JPH0417627B2 - - Google Patents

Info

Publication number
JPH0417627B2
JPH0417627B2 JP57028893A JP2889382A JPH0417627B2 JP H0417627 B2 JPH0417627 B2 JP H0417627B2 JP 57028893 A JP57028893 A JP 57028893A JP 2889382 A JP2889382 A JP 2889382A JP H0417627 B2 JPH0417627 B2 JP H0417627B2
Authority
JP
Japan
Prior art keywords
sam
cells
extract
cerevisiae
bacterial cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57028893A
Other languages
Japanese (ja)
Other versions
JPS58146274A (en
Inventor
Shozo Shiozaki
Hideaki Yamada
Yoshiki Tani
Akira Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2889382A priority Critical patent/JPS58146274A/en
Priority to GB08303031A priority patent/GB2116172B/en
Priority to US06/463,990 priority patent/US4562149A/en
Priority to AR292061A priority patent/AR230457A1/en
Priority to IT19490/83A priority patent/IT1193668B/en
Priority to DE19833304468 priority patent/DE3304468A1/en
Priority to BR8300654A priority patent/BR8300654A/en
Priority to ES519652A priority patent/ES519652A0/en
Priority to CH762/83A priority patent/CH658868A5/en
Publication of JPS58146274A publication Critical patent/JPS58146274A/en
Publication of JPH0417627B2 publication Critical patent/JPH0417627B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はS−アデノシルメチオニオンを高濃度
で含有する微生物菌体に関し、さらに詳しくは、
アデニン関連物質やニンヒドリン反応陽性物質の
含有量が少なく、簡単な操作で効率よく高純度の
S−アデノシルメチオニンを取得可能なサツカロ
マイセス・セレビシエ属に属する微生物菌体に関
する。 S−アデノシルメチオニン(以下、SAMと略
称する)は、従来から肝血症、過度脂血症、動脈
硬化症などに対する治療効果のある物質として知
られており、近時その大量生産が期待されてい
る。而して、かかるSAMの製造に際しては、も
つぱら微生物による発酵法が用いられているが
(例えばジヤーナル・オブ・バイオロジカル・ケ
ミストリー229、1037頁、1957年発行、特公昭52
−17118号など)、これらの方法では微生物菌体中
に蓄積されるSAM含有が少なく、しかもSAMと
の分離が困難なアデニン関連物質やニンヒドリン
反応陽性物質を多量含んでいるため、高純度の
SAMを簡単な操作で単離することが困難であつ
た。またSAMはきわめて不安定な物質であるた
め、菌体内にSAMを含有したまま遠隔地に移送
することもしばしば行われるが、このような場合
にSAMの含有量が小さいことは経済性の点で大
きな問題となつていた。 そこで本発明者らは従来技術のかかる点を改良
すべく鋭意検討を進めた結果、サツカロマイセ
ス・セレビシエ属に属する微生物菌体中のSAM
含量を乾燥菌体基準で10重量%以上にすると、菌
体中に存在するSAMと分離困難なメチルチオア
デノシン、アデニン、及びS−アデノシルホモシ
ステインがSAM蓄積量に対してそれぞれ0.1%以
下、1×10-2%以下、及び0.5%以下に低下し、
その結果として高純度のSAMの高収率かつ経済
的に回収可能になることを見い出し本発明を完成
するに到つた。 かくして本発明によれば、菌体内に乾燥菌体基
準で10重量%以上、好ましくは12重量%以上
SAMを含有する微生物菌体が提供される。 本発明において用いられる微生物はSAM生産
能を有し、かつメチオニン含有液体培地中で菌体
内に乾燥菌体基準でSAMを10重量%以上蓄積し
うるサツカロマイセス・セレビシエ属に属する酵
母である。 その具体例な的として、例えばサツカロマイセ
ス・セレビヂエ IFO 2342、サツカロマイセ
ス・セレビジエ IFO 2343、サツカロマイセ
ス・セレビジエ IFO 2345、サツカロマイセ
ス・セレジビエ IFO 2346、サツカロマイセ
ス・セレビジエ IFO 2347、協会9号酵母など
が例示され、またこれらの菌株の天然及び人工変
異菌であつても前記の性質を具備するものであれ
ば同様に使用することができる。 本発明の微生物菌体は、かかる微生物の菌体中
にSAMを乾燥菌体基準で10重量%以上、好まし
くは12重量%以上含有するものである。 かかる微生物菌体の製造法は格別制限されるも
のではないが、通常メチオニン、炭素源、窒素
源、無機塩及び有機微量栄養源を含有する液体培
地中で好気的条件下で培養することによつて行わ
れる。 メチオニンは通常0.2g/dl以上の割合で添加
される。メチオニンの添加方法は一度に全量を添
加する方法、分割して順次添加する方法のいずれ
でもよいが、メチオニンの添加量が多い場合に前
者の方法を採用するとSAMの菌体内蓄積量が低
下する傾向を示すので、このようなときには後者
の方法を採用するのが適切である。 炭素源としては、グルコース.シユクロース.
フラクトースなどの糖類;エタノール.グリセリ
ンなどのアルコール類;更にはこれを含有する澱
