JPS59109190A - Extractive separation of s-adenosyl-l-methionine - Google Patents

Extractive separation of s-adenosyl-l-methionine

Info

Publication number
JPS59109190A
JPS59109190A JP21876682A JP21876682A JPS59109190A JP S59109190 A JPS59109190 A JP S59109190A JP 21876682 A JP21876682 A JP 21876682A JP 21876682 A JP21876682 A JP 21876682A JP S59109190 A JPS59109190 A JP S59109190A
Authority
JP
Japan
Prior art keywords
sam
methionine
adenosyl
mold
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21876682A
Other languages
Japanese (ja)
Other versions
JPH0335917B2 (en
Inventor
Yoshinori Okuma
大隈 良典
Takanori Sato
隆則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP21876682A priority Critical patent/JPS59109190A/en
Priority to US06/560,119 priority patent/US4599309A/en
Publication of JPS59109190A publication Critical patent/JPS59109190A/en
Publication of JPH0335917B2 publication Critical patent/JPH0335917B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To extract and to separate high-purity S-adenosyl-L-methionine efficiently, by freezing a mold containing S-adenosyl-L-methionine by a safe and simple process. CONSTITUTION:A yeast mold accumulating S-adenosyl-L-methionine in its body obtained by cultivating a yeast belonging to the genus Saccharomyces, etc. is collected, it is suspended in 1-100pts.wt., preferably 3-10pts.wt. water based on 1pt.wt. wet mold amount to give a suspension, which is brought into contact with an aqueous solution of a bivalent ion, frozen, the frozen substance is melted by a conventional procedure, and the mold residue is removed from the prepared melted solution by a conventional procedure.

Description

【発明の詳細な説明】 本発明はS−アデノシル−L−メチオニン(以下、SA
Mと略称する)の抽出分離法に関し、さらに詳しくは、
SAM生産能を有する菌体内から夾雑物が少な(純度の
高いSAMを効率良く抽出分離する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to S-adenosyl-L-methionine (hereinafter referred to as SA
For more details regarding the extraction and separation method of
This invention relates to a method for efficiently extracting and separating SAM with a small amount of impurities (high purity) from a microbial cell capable of producing SAM.

SAMは生体内におい℃脂肪、蛋白質、糖類などの代謝
に関与する重要な物質である。近時かかるSAMに脂血
症、過度脂血症、動脈硬化症、抑うつ病、変性関節症、
神経病痛覚、不眠症などに対する治療効果のあることが
見い出されており、その大量生産が期待されている。
SAM is an important substance involved in the metabolism of fats, proteins, sugars, etc. in vivo. Recent SAMs include lipidemia, hyperlipidemia, arteriosclerosis, depression, degenerative joint disease,
It has been found to have a therapeutic effect on neurological pain sensation, insomnia, etc., and its mass production is expected.

従来、SAM生産能を有する菌体内からSAMを抽出分
離する方法に関しては数多くの方法が知られており、例
えば、SAM含有菌体を過塩素酸。
Conventionally, many methods have been known for extracting and separating SAM from microbial cells capable of producing SAM. For example, SAM-containing microbial cells are extracted with perchloric acid.

塩酸、硫酸等の無機酸、@酸、トリクロル酢酸等の有機
酸、酢酸メチル、酢酸エチル等のエステル類などの薬剤
で処理して細胞壁を崩壊させ、存在するSAMを溶液に
取り出し、その後、イオン交換樹脂、活性炭、キレート
樹脂等で精製処理する方法が挙げられる(特公昭52−
35726号、特開昭52−125194号、特開昭5
6−92899号など)。
Cell walls are disrupted by treatment with drugs such as inorganic acids such as hydrochloric acid and sulfuric acid, organic acids such as @acid and trichloroacetic acid, and esters such as methyl acetate and ethyl acetate, and the existing SAM is extracted into a solution. Examples include purification methods using exchange resins, activated carbon, chelate resins, etc.
No. 35726, JP-A-52-125194, JP-A-5
No. 6-92899, etc.).

