract according to a conventional method. The purification method for SAM is not particularly limited, and examples include chromatography using activated carbon, strongly acidic cation exchange resin, weakly acidic cation exchange resin, chelate resin, Reinetske's salt, picric acid, phosphotungstic acid, picloronic acid, etc. There are methods of purifying SAM by precipitating it using, for example, acetone, ethanol, etc., and methods of precipitating SAM using an organic solvent such as acetone or ethanol. These methods can be used in combination as appropriate. At this time, in order to stabilize and recover SAM, it is common to add acids such as sulfuric acid, para-toluenesulfonic acid, and sulfosalicylic acid to recover SAM in the form of a salt or double salt. The present invention will be explained in more detail with reference to Examples below. Example 1 Glucose 5g/dl, polypeptone 0.5g/dl,
KH 2 PO 4 0.4g/dl, K 2 HPO 4 0.4g/dl,
MgSO 4・7H 2 O0.02g/dl, yeast extract 0.2g/
dl, agar slant medium consisting of agar 2g/dl (PH6.0)
One platinum loop of Saccharomyces cerevisiae IFO2346 grown for 2 days was mixed with 10g of Sucrose/
dl, yeast extract 1g/dl, KH 2 PO 4 0.4g/dl,
MgSO47H2O0.01g /dl, L-methionine 1.0
g/dl, ZnSO 4・7H 2 O0.25mg/dl, MnSO 4 4~
The cells were inoculated into 10 ml of a heat-sterilized medium containing 1.25 mg/dl of 6H 2 O, adjusted to pH 6.0, and shaken at 28° C. for 4 days. After collecting bacteria by centrifugation and washing with physiological saline, the cells were suspended in 1.5N perchlorine fermentation and shaken at room temperature for 1 hour to extract SAM. The extract was analyzed using paper chromatography and high performance liquid chromatography, and SAM, adenine (hereinafter abbreviated as Ad),
S-adenosylhomocysteine (hereinafter abbreviated as SAH) and methylthioadenosine were analyzed, and the results are shown in Table 1.

【表】 この結果から、明らかなように乾燥菌体当りの
SAM含量が10重量%以上の場合にはMTA含量
がSAM蓄積量に対して0.1重量%以下であるな
ど、SAMと分離し難い不純物が少ないことがわ
かる。 実施例 2 実施例1と同じ培地で、培養時間、培地PH、培
養温度を変えてサツカロマイセス・セレビシエ
IFO2346を培養し、乾燥菌体当りのSAM含量が
異なる菌体を調整した。この菌体を実施例1と同
じ方法で抽出・分析を行い、結果を第2表に示し
た。
[Table] From this result, it is clear that the amount of
When the SAM content is 10% by weight or more, the MTA content is 0.1% by weight or less based on the accumulated amount of SAM, indicating that there are few impurities that are difficult to separate from SAM. Example 2 Using the same medium as in Example 1, culturing time, medium PH, and culturing temperature were changed to cultivate S. cerevisiae.
IFO2346 was cultured, and cells with different SAM contents per dry cell were prepared. The bacterial cells were extracted and analyzed using the same method as in Example 1, and the results are shown in Table 2.