粉加水分解液.糖蜜.大豆ホエー.果汁廃液.魚
加工廃液.発酵廃液.パルプ廃液なども使用でき
る。また窒素源としては、尿素.コハク酸アンモ
ニウム.クエン酸アンモニウム.乳酸アンモニウ
ムなどが好ましい。 無機塩としては燐酸カリウム.燐酸ナトリウ
ム.燐酸カルシウム.燐酸リチウムなどの燐酸
塩.塩化カリウムなどのカリウム塩.塩化ナトリ
ウム.炭酸ナトリウムなどのナトリウム塩.硫酸
マグネシウム.塩化マグネシウムなどのマグネシ
ウム塩.硫酸マンガン.塩化マンガンなどのマン
ガン塩.硫酸鉄、塩化鉄などの鉄塩、亜鉛塩、銅
塩、コバルト塩などの通常の無機塩が必要に応じ
て適宜使用することができる。有機微量栄養源と
してはビタミン.アミノ酸.これらを含有する酵
母エキス.肉エキス.麦芽エキス.コーンステイ
ープリカー.カザミノ酸.大豆粉.大豆加水分
解.ペプトン.トリプトン.カゼイン分解液など
が必要に応じて使用できる。 培養は好気的条件下で行うのが好ましく、通常
培地のPHを3〜8、好ましくは3.5〜7に制御し
つつ、15℃〜45℃、好ましくは20℃〜35℃の範囲
で2日から10日間、培養することにより微生物菌
体中にSAMが生成蓄積される。 かくして得られる微生物菌体からSAMを取得
する方法は格別制限されるものではなく、常法に
従つて行われる。すなわち、菌体を培地から分離
したのち、菌体中のSAMを抽出し、次いで抽出
液中のSAMを単離することによつて目的物が得
られるが、この際、硫酸塩、パラトルエンスルホ
ン酸塩、スルホサリチル酸塩などのごとき塩また
は複塩の形で安定化して回収するのが一般的であ
る。 かかる本発明によれば、菌体内に高濃度で
SAMを含有するため不安定なSAMの移送に便宜
であり、またSAMとの分離が面倒な不純物の含
有率が小さいためSAMの精製が容易であり、そ
の結果として高純度のSAMを効率よく回収する
ことを可能にする。 以下に実施例を挙げて本発明をさらに具体的に
説明する。 実施例 1 グルコース5g/dl、ポリペプトン0.5g/dl、
KH2PO40.4g/dl、K2HPO40.4g/dl、
MgSO4・7H2O0.02g/dl、酵母エキス0.2g/
dl、寒天2g/dlからなる寒天斜面培地(PH6.0)
に2日間生育させたサツカロマイセス・セレビジ
エIFO2346の1白金耳を、シユクロース10g/
dl、酵母エキス1g/dl、KH2PO40.4g/dl、
MgSO4・7H2O0.01g/dl、L−メチオニン1.0
g/dl、ZnSO4・7H2O0.25mg/dl、MnSO44〜
6H2O1.25mg/dl、からなりPH6.0に調整、加熱滅
菌した培地10mlに植菌し、28℃で4日間振盪し
た。 遠心分離にて集菌し、生理食塩水で洗浄した
後、菌体を1.5N過塩素酸に懸濁し、室温で1時
間、振盪しSAMを抽出した。抽出液をペーパー
クロマトグラフイー、高速液体クロマトグラフイ
ーで分析し、SAM、アデニン(以下、Adと略)、
S−アデノシルホモシステイン(以下SAHと
略)、メチルチオアデノシン(以下、MTAと略)
の分析を行ない、結果を第1表に示した。
The present invention relates to microbial cells containing S-adenosylmethionion in high concentration, and more specifically,
The present invention relates to a microorganism belonging to the genus Satucharomyces cerevisiae that has a low content of adenine-related substances and ninhydrin-reactive substances and can efficiently obtain highly pure S-adenosylmethionine through simple operations. S-adenosylmethionine (hereinafter abbreviated as SAM) has long been known as a substance that has therapeutic effects on hepatemia, hyperlipidemia, arteriosclerosis, etc., and its mass production is expected in recent years. ing. Therefore, when producing such SAM, a fermentation method using microorganisms is mainly used (for example, Journal of Biological Chemistry 229, p. 1037, published in 1957, Special Publication No. 52).
-17118, etc.), these methods have little SAM content accumulated in the microbial cells, and also contain large amounts of adenine-related substances and ninhydrin reaction-positive substances that are difficult to separate from SAM.
It was difficult to isolate SAM by simple operations. In addition, since SAM is an extremely unstable substance, it is often transported to distant locations while containing SAM inside the bacterial body, but in such cases, the small content of SAM is economically viable. It had become a big problem. Therefore, the present inventors carried out intensive studies to improve this point in the conventional technology, and as a result, we found that SAM in microorganisms belonging to the genus Satucharomyces cerevisiae