しかし、これらの方法は菌体処理に薬剤を用いているた
めSAMの分解を生じやすく、かつ安全衛生上の問題が
あるほか、SAMと夾雑物との分離が不完全で医薬とし
て使用しうるような高純度のS A Mを得にくく、そ
の純度を向上させようとすればSAMの回収率が低下す
るといった問題があった。
However, these methods tend to cause decomposition of SAM because they use drugs to treat bacterial cells, and there are health and safety issues.In addition, the separation of SAM and impurities is incomplete, making it difficult to use it as a medicine. There is a problem in that it is difficult to obtain SAM with high purity, and attempts to improve the purity result in a decrease in the recovery rate of SAM.

そこで本発明者らは従来技術のかかる欠点を改良すべく
鋭意検討を進めた結果、S A M生産能を有する菌体
から高純度のSAMを抽出分離するにあたり、菌体を凍
結融解することがきわめて効果的であり、また凍結融解
に先立って菌体を二価鋼イオン水溶液で処理するとその
効果がさらに向上することを見い出し本発明を完成する
に至った。
Therefore, the present inventors conducted intensive studies to improve this shortcoming of the conventional technology, and as a result, they discovered that it is not necessary to freeze and thaw the bacterial cells when extracting and separating highly pure SAM from the bacterial cells capable of producing SAM. It has been found that this is extremely effective, and that the effect is further improved if the bacterial cells are treated with an aqueous divalent steel ion solution prior to freezing and thawing, leading to the completion of the present invention.

すなわち本発明の目的は、安全かつ簡便な操作でSAM
含有菌体から高純度のSAMを効率よく分離抽出する方
法を提供することにあり、かかる本発明の目的は、SA
Mを体内に蓄積した酵母菌体を、所望により二価銅イオ
ン水溶液と接触させ、その後、水中で凍結させたのち融
解させて菌体外K S A Mを抽出分離することによ
り達成される。
In other words, an object of the present invention is to provide SAM with safe and simple operation.
It is an object of the present invention to provide a method for efficiently separating and extracting highly purified SAM from cells containing SA.
This is achieved by bringing yeast cells that have accumulated M in the body into contact with an aqueous divalent copper ion solution, if desired, and then freezing them in water and thawing them to extract and separate KSAM outside the cells.

本発明に用いられる5Ali含有菌体の製造法は特に限
定されるものではな(、例えばSAM生産能を有するザ
ツノ)ロー’qイセス(Saccharomyces 
)属、キャンデイダ(Candida)属などに属する
酵母をメチオニン含有培地で培養し、菌体内にSAMを
生成蓄積せしめる方法などが例示される。
The method for producing the 5Ali-containing microbial cells used in the present invention is not particularly limited (for example, Saccharomyces having SAM-producing ability).
Examples include a method in which yeast belonging to the genus Candida or the like is cultured in a methionine-containing medium to produce and accumulate SAM within the bacterial cells.

かくして得られたS A M含有菌体培養液から菌体な
常法により集菌し、必要に応じて洗浄した後、水に再度
懸濁させる。使用する水の量は適宜選択すればよいフ)
(、通常は湿菌t1重量部に対して1〜100重量部、
望ましくは3〜10重緻部用いることができる。水量が
少なすぎるとSAMの画体外への抽出率が十分でなくな
り、又多すぎると水溶液中のSAMJ度が低下し、後の
精製分離工程にいたずらに負担をかける。
Bacteria are collected from the SAM-containing microbial culture solution obtained in this manner by a conventional method, washed if necessary, and then resuspended in water. The amount of water to be used should be selected appropriately.)
(Usually 1 to 100 parts by weight per 1 part by weight of wet bacteria,
Desirably, 3 to 10 layers can be used. If the amount of water is too small, the extraction rate of SAM outside the image body will not be sufficient, and if it is too large, the degree of SAMJ in the aqueous solution will decrease, unnecessarily burdening the subsequent purification and separation process.