【表】 実施例 3 グルコース5g/dl、ポリペプトン0.5g/dl、
KH2PO40.4g/dl、K2HPO40.4g/dl、
MgSO4・7H2O0.02g/dl、酵母エキス0.2g/dl
からなり、PH6.0に調整、加熱滅菌した培地10ml
に第3表に示す各種菌株を1白金耳接種し、28℃
にて24時間振盪培養した。 一方、シユークロース10g/dl、酵母エキス1
g/dl、KH2PO40.4g/dl、MgSO4・7H2O0.01
g/dl、尿素(別滅菌)1.5g/dl、L−メチオ
ニン0.75g/dl、CaCl2・2H2O0.02g/dl、
ZnSO4・7H2O0.25mg/dl、FeSO4・7H2O0.25
mg/dl、MnSO44〜6H2O1.25mg/dl、CuSO4
5H2O2μg/dl、H3BO32μg/dl、CoCl2・6H2
O0.2μg/dl、KI1μg/dlからなりPH6.0に調整
した培地1を2容発酵槽に入れ、殺菌後、上
記種培養液5mlを接種し、28℃で72時間、通気攪
拌培養を行つた。 培養後、遠心分離にて集菌し、生理食塩水で1
回洗浄した菌体を100mlの1.5N過塩素酸に懸濁
し、室温で1時間振盪しSAMを抽出した。次い
で遠心分離にて菌体残渣を除去した後、炭酸水素
カリウムを加えてPH4.5に調整し、生じた過塩素
酸カリウムの沈澱を遠心分離にて除去し、SAM
を含む抽出液を得た。抽出液中のSAMを定量し
その結果を乾燥菌体当りのSAM量として第3表
に示した。 この抽出液をSAM量として0.2gになるように
弱酸性陽イオン交換樹脂アンバーライトIRC−50
(H+型)50mlを詰めたカラムに通しSAMを吸着
させた。カラムに0.005N酢酸を通じて溶出液の
260nmに於ける吸光度が0.1以下になるまで洗浄
し、不純物を除去した。この時に要した0.2N酢
酸量を第3表に示した。次いでカラムに0.1N酢
酸を通じて溶出液の260nmに於ける吸光度が0.05
以下になるまでSAMを溶出した。この溶出液を
アンバーライトIRA900樹脂(OH-型)で処理
し、PH3.0とした後、凍結乾燥してSAM硫酸塩を
得た。この時のSAMの回収率を第3表に示した。
セルロース薄層クロマトグラフイー、ペーパーク
ロマトグラフイー、高速液体クロマトグラフイー
でSAMの純度を測定し、第3表に示した。
[Table] Example 3 Glucose 5g/dl, polypeptone 0.5g/dl,
KH 2 PO 4 0.4g/dl, K 2 HPO 4 0.4g/dl,
MgSO 4・7H 2 O0.02g/dl, yeast extract 0.2g/dl
10ml of medium, adjusted to pH 6.0 and heat sterilized.
One platinum loopful of the various bacterial strains shown in Table 3 was inoculated into the water at 28°C.
The cells were cultured with shaking for 24 hours. On the other hand, seuucrose 10g/dl, yeast extract 1
g/dl, KH 2 PO 4 0.4g/dl, MgSO 4・7H 2 O0.01
g/dl, urea (sterilized separately) 1.5g/dl, L-methionine 0.75g/dl, CaCl 2 2H 2 O 0.02g/dl,
ZnSO 4・7H 2 O0.25mg/dl, FeSO 4・7H 2 O0.25
mg/dl, MnSO 4 4-6H 2 O1.25mg/dl, CuSO 4
5H 2 O2μg/dl, H 3 BO 3 2μg/dl, CoCl 2・6H 2
Medium 1 containing 0.2 μg/dl of O and 1 μg/dl of KI and adjusted to pH 6.0 was placed in a 2-volume fermenter, and after sterilization, 5 ml of the above seed culture solution was inoculated and cultured with aeration at 28°C for 72 hours. Ivy. After culturing, the bacteria were collected by centrifugation and diluted with physiological saline.
The washed bacterial cells were suspended in 100 ml of 1.5N perchloric acid and shaken at room temperature for 1 hour to extract SAM. Next, after removing bacterial cell residue by centrifugation, potassium hydrogen carbonate was added to adjust the pH to 4.5, the resulting potassium perchlorate precipitate was removed by centrifugation, and SAM
An extract containing the following was obtained. SAM in the extract was quantified and the results are shown in Table 3 as the amount of SAM per dry bacterial cell. Weakly acidic cation exchange resin Amberlite IRC-50 was added to the extract so that the SAM amount was 0.2g
(H + form) was passed through a column packed with 50 ml to adsorb SAM. Pass the eluate through 0.005N acetic acid into the column.
Impurities were removed by washing until the absorbance at 260 nm became 0.1 or less. The amount of 0.2N acetic acid required at this time is shown in Table 3. Next, pass 0.1N acetic acid through the column until the absorbance at 260 nm of the eluate is 0.05.
SAM was eluted until below. This eluate was treated with Amberlite IRA900 resin (OH - type) to adjust the pH to 3.0, and then lyophilized to obtain SAM sulfate. The recovery rate of SAM at this time is shown in Table 3.
The purity of SAM was measured by cellulose thin layer chromatography, paper chromatography, and high performance liquid chromatography and is shown in Table 3.

【表】 第3表から明らかなように、本発明例において
は不純物の除去に要する溶出液の量が少なくてす
み、SAM回収率、SAMの純度とも極めて良好で
あることが明らかである。
[Table] As is clear from Table 3, in the examples of the present invention, the amount of eluate required to remove impurities is small, and it is clear that both the SAM recovery rate and the purity of SAM are extremely good.

Claims (1)