When the content is 10% by weight or more based on dry bacterial cells, methylthioadenosine, adenine, and S-adenosylhomocysteine, which are difficult to separate from SAM present in the bacterial cells, will be less than 0.1% and 1%, respectively, based on the amount of accumulated SAM. ×10 -2 % or less and 0.5% or less,
As a result, the present inventors discovered that high-purity SAM can be recovered economically and in a high yield, and have completed the present invention. Thus, according to the present invention, 10% by weight or more, preferably 12% by weight or more on a dry bacterial body basis,
A microbial cell containing SAM is provided. The microorganism used in the present invention is a yeast belonging to the genus Satucharomyces cerevisiae that has the ability to produce SAM and is capable of accumulating 10% by weight or more of SAM in the bacterial cells on a dry bacterial cell basis in a methionine-containing liquid medium. Specific examples of such targets include S. cerevisiae IFO 2342, S. cerevisiae IFO 2343, S. cerevisiae IFO 2345, S. cerevisiae IFO 2346, S. cerevisiae IFO 2347, and Yeast No. 9 of the Association. Natural and artificial mutant strains of bacteria can be similarly used as long as they have the above-mentioned properties. The microorganism cells of the present invention contain SAM in an amount of 10% by weight or more, preferably 12% by weight or more, based on dry cells. The method for producing such microbial cells is not particularly limited, but usually involves culturing them under aerobic conditions in a liquid medium containing methionine, a carbon source, a nitrogen source, an inorganic salt, and an organic trace nutrient source. It is done by folding. Methionine is usually added at a rate of 0.2 g/dl or more. Methionine can be added in either the entire amount at once or divided into parts and added sequentially, but if the former method is used when a large amount of methionine is added, the amount of SAM accumulated in the cells tends to decrease. Therefore, in such a case, it is appropriate to adopt the latter method. Glucose is used as a carbon source. Sucrose.
Sugars such as fructose; ethanol. Alcohols such as glycerin; and starch hydrolyzate containing alcohols. Molasses. Soybean whey. Fruit juice waste. Fish processing waste liquid. Fermentation waste liquid. Pulp waste liquid can also be used. Urea is also used as a nitrogen source. Ammonium succinate. Ammonium citrate. Ammonium lactate and the like are preferred. Potassium phosphate is an inorganic salt. Sodium phosphate. Calcium phosphate. Phosphates such as lithium phosphate. Potassium salts such as potassium chloride. Sodium