使用する水は菌体を凍結しうるものであればとくに制限
されないが、抽出率の点で蒸留水を用いることが好まし
い。しかし、本発明の効果を本質的に損わない範囲内で
あれば親水性有機溶剤を併用したり、食塩などの無機塩
を1#解したものであってもよい。
The water used is not particularly limited as long as it can freeze the bacterial cells, but from the viewpoint of extraction efficiency, it is preferable to use distilled water. However, as long as the effects of the present invention are not essentially impaired, a hydrophilic organic solvent may be used in combination, or an inorganic salt such as common salt may be used.

次に懸濁液の凍結が行われる。凍結方法についてはその
温度、時間等に特に制限はなく、懸濁液が均一に凍結す
ればいか゛なる方法をとっても良い。
Freezing of the suspension then takes place. There are no particular limitations on the temperature, time, etc. of the freezing method, and any method may be used as long as the suspension is uniformly frozen.

かくして得られた凍結物は次いで常法に従って融解され
る。融解温度は適宜選択すればよいが、通常は0〜25
℃の範囲が望ましく、あまり温度が高すぎると、SAM
が分解し収率が低下する。
The frozen product thus obtained is then thawed according to a conventional method. The melting temperature may be selected appropriately, but is usually 0 to 25
℃ range is desirable; if the temperature is too high, SAM
decomposes and the yield decreases.

得られた融解液から菌体残渣を常法(例えば遠心分離法
)に従って除去することにより、後の精製工程でSAM
と挙動を−eこする夾雑物の少ない純度の良いSAM水
溶液が得られる。
By removing bacterial cell residue from the resulting molten liquid using a conventional method (e.g., centrifugation), SAM can be removed in the subsequent purification step.
A SAM aqueous solution of good purity with few impurities that interfere with the behavior can be obtained.

融解の方法をとるととKよって細胞壁を完全に破壊する
ことなく細胞質膜及び液胞膜が破れ、結果的には細胞質
内に含まれる各種蛋白質や核酸類の溶出を犬幅罠低下さ
せる結果、純度の高いSAM水溶液が得られるものと推
定できる。かくして得られたSAM水溶液を常法により
イオン交換樹脂、活性炭処理等を行なうと、純度のよい
SAMが単離できる。
When the thawing method is used, the cytoplasmic membrane and vacuolar membrane are ruptured without completely destroying the cell wall, and as a result, the elution of various proteins and nucleic acids contained in the cytoplasm is reduced by a wide margin. It can be assumed that a highly pure SAM aqueous solution can be obtained. When the SAM aqueous solution thus obtained is treated with an ion exchange resin, activated carbon, etc. in a conventional manner, SAM with good purity can be isolated.

また本発明においては国体の凍結に先立って、−5= 菌体を二価銅イオン水溶液と接触させることにより、細
胞質φの低分子化合物を選択的に排出せしめ、その結果
としてSAM純度を大幅に向上させることができる。銅
イオン水溶液による処理は、通常、水または緩衝液中に
菌体を懸濁させたのち、銅イオン水溶液を加えて放置す
るかまたは攪拌することKよって行われる。このときの
pHは、通常5〜8、好ましくは5.5〜7であり、懸
濁液中の菌体含量は湿菌重量基準で通常1〜50重量%
、好ましくは5〜30重f−であり、接触温度及び接触
時間は通常0〜50℃で10分〜3時間、好ましくは2
0〜40℃で30分〜2時間である。
In addition, in the present invention, prior to freezing the Kokutai, -5= bacterial cells are brought into contact with an aqueous divalent copper ion solution to selectively excrete low-molecular compounds in the cytoplasm φ, and as a result, SAM purity is significantly increased. can be improved. The treatment with an aqueous copper ion solution is usually carried out by suspending the bacterial cells in water or a buffer solution, adding the aqueous copper ion solution, and then allowing the suspension to stand or stirring. The pH at this time is usually 5 to 8, preferably 5.5 to 7, and the bacterial cell content in the suspension is usually 1 to 50% by weight based on the wet bacterial weight.
, preferably 5 to 30 F-, and the contact temperature and contact time are usually 0 to 50°C for 10 minutes to 3 hours, preferably 2
The temperature is 0 to 40°C for 30 minutes to 2 hours.