【特許請求の範囲】[Claims] 1 S−アデノシルメチオニン産生能を有するサ
ツカロマイセス・セレビジエに属する微生物であ
つて、乾燥菌体基準で10重量%以上のS−アデノ
シルメチオニンとS−アデノシルメチオニン蓄積
量に対して0.1重量%以下のメチルチオアデノシ
ンを菌体内に蓄積し得る微生物をメチオニン含有
液体培地で培養し乾燥菌体基準で10重量%以上の
S−アデノシルメチオニンとS−アデノシルメチ
オニン蓄積量に対して0.1重量%以下のメチルチ
オアデノシンを菌体内に蓄積せしめたのち、菌体
を培地から分離し、次いで菌体からS−アデノシ
ルメチオニンを安定な形で収得することを特徴と
するS−アデノシルメチオニンの製造方法。
1 A microorganism belonging to Satucharomyces cerevisiae that has the ability to produce S-adenosylmethionine, with an amount of S-adenosylmethionine of 10% by weight or more and 0.1% by weight or less based on the accumulated amount of S-adenosylmethionine on a dry cell basis. A microorganism capable of accumulating methylthioadenosine in its bacterial cells was cultured in a methionine-containing liquid medium, and 10% by weight or more of S-adenosylmethionine and 0.1% by weight or less of S-adenosylmethionine accumulated on a dry bacterial cell basis were cultured. A method for producing S-adenosylmethionine, which comprises accumulating methylthioadenosine in the cells, separating the cells from the culture medium, and then obtaining S-adenosylmethionine from the cells in a stable form.
JP2966082A 1982-02-25 1982-02-25 Preparation of s-adenosylmethionine Granted JPS58146291A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2966082A JPS58146291A (en) 1982-02-25 1982-02-25 Preparation of s-adenosylmethionine
GB08303031A GB2116172B (en) 1982-02-25 1983-02-03 Microbial cells containing s-adenosyl methionine in high concentrations and process for production of s adenosyl methionine
US06/463,990 US4562149A (en) 1982-02-25 1983-02-04 Yeast culture containing S-adenosyl methionine in high concentrations, and process for production of S-adenosyl methionine
AR292061A AR230457A1 (en) 1982-02-25 1983-02-08 PROCEDURE FOR PRODUCING S-ADENOSYLMETIONIN
ES519652A ES519652A0 (en) 1982-02-25 1983-02-09 A PROCEDURE FOR OBTAINING S-ADENOSIL-METIONINE.
IT19490/83A IT1193668B (en) 1982-02-25 1983-02-09 MICROBIAL CELLS CONTAINING S-ADENOSYL METHIONINE IN HIGH CONCENTRATION AND PROCEDURE FOR THE PRODUCTION OF S-ADENOSYL METHIONINE
DE19833304468 DE3304468A1 (en) 1982-02-25 1983-02-09 MICRO-ORGANISM CELLS CONTAINING S-ADENOSYL METHIONINE PROCESS FOR THE PRODUCTION THEREOF
BR8300654A BR8300654A (en) 1982-02-25 1983-02-09 MICROBIAL CELLS CONTAINING S-ADENOSYL-METHIONIN IN HIGH CONCENTRATIONS AND PROCESS FOR THE PRODUCTION OF S-ADENOSYL-METHIONIN
CH762/83A CH658868A5 (en) 1982-02-25 1983-02-10 METHOD FOR PRODUCING S-ADENOSYL METHIONINE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2966082A JPS58146291A (en) 1982-02-25 1982-02-25 Preparation of s-adenosylmethionine

Publications (2)

Publication Number Publication Date
JPS58146291A JPS58146291A (en) 1983-08-31
JPH0433439B2 true JPH0433439B2 (en) 1992-06-03

Family

ID=12282266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2966082A Granted JPS58146291A (en) 1982-02-25 1982-02-25 Preparation of s-adenosylmethionine

Country Status (1)

Country Link
JP (1) JPS58146291A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180012755A (en) * 2015-05-29 2018-02-06 코진 라이프 사이언시즈 가부시키가이샤 Yeast extract with vasodilatory action
JP6159860B1 (en) * 2016-08-31 2017-07-05 株式会社ホルス Cream, gel or liquid external preparation, cosmetic or health food production method containing SAMe-containing liquid raw material

Also Published As

Publication number Publication date
JPS58146291A (en) 1983-08-31

Similar Documents

Publication Publication Date Title
US4562149A (en) Yeast culture containing S-adenosyl methionine in high concentrations, and process for production of S-adenosyl methionine
US3962034A (en) Method for producing s-adenosylmethionine or methylthioadenosine by yeast
JP3630344B2 (en) Process for producing inositol stereoisomers
JPH0433439B2 (en)
JPS6366200B2 (en)
JPS5881797A (en) Production of glutathione
JPH0417627B2 (en)
US3669845A (en) Method for the preparation of pentitol from pentose by using bacteria
JP2004519251A (en) Method for recovering pinitol or chiroinositol from soybean processing by-products in high yield
DE3247703A1 (en) METHOD FOR PRODUCING L-THREONINE
JP3030916B2 (en) Method for producing β-glucooligosaccharide
JP4081794B2 (en) Novel Labyrinthula microorganism and method for producing 4,7,10,13,16-docosapentaenoic acid using the same
JP3869788B2 (en) Process for producing organic compounds using coryneform bacteria
JPH0889262A (en) Production of inositol and preparation of antibiotic resistant strain
JP2797295B2 (en) Novel microorganism and method for producing menaquinone-4 using the novel microorganism
JPH0838188A (en) Production of inositol and method for taking glucose metabolism antagonistic substance-resistant strain
JPH0153037B2 (en)
JP4262528B2 (en) (-)-Method for producing Vivo-Quercitol
JP2922213B2 (en) Method for producing 5'-inosinic acid by fermentation method
JPS6314958B2 (en)
JPH1042860A (en) Production of inositol and acquirement of hexachlorocyclohexane-resistant strain
JPS61216696A (en) Production of menaquinone-4
JPH07224053A (en) 2-carboxymethyl-5-(3-hydroxybutyl)furan, its production and antilipemic agent containing the same compound as active component
JPH0657155B2 (en) Method for producing L-valine
JPS6251598B2 (en)