chloride. Sodium salts such as sodium carbonate. Magnesium sulfate. Magnesium salts such as magnesium chloride. Manganese sulfate. Manganese salts such as manganese chloride. Common inorganic salts such as iron salts such as iron sulfate and iron chloride, zinc salts, copper salts, and cobalt salts can be used as appropriate. Vitamins are an organic trace nutrient source. amino acid. Yeast extract containing these. Meat extract. Malt extract. Cornstarch liquor. Casamino acids. Soy flour. Soybean hydrolysis. peptone. Tryptone. Casein decomposition solution etc. can be used as needed. Cultivation is preferably carried out under aerobic conditions, usually at a temperature of 15°C to 45°C, preferably 20°C to 35°C, for 2 days while controlling the pH of the medium to 3 to 8, preferably 3.5 to 7. By culturing for 10 days, SAM is produced and accumulated in the microbial cells. The method for obtaining SAM from the microbial cells thus obtained is not particularly limited, and may be carried out according to conventional methods. That is, the target product is obtained by separating the bacterial cells from the culture medium, extracting the SAM in the bacterial cells, and then isolating the SAM in the extract. Generally, it is stabilized and recovered in the form of a salt or double salt, such as an acid salt or a sulfosalicylate. According to the present invention, a high concentration of
It is convenient for transporting unstable SAM because it contains SAM, and it is easy to purify SAM because the content of impurities that are difficult to separate from SAM is small, and as a result, highly pure SAM can be efficiently recovered. make it possible to The present invention will be explained in more detail with reference to Examples below. Example 1 Glucose 5g/dl, polypeptone 0.5g/dl,
KH 2 PO 4 0.4g/dl, K 2 HPO 4 0.4g/dl,
MgSO 4・7H 2 O0.02g/dl, yeast extract 0.2g/
dl, agar slant medium consisting of agar 2g/dl (PH6.0)
One platinum loop of Saccharomyces cerevisiae IFO2346 grown for 2 days was mixed with 10g of Sucrose/
dl, yeast extract 1g/dl, KH 2 PO 4 0.4g/dl,
MgSO47H2O0.01g /dl, L-methionine 1.0
g/dl, ZnSO 4・7H 2 O0.25mg/dl, MnSO 4 4~
The cells were inoculated into 10 ml of a heat-sterilized medium containing 1.25 mg/dl of 6H 2 O, adjusted to pH 6.0, and shaken at 28° C. for 4 days. After collecting bacteria by centrifugation and washing with physiological saline, the bacterial cells were suspended in 1.5N perchloric acid and shaken at room temperature for 1 hour to extract SAM. The extract was analyzed using paper chromatography and high performance liquid chromatography, and SAM, adenine (hereinafter abbreviated as Ad),
S-adenosylhomocysteine (hereinafter abbreviated as SAH), methylthioadenosine (hereinafter abbreviated as MTA)
The results are shown in Table 1.