用いられる銅イオンの供給源は水溶性の銅イオン化合物
であればいずれでもよく、その具体例として、例えば塩
化第二銅、臭化第二組、硫酸第二銅、酢酸第二銅などが
挙げられる。がかる銅イオンの添加量は、通常、懸濁液
中の銅イオン濃度で5μM以上、好ましくは10〜50
0 l1Mである。
The source of copper ions used may be any water-soluble copper ion compound, and specific examples include cupric chloride, cupric bromide, cupric sulfate, cupric acetate, etc. It will be done. The amount of copper ions added is usually 5 μM or more in terms of copper ion concentration in the suspension, preferably 10 to 50 μM.
0 l1M.

かくして本発明によれば、簡単な操作できわめて効率良
く、高純度のSAM水溶液を取得するこ 6− とが出来る。
Thus, according to the present invention, it is possible to obtain a highly purified SAM aqueous solution very efficiently with simple operations.

以下に実施例を番げて本発明をさら(で具体的に説明す
る。
The present invention will be further specifically described below with reference to Examples.

実施例1 シュレンク(5chlenk、 F、 )らの培地〔ジ
ャーナル・オブ・バイオロジカル・グミストリー(J。
Example 1 Medium of Schlenk (F.) et al. [Journal of Biological Gummy Science (J.

Biol、 chem、) 229巻、1037頁(1
957)参照)で′リツ力ロマイセス(Saccbar
omyces。
Biol, chem,) Volume 229, Page 1037 (1
957)) and 'Saccbar'
omyces.

Cerevisiae ) I FO2044を培養し
て得られたSAM含有菌体109(湿りを蒸留水で2回
洗浄する。その後間体を50&の蒸留水に十分に懸濁さ
せた後、−20℃で5時間放置して凍結させる。次に凍
結物を20℃の水で間接的に加温することにより、完全
に融解させる。融解した液を遠心分離にかけ菌体残漬を
除き、SAMの含有量及びODzao物質中のSAMの
相対純度を測定したところ、SAM含有琺1.72g、
SAM相対純度42.8%の値が得られた。
SAM-containing bacterial cells 109 obtained by culturing S. cerevisiae) I FO2044 (wet cells were washed twice with distilled water. After that, the cells were sufficiently suspended in 50°C of distilled water, and then incubated at -20°C for 5 hours. Leave to freeze. Next, completely thaw the frozen material by indirectly heating it with water at 20°C. The thawed liquid is centrifuged to remove residual bacterial cells, and the SAM content and ODzao When the relative purity of SAM in the material was measured, it was found that 1.72 g of SAM-containing phosphorus;
A value of 42.8% SAM relative purity was obtained.

なお、SAMの純度は試験液の一部をとり、二次元ペー
パークロマトグラフィーで展開後、shMのスポットを
検出し、紫外線検出器で試験液のSAM濃度を検出し、
試験液のOI)taoの測定から次式により算出した。
The purity of SAM is determined by taking a portion of the test solution, developing it with two-dimensional paper chromatography, detecting the shM spot, and detecting the SAM concentration in the test solution with an ultraviolet detector.
It was calculated from the measurement of OI)tao of the test solution using the following formula.