【表】 この結果から、明らかなように乾燥菌体当りの
SAM含量が12%以上の場合にはSAMと分離し難
い不純物が少ないことがわかる。 実施例 2 実施例1と同じで培地で、培養時間、培地PH、
培養温度を変えて、サツカロマイセス・セレビジ
エIFO2346を培養し、乾燥菌体当りのSAM含量
が異なる菌体を調整した。この菌体を実施例1と
同じ方法で抽出・分析を行い、結果を第2表に示
した。
[Table] From this result, it is clear that the amount of
It can be seen that when the SAM content is 12% or more, there are fewer impurities that are difficult to separate from SAM. Example 2 Same culture medium as Example 1, culture time, medium PH,
Satucharomyces cerevisiae IFO2346 was cultured at different culture temperatures to prepare bacterial cells with different SAM contents per dry bacterial cell. The bacterial cells were extracted and analyzed using the same method as in Example 1, and the results are shown in Table 2.

【表】【table】

【表】 実施例 3 グルコース5g/dl、ポリペプトン0.5g/dl、
KH2PO40.4g/dl、K2HPO40.4g/dl、
MgSO4・7H2O0.02g/dl、酵母エキス0.2g/
dl、からなり、PH6.0に調整、加熱滅菌した培地
10mlに第3表に示す各種菌株を1白金耳接種し、
28℃にて24時間振盪培養した。 一方、シユクロース10g/dl、酵母エキス1
g/dl、KH2PO40.4g/dl、MgSO4・7H2O0.01
g/dl、尿素(別滅菌)1.5g/dl、L−メチオ
ニン0.75g/dl、CaCl2 2H2O0.02g/dl、
ZnSO4 7H2O0.25mg/dl、FeSO4 7H2O0.25mg/
dl、MnSO44〜6H2O125mg/dl、CuSO4
5H2O2μg/dl、H3BO32μg/dl、CoCl2
6H2O0.2μg/dl、KI1μg/dlからなりPH6.0に調
整した培地1を2容発酵槽に入れ、殺菌後、
上記種培養液5mlを接種し、28℃で72時間通気撹
拌培養を行なつた。培養後、遠心分離にて集菌
し、生理食塩水で1回洗浄した菌体を100mlの
1.5N過塩素酸に懸濁し、室温で1時間振盪し
SAMを抽出した。次いで遠心分離にて菌体残渣
を除去した後、炭酸水素カリウムを加えてPH4.5
に調整し、生じた過塩素酸カリウムの沈澱を遠心
分離にて除去し、SAMを含む抽出液を得た。抽
出液中のSAMを定量しその結果を乾燥菌体当り
のSAM量として第3表に示した。 この抽出液をSAM量として0.2gになるように
弱酸性陽イオン交換樹脂アンバーライトIRC−50
(H+型)50mlを詰めたカラムに通しSAMを吸着
させた。カラムに0.005N酢酸を通じて溶出液の
260nmに於ける吸光度が0.1以下になるまで洗浄
し、不純物を除去した。この時に要した0.2N酢
酸量を第3表に示した。次いでカラムに0.1N硫
酸を通じて溶出液の260nmに於ける吸光度が0.05
以下になるまで、SAMを溶出した。この溶出液
をアンバーライトIRA900樹脂(OH-型)で処理
し、PH3.0とした後、凍結乾燥して、SAM・硫酸
塩を得た。この時のSAMの回収率を第3表に示
した。セルロース薄層クロマトグラフイー、ペー
パークロマトグラフイー、高速液体クロマトグラ
フイーでSAMの純度を測定し、第3表に示した。
[Table] Example 3 Glucose 5g/dl, polypeptone 0.5g/dl,
KH 2 PO 4 0.4g/dl, K 2 HPO 4 0.4g/dl,
MgSO 4・7H 2 O0.02g/dl, yeast extract 0.2g/
dl, adjusted to PH6.0, heat sterilized medium
Inoculate one platinum loop of the various bacterial strains shown in Table 3 into 10 ml,
Shaking culture was performed at 28°C for 24 hours. On the other hand, sucrose 10g/dl, yeast extract 1
g/dl, KH 2 PO 4 0.4g/dl, MgSO 4・7H 2 O0.01
g/dl, urea (sterilized separately) 1.5g/dl, L-methionine 0.75g/dl, CaCl 2 2H 2 O 0.02g/dl,
ZnSO 4 7H 2 O0.25mg/dl, FeSO 4 7H 2 O0.25mg/
dl, MnSO 4 4~6H 2 O125mg/dl, CuSO 4
5H 2 O2 μg/dl, H 3 BO 3 2 μg/dl, CoCl 2
Medium 1 containing 0.2 μg/dl of 6H 2 O and 1 μg/dl of KI and adjusted to pH 6.0 was placed in a 2-volume fermenter, and after sterilization,
5 ml of the above seed culture solution was inoculated and cultured with aeration and stirring at 28°C for 72 hours. After culturing, collect the bacteria by centrifugation, wash once with physiological saline, and add 100ml of the bacteria.
Suspend in 1.5N perchloric acid and shake at room temperature for 1 hour.
SAM was extracted. Next, after removing bacterial cell residue by centrifugation, potassium hydrogen carbonate was added to adjust the pH to 4.5.
The resulting potassium perchlorate precipitate was removed by centrifugation to obtain an extract containing SAM. SAM in the extract was quantified and the results are shown in Table 3 as the amount of SAM per dry bacterial cell. Weakly acidic cation exchange resin Amberlite IRC-50 was added to the extract so that the SAM amount was 0.2g
(H + form) was passed through a column packed with 50 ml to adsorb SAM. Pass the eluate through 0.005N acetic acid into the column.
Impurities were removed by washing until the absorbance at 260 nm became 0.1 or less. The amount of 0.2N acetic acid required at this time is shown in Table 3. Next, pass 0.1N sulfuric acid through the column until the absorbance of the eluate at 260nm is 0.05.
SAM was eluted until: This eluate was treated with Amberlite IRA900 resin (OH - type) to adjust the pH to 3.0, and then freeze-dried to obtain SAM/sulfate. The recovery rate of SAM at this time is shown in Table 3. The purity of SAM was measured by cellulose thin layer chromatography, paper chromatography, and high performance liquid chromatography and is shown in Table 3.

【表】【table】

【表】 第3表から明らかなように、本発明例において
は不純物の除去に要する溶出液の量が少なくてす
み、SAM回収率、SAMの純度とも極めて良好で
あることが明らかである。
[Table] As is clear from Table 3, in the examples of the present invention, the amount of eluate required to remove impurities is small, and it is clear that both the SAM recovery rate and the purity of SAM are extremely good.

Claims (1)

【特許請求の範囲】[Claims] 1 菌体中に乾燥菌体基準で10重量%以上のS−
アデノシルメチオニンを含有し、メチルチオアデ
ノシン、アデニン、及びS−アデノシルホモシス
テインをS−アデノシルメチオニン蓄積量に対し
てそれぞれ0.1%以下、1×10-2%以下、及び0.5
%以下含有するサツカロマイセス・セレビシエに
属する微生物菌体。
1. More than 10% by weight of S- in the bacterial cells based on dry bacterial cells.
Contains adenosylmethionine, and contains methylthioadenosine, adenine, and S-adenosylhomocysteine at 0.1% or less, 1×10 -2 % or less, and 0.5% or less relative to the accumulated amount of S-adenosylmethionine, respectively.
Microorganisms belonging to Satucharomyces cerevisiae containing less than %.
JP2889382A 1982-02-25 1982-02-26 Microbial cell rich in s-adenosylmethionine Granted JPS58146274A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2889382A JPS58146274A (en) 1982-02-26 1982-02-26 Microbial cell rich in s-adenosylmethionine
GB08303031A GB2116172B (en) 1982-02-25 1983-02-03 Microbial cells containing s-adenosyl methionine in high concentrations and process for production of s adenosyl methionine
US06/463,990 US4562149A (en) 1982-02-25 1983-02-04 Yeast culture containing S-adenosyl methionine in high concentrations, and process for production of S-adenosyl methionine
AR292061A AR230457A1 (en) 1982-02-25 1983-02-08 PROCEDURE FOR PRODUCING S-ADENOSYLMETIONIN
IT19490/83A IT1193668B (en) 1982-02-25 1983-02-09 MICROBIAL CELLS CONTAINING S-ADENOSYL METHIONINE IN HIGH CONCENTRATION AND PROCEDURE FOR THE PRODUCTION OF S-ADENOSYL METHIONINE
DE19833304468 DE3304468A1 (en) 1982-02-25 1983-02-09 MICRO-ORGANISM CELLS CONTAINING S-ADENOSYL METHIONINE PROCESS FOR THE PRODUCTION THEREOF
BR8300654A BR8300654A (en) 1982-02-25 1983-02-09 MICROBIAL CELLS CONTAINING S-ADENOSYL-METHIONIN IN HIGH CONCENTRATIONS AND PROCESS FOR THE PRODUCTION OF S-ADENOSYL-METHIONIN
ES519652A ES519652A0 (en) 1982-02-25 1983-02-09 A PROCEDURE FOR OBTAINING S-ADENOSIL-METIONINE.
CH762/83A CH658868A5 (en) 1982-02-25 1983-02-10 METHOD FOR PRODUCING S-ADENOSYL METHIONINE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2889382A JPS58146274A (en) 1982-02-26 1982-02-26 Microbial cell rich in s-adenosylmethionine