比較例1 実施例1で用いた菌体と同一のSAM含有菌体10g(
湿t)を1.5N過1fi素酸50titに懸濁し、室
温で1時間、振とり抽出を行った。次いで、遠心分離に
より菌体残漬を除去した抽出液に、炭酸水素カリウムを
加えてpH5,0に調整し、生じた過塩素酸カリウムの
沈澱を吸引1過により除去し、実施例1と同様な方法で
SAMの含有量及び相対純度を測定したところ、SAM
含有量1.73.9、SAM相対純度15.6%であっ
た。
Comparative Example 1 10 g of SAM-containing bacterial cells identical to those used in Example 1 (
The wet product t) was suspended in 50 tit of 1.5N perfiic acid and extracted by shaking at room temperature for 1 hour. Next, potassium hydrogen carbonate was added to the extract from which residual bacterial cells had been removed by centrifugation, and the pH was adjusted to 5.0, and the resulting potassium perchlorate precipitate was removed by suction, and the same procedure as in Example 1 was carried out. When the content and relative purity of SAM were measured using a method, it was found that SAM
The content was 1.73.9, and the SAM relative purity was 15.6%.

実施例2 実施例1で用いたものと同じSAM含有菌体10g(湿
fi:)を蒸留水で2回洗浄したのち、pH6,4に調
整したトリス(ヒドロキシメチル)アミノエタン−2−
[N−モルホリノ〕エタンスルホン酸緩衝液100部(
緩衝液濃度10ミリモーラ−)に懸濁させた。
Example 2 After washing 10 g of SAM-containing bacterial cells (wet fi:), which were the same as those used in Example 1, twice with distilled water, tris(hydroxymethyl)aminoethane-2- was adjusted to pH 6.4.
[N-morpholino]ethanesulfonic acid buffer 100 parts (
It was suspended in a buffer solution (concentration: 10 mmolar).

次いで塩化第二銅を0.1ミIJモーラ−になるように
加えて30 ”Cで1時間ゆるやかに攪拌し、低分子の
夾雑物を菌体外に排出したのち、集菌し、蒸留水で2回
洗浄した。その後、実施例】と同様にして凍結融解し、
得られた懸濁液から遠心分離で不溶性物質を除き、上澄
み液に含まれるSAMの含有量及び純度を測定したとこ
ろ、SAM含有′t1.70.9、SAM相対純度90
.9チであった。
Next, cupric chloride was added to the solution at a concentration of 0.1 mmIJ molar, and the mixture was gently stirred at 30"C for 1 hour to expel low-molecular contaminants from the cells. The bacteria were collected, and the mixture was poured with distilled water. After that, freeze-thaw in the same manner as in Example].
Insoluble substances were removed from the resulting suspension by centrifugation, and the content and purity of SAM contained in the supernatant were measured. SAM content 't1.70.9, SAM relative purity 90.
.. It was 9chi.

%許出願人 日本ゼオン株式会社  9−Percentage Applicant: Nippon Zeon Co., Ltd. 9-

Claims (1)

【特許請求の範囲】 1 S−アゾノンルーシーメチオニンを体内に蓄積した
酵母菌体を水中で凍結したのち融解することを特徴とす
るS−アデノシル−し−メチオニンの抽出分離法。 2S−アデノ/ルーム−メチオニンを体内に蓄積した酵
母菌体を予め二価銅イオン水溶液と接触させ、その後、
水中で凍結したのち融解することを特徴とするS−アデ
ノシル−し−メチオニンの抽出分離法。
[Scope of Claims] 1. A method for extracting and separating S-adenosyl-methionine, which comprises freezing yeast cells that have accumulated S-azonone-luciemethionine in water and then thawing them. Yeast cells that have accumulated 2S-adeno/room-methionine in the body are brought into contact with an aqueous divalent copper ion solution in advance, and then,
A method for extracting and separating S-adenosyl-methionine, which is characterized by freezing in water and then thawing.
JP21876682A 1982-12-14 1982-12-14 Extractive separation of s-adenosyl-l-methionine Granted JPS59109190A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21876682A JPS59109190A (en) 1982-12-14 1982-12-14 Extractive separation of s-adenosyl-l-methionine
US06/560,119 US4599309A (en) 1982-12-14 1983-12-12 Post cultivation treatment of yeast cells to facilitate product recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21876682A JPS59109190A (en) 1982-12-14 1982-12-14 Extractive separation of s-adenosyl-l-methionine

Publications (2)

Publication Number Publication Date
JPS59109190A true JPS59109190A (en) 1984-06-23
JPH0335917B2 JPH0335917B2 (en) 1991-05-29

Family

ID=16725059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21876682A Granted JPS59109190A (en) 1982-12-14 1982-12-14 Extractive separation of s-adenosyl-l-methionine

Country Status (1)

Country Link
JP (1) JPS59109190A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235726A (en) * 1975-09-16 1977-03-18 Nippon Steel Corp Process for welding electric seam steel pipe
JPS52125194A (en) * 1976-04-09 1977-10-20 Yamasa Shoyu Co Ltd Stabilized s-adenosyl-l-methionine composition
JPS5692899A (en) * 1979-12-04 1981-07-27 Kanegafuchi Chem Ind Co Ltd Composition containing s-adenosyl-l-methionine, and its preparation
JPS6413357A (en) * 1987-07-08 1989-01-18 Canon Kk Recording device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235726A (en) * 1975-09-16 1977-03-18 Nippon Steel Corp Process for welding electric seam steel pipe
JPS52125194A (en) * 1976-04-09 1977-10-20 Yamasa Shoyu Co Ltd Stabilized s-adenosyl-l-methionine composition
JPS5692899A (en) * 1979-12-04 1981-07-27 Kanegafuchi Chem Ind Co Ltd Composition containing s-adenosyl-l-methionine, and its preparation
JPS6413357A (en) * 1987-07-08 1989-01-18 Canon Kk Recording device

Also Published As

Publication number Publication date
JPH0335917B2 (en) 1991-05-29

Similar Documents

Publication Publication Date Title
Molenaar et al. Preferential release of newly synthesized 3H‐acetylcholine from rat cerebral cortex slices in vitro
EP0052861B1 (en) Extraction of interferon from bacteria
EP0013851A1 (en) Purified bacterial proteoglycans, process for their preparation and vaccine containing them
US4389396A (en) Immunostimulating preparations based on ribosomal RNA's and a process for the preparation of the RNA's
JPH05500602A (en) Method for recovering microbiologically produced chymosin
JPS59109190A (en) Extractive separation of s-adenosyl-l-methionine
JPS62246575A (en) Method for purifying pyrroloquinolinequinone
Schiemann et al. Isolation of a Transcription-active RNA Polymerase—DNA Complex from Euglena Chloroplasts
US4283530A (en) Process for the preparation of heparin
US4599309A (en) Post cultivation treatment of yeast cells to facilitate product recovery
JP3076856B2 (en) Degradation method of alginic acid by bacteria
JPH0771507B2 (en) Extraction of granulocyte / macrophage / colony stimulating factor from bacteria
JPS59109171A (en) Treatment of yeast cell
JP2009213469A (en) Method of producing s-adenosylmethionine
JPS6224076B2 (en)
JPS6251990A (en) Treatment of microbial cell
JPS6336789A (en) Production of coenzyme q10
JP3025067B2 (en) Method for producing glyoxalase I
FR2464998A1 (en) NEW PLASMID AND USE THEREOF FOR MODIFYING E. COLI STRAIN
JPS639838B2 (en)
US2683680A (en) Method of recovering vitamin b12 activity
JPS5594393A (en) Gluco-corticoid sparing factor
JPS58146291A (en) Preparation of s-adenosylmethionine
JPS58140093A (en) Preparation of interferon
FR2526027A1 (en) PROCESS FOR THE PURIFICATION OF DIMYCOLATES AND RAW TREHALOSE (CT) AND PRODUCT THUS OBTAINED