Publications (2)

Publication Number Publication Date
JPS58146274A JPS58146274A (en) 1983-08-31
JPH0417627B2 true JPH0417627B2 (en) 1992-03-26

Family

ID=12261069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2889382A Granted JPS58146274A (en) 1982-02-25 1982-02-26 Microbial cell rich in s-adenosylmethionine

Country Status (1)

Country Link
JP (1) JPS58146274A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174386A (en) * 1987-12-28 1989-07-10 Kanegafuchi Chem Ind Co Ltd Gene capable of enhancing accumulation of s-adenosyl-l-methionine and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217118A (en) * 1975-07-30 1977-02-08 Hitachi Ltd Fuel supply device of internal combustion engine
JPS548794A (en) * 1977-06-17 1979-01-23 Yamasa Shoyu Co Ltd Preparation of s-adenosyl-l-methionine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217118A (en) * 1975-07-30 1977-02-08 Hitachi Ltd Fuel supply device of internal combustion engine
JPS548794A (en) * 1977-06-17 1979-01-23 Yamasa Shoyu Co Ltd Preparation of s-adenosyl-l-methionine

Also Published As

Publication number Publication date
JPS58146274A (en) 1983-08-31

Similar Documents

Publication Publication Date Title
US4562149A (en) Yeast culture containing S-adenosyl methionine in high concentrations, and process for production of S-adenosyl methionine
JPS6232893A (en) Production of hyaluronic acid
KR910002857B1 (en) Process for the biotechnological preparation of poly -d- (-) -3- hydroxybutyric acid
JPH0738796B2 (en) Method for producing 2-keto-D-glucaric acid by fermentation method
WO2010058427A2 (en) Process for production and purification of polymyxin b sulfate
EP0079241B1 (en) Process for producing glutathione
JPH0417627B2 (en)
JPH0433439B2 (en)
US3669845A (en) Method for the preparation of pentitol from pentose by using bacteria
JPS5937076B2 (en) Fermentation method Vitamin B↓1↓2 manufacturing method
JPH066061B2 (en) Method for producing ε-polylysine and ε-polylysine-producing bacterium
JPH06133790A (en) Production of biotin and new microorganism to be used therefor
JP2936663B2 (en) Method for producing FR901228 substance
JP3869788B2 (en) Process for producing organic compounds using coryneform bacteria
JP3030916B2 (en) Method for producing β-glucooligosaccharide
JPH0889262A (en) Production of inositol and preparation of antibiotic resistant strain
KR950009200B1 (en) Process for producing d-alanine
JPS6314958B2 (en)
JP2003180391A (en) METHOD FOR PRODUCING epsilon-POLY-L-LYSINE
JPH0838188A (en) Production of inositol and method for taking glucose metabolism antagonistic substance-resistant strain
JP2797295B2 (en) Novel microorganism and method for producing menaquinone-4 using the novel microorganism
JPH1042882A (en) Production of inositol and collection of strain having resistant to cetyltrimethylammonium salt
JP2922213B2 (en) Method for producing 5'-inosinic acid by fermentation method
JPH04304894A (en) Production of hydroxide of picolinic acid or pyrazinic acid by microorganism
US2932608A (en) Process for the production of cobalamins